Theoretical predictions of a highly reactive non-heme Fe(IV)=O complex with a high-spin ground state

Kyung-Bin Cho,^a Sason Shaik^{*b} and Wonwoo Nam^{*a}

^a Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea. Fax: +82-2-3277-4441; Tel: +82-2-3277-2392; E-mail: wwnam@ewha.ac.kr

^b Department of Organic Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel. Fax:+972-2-6584680; Tel: +972-2-6585909; E-mail: sason@yfaat.ch.huji.ac.il

Table of Contents

I. Methods	,
Note about free energy calculations involving complexation	,
Optimization in solvent	,
II. (Me ₆ TREN)Fe(IV)=O)
Mulliken Spin distribution)
Key geometries in Å)
Absolute energies.)
Relative energies (in kcal/mol).)
III. (Me ₆ TREN)Ru(IV)=O	,
Mulliken Spin distribution	,
Key geometries in Å	,
Absolute energies	,
Relative energies (in kcal/mol).	1
IV. $(Me_6TREN)Fe(IV)=O + C_6H_{12}$;
Mulliken Spin distribution	;
Key geometries in Å or °	,
Absolute energies	,
Relative energies (in kcal/mol)	,
V. $(Me_6TREN)Ru(IV)=O + C_6H_{12}$)
Mulliken Spin distribution)
Key geometries in Å or °.)
Absolute energies.	,
Relative energies (in kcal/mol).	,
VI. $(Me_6TREN)Fe(IV)=O + CH_3CN$)

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Mulliken Spin distribution.	10
Key geometries in Å or °.	
Absolute energies.	
Relative energies (in kcal/mol).	
VII. References	11
Full reference for reference 14.	11
References in SI.	
VIII. Coordinates	
Acetonitrile	
Cyclohexane	
$^{3}[(Me_{6}TREN)Fe^{IV}O]^{2+}(\delta, \delta', \pi^{*}, \pi^{*}'(\downarrow))$	
³ [(Me ₆ TREN)Fe ^{IV} O] ²⁺ (π *, π *')	12
$^{5}[(Me_{6}TREN)Fe^{IV}O]^{2+}$	12
⁵ [(Me ₆ TREN)Fe ^{IV} O] ²⁺ intra-TS	12
$^{3}[(Me_{6}TREN)Ru^{IV}O]^{2+}$	13
⁵ [(Me_6TREN) $Ru^{IV}O$] ²⁺	13
⁵ [(Me ₆ TREN)Fe ^{IV} O] ²⁺ + C ₆ H ₁₂ , separated reactants	13
⁵ [(Me ₆ TREN)Fe ^{IV} O] ²⁺ + C ₆ H ₁₂ , complexed reactants	13
⁵ [(Me ₆ TREN)Fe ^{IV} O] ²⁺ + C ₆ H ₁₂ , transition state	13
⁵ [(Me ₆ TREN)Fe ^{IV} O] ²⁺ + C ₆ H ₁₂ , intermediate	14
$^{3}[(Me_{6}TREN)Ru^{IV}O]^{2+} + C_{6}H_{12}$, separated reactants	14
$^{3}[(Me_{6}TREN)Ru^{IV}O]^{2+} + C_{6}H_{12}$, complexed reactants	14
$^{3}[(Me_{6}TREN)Ru^{IV}O]^{2+} + C_{6}H_{12}$, transition state	15
⁵ [(Me ₆ TREN)Ru ^{IV} O] ²⁺ + C ₆ H ₁₂ , transition state	15
$^{3}[(Me_{6}TREN)Ru^{IV}O]^{2+} + C_{6}H_{12}$, intermediate	15
$^{5}[(Me_{6}TREN)Fe^{IV}O]^{2+} + CH_{3}CN$, separated reactants	15

⁵ [$(Me_6TREN)Fe^{IV}O$] ²⁺ + CH ₃ CN, complexed reactants	.16
⁵ [(Me ₆ TREN)Fe ^{IV} O] ²⁺ + CH ₃ CN, transition state	.16
⁵ [$(Me_6TREN)Fe^{IV}O$] ²⁺ + CH ₃ CN, intermediate	.16

I. Methods

Note about free energy calculations involving complexation

Due to loss of translational and rotational degrees of freedom upon complexation of the constituent reactants, free energies cannot reliably be calculated by just adding the separately calculated free energies of the constituent reactants. Therefore, we estimated the thermal contributions for the complexation by putting the metal-oxo compound and the substrate in the same system, but placing them approximately 20 Å from each other, which allows the program to keep the same number of degrees of freedom as in the complex.

However, calculating free energies including solvent effects with PCM models needs to take into account the change of standard-state concentration from ideal gas to 1 M in solution phase. The conversion factor can be expressed as

$$\Delta G^{\bullet} = \Delta G^{\circ} + RT \ln \left(\frac{Q^{\bullet}}{Q^{\circ}}\right)$$

where the open ring symbolizes the gas phase concentration and the closed ring the solution phase concentration^{S1,S2}. In a simple chemical model $A + B \rightarrow C$ (as in our study), evaluation of this equation yields a correction factor of -1.89 kcal/mol that has been added to the complexation free energies. In case of one of the reactants being a solvent molecule (i.e. in our case acetonitrile), the solution phase concentration is not 1 M, but 19.17 M, which gives a correction factor of -1.75 kcal/mol. Further details can be found in references S1 and S2.

Optimization in solvent

The usual way of doing calculations is to optimize the system in gas-phase, and then do a singlepoint solvent calculations as this saves time and optimization in solvent usually does not change the geometry or energy beyond the existing error margins. However, in few cases, such as when the system in question is highly charged, the gas-phase optimized structure can show very different results from the one optimized in solvent due to self-interaction errors in DFT.^{S3,S4} We did indeed encounter artificial results where a net hydride transfer occured from the substrate (instead of a net hydrogen atom transfer) during optimization in gas-phase, which did not occur when we optimized in solvent using the CPCM model. Consequently, we optimized all the structures in solvent. Since we were studying H-transfer reaction, we used the UFF cavity since it puts a cavity around H atoms as well and not just around the heavy atoms.

II. (Me₆TREN)Fe(IV)=O

Intra-molecular transition state imaginary frequency: 1671 cm⁻¹.

Mulliken Spin distribution.

	Fe	0	4xN	Rest
Triplet (δ , δ ', π^* , $-\pi^*$ '(\downarrow))	2.77	-0.82	-0.01	0.05
Triplet (π^*, π^* ')	1.49	0.73	-0.22	0.00
Quintet (δ , δ ', π^* , π^* ')	3.12	0.73	0.09	0.07
Quintet intra-TS ^{<i>a</i>}	3.13	0.48	-0.11	0.50

^{*a*} Transition state for intra-molecular H-abstraction.

Key geometries in Å.

	D(Fe-O)	D(Fe-N1)	D(Fe-N2)	D(Fe-N3)	D(Fe-N4)	$D(O-H)^b$	$D(C-H)^{c}$
Triplet (δ , δ ', π^* , π^* '(\downarrow))	1.73	2.06	2.08	2.13	2.10	2.52	1.09
Triplet (π^* , π^* ')	1.63	2.09	2.09	2.01	2.10	2.60	1.09
Quintet (δ , δ ', π^* , π^* ')	1.65	2.08	2.10	2.13	2.10	2.55	1.09
Quintet intra-TS ^a	1.77	2.06	2.10	2.14	2.14	1.21	1.38
ar ::	1 1	1 11 1	· b 1	1 4 1	r 4 41	С Т 1	O II

^{*a*} Transition state for intra-molecular H-abstraction. ^{*b*} The closest H to the oxygen. ^{*c*} The C-H distance for the proton in question in *b*.

Absolute energies.

	LACVP $(H)^a$	$LACV3P^{*+}(H)^{a}$	Z ₀ (kcal/mol)	E(thermal) (kcal/mol)	S (cal/mol/K)
Triplet (δ , δ ', π^* , π^* '(\downarrow))	-892.449970	-892.837309	278.696950	290.919000	136.502000
Triplet (π*, π*')	-892.453124	-892.841778	279.837070	292.259000	138.382000
Quintet (δ , δ ', π *, π *')	-892.472876	-892.864413	278.825240	291.521000	141.561000
Quintet intra-TS ^b	-892.427891	-892.814359	274.322640	286.794000	140.113000

^{*a*} Total free energy in solution with all non electrostatic terms. ^{*b*} Transition state for intramolecular H-abstraction.

Relative energies (in kcal/mol).

	LACVP	LACV3P ^{*+}	Z_0	E(thermal)	-TS	Total ^a
Triplet $(\delta, \delta', \pi^*, \pi^*'(\downarrow))$	14.37	+2.63	-0.13	-0.47	+1.51	17.91
Triplet (π^*, π^* ')	12.39	+1.81	+1.01	-0.27	+0.95	15.89
Quintet (δ , δ ', π *, π *')	0.00	+0.00	+0.00	+0.00	+0.00	0.00
Quintet intra-TS ^b	28.23	+3.18	-4.5	-0.22	+0.43	27.11

^{*a*} The total column is calculated by simpliy adding the values in each row. ^{*b*} Transition state for intra-molecular H-abstraction.

III. (Me₆TREN)Ru(IV)=O

Mulliken Spin distribution.

	Ru	0	4xN	Rest
Triplet (π^*, π^* ')	1.08	0.96	-0.08	0.04
Quintet (δ , σ^*_{xy} , π^* , π^*)	2.56	0.97	0.32	0.15

Key geometries in Å.

	D(Ru-O)	D(Ru-N1)	D(Ru-N2)	D(Ru-N3)	D(Ru-N4)
Triplet (π^*, π^* ')	1.80	2.21	2.22	2.12	2.21
Quintet (δ , σ^*_{xy} , π^* , π^*)	1.81	2.20	2.24	2.27	2.22

Absolute energies.

	LACVP (H) ^a	$LACV3P^{*+}(H)^{a}$	Z ₀ (kcal/mol)	E(thermal) (kcal/mol)	S (cal/mol/K)	
Triplet (π^*, π^*)	-862.899880	-863.267295	278.342590	291.227000	142.405000	
Quintet (δ , σ^*_{xy} , π^* , π^*)	-862.879211	-863.247014	277.147560	290.442000	147.559000	
^a Total free energy in solution with all non electrostatic terms						

otal free energy in solution with all non electrostatic terms.

Relative energies (in kcal/mol).

	LACVP	LACV3P ^{*+}	Z_0	E(thermal)	-TS	Total ^a
Triplet (π^*, π^* ')	0.00	+0.00	+0.00	+0.00	+0.00	0.00
Quintet (δ , σ^*_{xy} , π^* , π^* ')	12.97	-0.24	-1.2	0.41	-1.51	10.43

^{*a*} The total column is calculated by simpliy adding the values in each row.

IV. $(Me_6TREN)Fe(IV)=O + C_6H_{12}$

Transition state imaginary frequency: 885 cm⁻¹.

Mulliken Spin distribution.

	Fe	0	Cyclohexane	Rest	
Reactant Complex	3.12	0.75	0.00	0.13	
Transition state	3.81	0.17	-0.40	0.42	
Intermediate	4.05	0.28	-0.91	0.58	

Key geometries in Å or •.

	D(Fe-O)	D(O-H)	D(Fe-N1)	D(Fe-N2)	D(Fe-N3)	D(Fe-N4)	A(Fe-O-H)
Reactant Complex	1.65	2.58	2.08	2.10	2.13	2.10	178.04
Transition state	1.72	1.33	2.21	2.15	2.16	2.16	178.77
Intermediate	1.77	1.01	2.23	2.17	2.17	2.18	177.15

Absolute energies.

	LACVP (H) ^a	$LACV3P^{*+}(H)^{a}$	Z ₀ (kcal/mol)	E(thermal) (kcal/mol)	S (cal/mol/K)
Reactants, separated ^b	-1128.280796	-1128.779474	386.760580	404.001000	194.161000
Reactant complex	-1128.275824	-1128.774675	387.020900	404.738000	190.436000
Transition state	-1128.257743	-1128.753686	382.179780	399.826000	183.616000
Intermediate	-1128.265195	-1128.765004	383.429450	401.761000	193.458000

^{*a*} Total free energy in solution with all non electrostatic terms. ^{*b*} The reactants were separated about 20 Å and then optimized.

Relative energies (in kcal/mol).

	LACVP	LACV3P*+	Z_0	E(thermal)	-TS	Corr ^b	Total ^c
Reactants, separated ^a	0.00	+0.00	+0.00	+0.00	+0.00	+0.00	0.00
Reactant complex	3.12	-0.11	+0.26	+0.48	+1.09	-1.89	2.95
Transition state	14.47	+1.72	-4.58	+0.41	+3.09	-1.89	13.21
Intermediate	9.79	-0.71	-3.33	+1.09	+0.21	-1.89	5.16

^{*a*} The reactants were separated about 20 Å and then optimized. ^{*b*} Correction factor -RTln(24.45) for standart state concentration change upon complexation, see text above. ^{*c*} The total column is calculated by simplify adding the values in each row.

V. $(Me_6TREN)Ru(IV)=O + C_6H_{12}$

Transition state imaginary frequency: triplet 1491 cm⁻¹, quintet 1503 cm⁻¹.

Mulliken Spin distribution.

	Ru	0	Cyclohexane	Rest	
Reactant Complex	1.05	0.98	0.00	-0.03	
³ Transition state	0.82	0.61	0.58	-0.01	
⁵ Transition state	2.38	0.66	0.60	0.37	
Intermediate	0.79	0.24	0.97	0.00	

Key geometries in A or \bullet .

	D(Ru-O)	D(O-H)	D(Ru-N1)	D(Ru-N2)	D(Ru-N3)	D(Ru-N4)	A(Ru-O-H)
Reactant Complex	1.80	2.70	2.21	2.22	2.12	2.21	142.71
³ Transition state	1.90	1.18	2.19	2.21	2.13	2.22	130.13
⁵ Transition state	1.91	1.18	2.19	2.22	2.31	2.23	127.76
Intermediate	1.95	0.99	2.18	2.20	2.13	2.21	123.93

Absolute energies.

	LACVP $(H)^a$	$LACV3P^{*+}(H)^{a}$	Z ₀ (kcal/mol)	E(thermal) (kcal/mol)	S (cal/mol/K)
Reactants, separated ^b	-1098.707723	-1099.182220	386.168570	403.047000	185.077000
Reactant complex	-1098.702802	-1099.176668	386.389690	403.745000	183.087000
³ Transition state	-1098.671683	-1099.143259	382.352910	399.748000	179.387000
⁵ Transition state	-1098.649378	-1099.121995	380.946400	398.874000	186.041000
Intermediate	-1098.676564	-1099.154142	384.533420	402.586000	186.970000

^{*a*} Total free energy in solution with all non electrostatic terms. ^{*b*} The reactants were separated about 20 Å and then optimized.

Relative energies (in kcal/mol).

	LACVP	LACV3P*+	Z_0	E(thermal)	-TS	Corr ^b	Total ^c
Reactants, separated ^a	0.00	+0.00	+0.00	+0.00	+0.00	+0.00	0.00
Reactant complex	3.09	+0.4	+0.22	+0.48	+0.58	-1.89	2.88
³ Transition state	22.62	+1.83	-3.82	+0.52	+1.67	-1.89	20.93
⁵ Transition state	36.61	+1.18	-5.22	+1.05	-0.28	-1.89	31.45
Intermediate	19.55	-1.93	-1.64	+1.17	-0.55	-1.89	14.71

^{*a*} The reactants were separated about 20 Å and then optimized. ^{*b*} Correction factor -RTln(24.45) for standart state concentration change upon complexation, see text above. ^{*c*} The total column is calculated by simplify adding the values in each row.

VI. (Me₆TREN)Fe(IV)=O + CH₃CN

Transition state imaginary frequency: 1739 cm⁻¹.

Mulliken Spin distribution.

	Fe	0	Acetonitrile	Rest	
Reactant Complex	3.10	0.75	0.00	0.15	
Transition state	3.85	0.12	-0.43	0.45	
Intermediate	4.02	0.45	-1.00	0.52	

Key geometries in Å or •.

	D(Fe-O)	D(O-H)	D(Fe-N1)	D(Fe-N2)	D(Fe-N3)	D(Fe-N4)	A(Fe-O-H)
Reactant Complex	1.65	2.68	2.07	2.11	2.13	2.10	179.84
Transition state	1.73	1.19	2.18	2.15	2.15	2.15	178.59
Intermediate	1.76	2.68	2.23	2.17	2.18	2.19	178.16

Absolute energies.

	LACVP $(H)^a$	$LACV3P^{*+}(H)^{a}$	Z ₀ (kcal/mol)	E(thermal) (kcal/mol)	S (cal/mol/K)
Reactants, separated ^b	-1025.189766	-1025.658537	307.314880	321.688000	165.285000
Reactant complex	-1025.191329	-1025.656845	307.748930	324.116000	177.782000
Transition state	-1025.157060	-1025.621500	303.147550	319.044000	169.652000
Intermediate	-1025.186448	-1025.651956	304.578740	320.925000	176.079000
a T-+-1 for		41 11	b	F1	

^{*a*} Total free energy in solution with all non electrostatic terms. ^{*b*} The reactants were separated about 20 Å and then optimized.

Relative energies (in kcal/mol).

	LACVP	LACV3P ^{*+}	Z_0	E(thermal)	-TS	Corr ^b	Total ^c
Reactants, separated ^a	0.00	+0.00	+0.00	+0.00	+0.00	+0.00	0.00
Reactant complex	-0.98	+2.04	+0.43	+1.99	-3.73	-1.75	-1.99
Transition state	20.52	+2.72	-4.17	+1.52	-1.3	-1.75	17.55
Intermediate	2.08	+2.05	-2.74	+1.97	-3.22	-1.75	-1.6

^{*a*} The reactants were separated about 20 Å and then optimized. ^{*b*} Correction factor -RTln(19.17) for standart state concentration change upon complexation, see text above. ^{*c*} The total column is calculated by simplify adding the values in each row.

VII. References

Full reference for reference 14.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, *Gaussian 03*, Gaussian, Inc., Wallingford CT, **2004**.

References in SI.

- S1. P. Winget, C. J. Cramer and D. G. Truhlar, Theor. Chem. Acc., 2004, 112, 217.
- S2. A. Lewis, J. A. Bumpus, D. G. Truhlar and C. J. Cramer, J. Chem. Edu., 2004, 81, 596.
- S3. A. J. Johansson, M. R. A. Blomberg, and P. E. M. Siegbahn, *J. Chem. Phys.*, 2008, **129**, 154301.
- S4. A. J. Johansson, M. R. A. Blomberg, and P. E. M. Siegbahn, *J. Phys. Chem. C*, 2007, **111**, 12397.

VIII. Coordinates

Acetonitrile

0	
Εı	nergy: -132.724641675
С	0.000612 0.000001 -0.026460
С	0.000104 -0.000007 1.429878
Ν	0.001621 0.000003 -1.199029
Η	-0.512714 0.887912 1.811392
Η	-0.512727 -0.887918 1.811401
Η	1.025285 0.000009 1.811819

Cyclohexane

1	L 8		
Ene	ergy: -235	.822867500	
С	30.948726	19.472865	-0.491723
С	31.308628	20.918418	-0.090852
Η	31.392885	18.776067	0.236006
С	32.825767	21.174198	-0.204551
Η	30.774698	21.619170	-0.751246
Η	30.964658	21.124039	0.931693
С	33.350465	20.832982	-1.615179
Н	33.053064	22.219898	0.042451
Η	33.352659	20.552646	0.536061
С	32.990566	19.387501	-2.016164
Η	32.906308	21.529864	-2.342832
Η	34.437893	20.979881	-1.660582
С	31.473450	19.131505	-1.902272
Η	33.334266	19.181992	-3.038831
Η	33.524686	18.686663	-1.356017
Η	30.946404	19.752787	-2.642976
Н	31.246412	18.085689	-2.149032
Н	29.861278	19.325900	-0.446182

³[(Me_6TREN) $Fe^{IV}O$]²⁺ (δ , δ ', π^* , π^* '(ϕ))

48			
Energy: -892.481566309			
Η	-4.747766 -1.997391 -3.162789		
Н	-2.586529 -1.926679 -2.734015		
Η	-5.348731 0.373061 -2.949875		
Н	-3.257489 0.442386 -3.085134		
Н	-7.669987 1.643056 -1.779259		
Н	-6.004599 2.268812 -1.722237		
Н	-3.988142 2.449172 -2.294467		
С	-5.153069 -1.668297 -2.202466		
Н	-2.301060 2.939039 -2.041501		
С	-5.919774 -0.361298 -2.379508		
С	-2.682590 -1.262769 -1.869265		
Н	-5.813964 -2.459476 -1.846435		
Η	-6.853737 -0.543385 -2.924820		
С	-6.740979 1.661943 -1.199756		
Η	-1.894602 -1.533638 -1.165092		
С	-2.553137 0.191017 -2.291059		
С	-3.177897 2.485704 -1.566797		
Η	-1.545469 0.388095 -2.674659		
Η	-6.930483 2.089731 -0.215519		
Ν	-4.022682 -1.505650 -1.191532		
Ν	-6.229572 0.253116 -1.032848		
Η	-3.479390 3.080551 -0.705362		
Η	-8.212753 -0.513700 -0.869442		
Ν	-2.835239 1.094324 -1.108408		
Η	-4.940681 -3.059631 -0.063778		
Η	-3.376587 -3.512118 -0.735229		
С	-3.928338 -2.699089 -0.252001		
С	-7.278800 -0.542921 -0.297930		
Η	-0.808135 1.650058 -0.734664		
Fe	-4.406130 0.155260 -0.028096		
С	-1.637288 1.177320 -0.197496		
Η	-7.446087 -0.096628 0.682009		
Η	-6.975264 -1.582419 -0.186346		
Η	-1.889116 1.783403 0.672957		
С	-3.251918 -2.280685 1.044768		
Η	-1.320277 0.183198 0.116784		
Η	-3.274404 -3.102905 1.769167		
Η	-2.203803 -2.014059 0.889031		
0	-4.751783 1.518296 0.986739		
Ν	-3.953385 -1.068701 1.623015		

Н	-5.870920	-2.047280 1.664383
Н	-2.129164	-0.088970 2.169499
С	-5.236745	-1.451902 2.317741
С	-3.074283	-0.369667 2.628342
Н	-5.759890	-0.544702 2.620868
Н	-3.591004	0.519831 2.988662
Н	-4.997145	-2.044041 3.207104
Н	-2.878347	-1.046116 3.467027

$^{3}[(Me_{6}TREN)Fe^{IV}O]^{2+}$ (π*, π*')

48
Energy: -892.483070340
H -4.952230 -2.453992 -2.893755
H -2.861223 -1.686739 -2.927729
H -5.338350 -0.043825 -3.234870
H -3 532706 0 691707 -2 887610
H -7 534947 1 687663 -2 178235
H -5 850262 2 071189 -2 555887
$H = 4 \ 180233 \ 2 \ 632204 \ = 1 \ 739463$
C -5 262631 -1 856902 -2 030398
H -2 438671 2 963144 -1 682777
C -5 929872 -0 567973 -2 484455
C -2 841401 -1 162699 -1 967971
u _5 05/120 _2 /68022 _1 //6961
u _6 00/527 _0 783701 _2 037102
$C = 6 520291 \ 1 \ 729928 \ = 1 \ 768163$
u _1 055006 _1 500713 _1 /33127
C _2 774528 0 340312 _2 100430
C _3 28//// 2 531307 _1 13017/
u _1 708050 0 622360 _2 508424
u _6 /07561 2 /17158 _0 023003
N _4 065939 _1 549773 _1 150903
N -6 118734 0 359476 -1 301728
u _3 /16027 3 039653 _0 186573
H -8 151120 -0 236968 -0 984703
N -2 983744 1 073531 -0 879587
H -4 679792 -3 202022 0 033419
H -3 142691 -3 461965 -0 782775
C = 3 740894 = 2 720588 = 0 243633
C = 7 226149 = 0 157075 = 0 404589
H =0 942499 1 559110 =0 575777
Fe =4 511543 0 123662 0 017920
C -1 734522 1 027355 -0 040067
H = 7 370197 0 540479 0 418750
H -6 988158 -1 147321 -0 013867
H =1 924063 1 528851 0 905867
C -2 998078 -2 218335 0 985006
H -1.410715 0.003714 0.123767
H -2 916871 -3 014546 1 734302
H -1 981609 -1 901314 0 744239
0 -4.946505 1.341820 1.009166
N -3.725856 -1.033335 1.578102
H -5.688782 -1.949282 1.502393
H -1.891899 -0.185870 2.288737
C -5.021068 -1.482446 2.227213
C -2.899620 -0.374654 2.648414
H =5.509319 =0.620131 2.678964
н -3.378874 0.560770 2.935933
н -4.795531 -2.221909 3.002598
H -2.841121 -1.040188 3.516132

$[(Me_6 TREN) Fe^{IV}O]^{2+}$

10	
	504510064
Energy: -892.	504513964
н -4.747810	-1.994175 -3.162534
н -2.589454	-1.925608 -2.735336
н -5.358548	0.372889 -2.947878
н -3.252245	0.447824 -3.078433
н -7.700514	1.633511 -1.767763
н -6.034210	2.258374 -1.748946
н -3.993621	2.450568 -2.270808
C -5.154422	-1.668128 -2.201597
н -2.303072	2.939176 -2.039689
C -5.927920	-0.364687 -2.379145
C -2.682439	-1.263888 -1.868753
н -5.811960	-2.462987 -1.847078
н -6.858531	-0.549858 -2.929512
C -6.760657	1.657373 -1.205970

Η	-1.893246	-1.541265 -1.167786
С	-2.547950	0.191566 -2.285218
С	-3.173875	2.485693 -1.554236
Η	-1.540041	0.387747 -2.667863
Η	-6.927497	2.093580 -0.222326
Ν	-4.023287	-1.508028 -1.190135
Ν	-6.247843	0.252390 -1.035745
Н	-3.463753	3.079612 -0.688144
Н	-8.227648	-0.520397 -0.867318
Ν	-2.826371	1.094205 -1.100426
Η	-4.940397	-3.062554 -0.062599
Η	-3.375128	-3.513257 -0.729939
С	-3.928531	-2.699932 -0.249607
С	-7.292384	-0.543802 -0.297719
Н	-0.804646	1.664970 -0.725543
Fe	-4.407126	0.166141 -0.020734
С	-1.627393	1.177873 -0.191527
Н	-7.459634	-0.092210 0.679962
Η	-6.986324	-1.582564 -0.182710
Н	-1.886146	1.770094 0.685784
С	-3.253425	-2.278722 1.047265
Н	-1.298148	0.183061 0.109101
Н	-3.277360	-3.096706 1.775970
Н	-2.204536	-2.016260 0.891041
0	-4.723738	1.477780 0.931441
Ν	-3.949191	-1.060861 1.624071
Н	-5.879304	-2.018665 1.649957
Н	-2.121793	-0.094890 2.182607
С	-5.238483	-1.440471 2.312405
С	-3.070593	-0.372813 2.636388
Н	-5.751539	-0.533201 2.631495
Η	-3.581621	0.518902 2.997241
Η	-5.004781	-2.050616 3.190935
Н	-2.882066	-1.055842 3.471280

$^{5}[(Me_{6}TREN)Fe^{IV}O]^{2+}$ intra-TS

48	
Ene	rav: -892.459891099
С	-0.007327 -0.046987 -0.001964
N	-0.009568 -0.024613 1.501696
Fe	1.930919 0.009105 2.304415
N	2.599195 1.334185 3.843515
С	3.847759 1.819872 3.287950
C	-0.620322 -1.288066 2.063204
C	-0.297928 -1.422912 3.549917
N	1.179892 -1.168534 3.821121
С	1.408147 -0.424762 5.131057
С	2.681517 0.412419 5.047820
С	2.009750 -2.449648 3.821372
С	2.439541 -2.847853 2.418460
Ν	3.107923 -1.678478 1.733585
С	4.525850 -1.501176 2.208080
С	-0.771321 1.195841 1.948295
С	3.137647 -1.869640 0.242459
0	2.756221 1.141573 1.215027
С	1.641736 2.478141 4.061666
Η	-0.576151 -2.418894 3.905845
Η	1.429087 -3.250606 4.289043
Н	-0.226051 -2.127578 1.487653
Η	1.588280 -3.155567 1.808655
Η	-1.039067 -0.052377 -0.370900
Η	0.499429 -0.939420 -0.364588
Η	2.139685 -2.110034 -0.121088
Η	3.810745 -2.696376 -0.010006
Η	-0.871839 -0.700678 4.133910
Н	-1.707529 -1.275962 1.917779
Н	2.883259 -2.275129 4.452494
Η	3.129337 -3.698830 2.465909
Н	0.508962 0.840709 -0.367366
Н	3.491704 -0.950382 -0.223617
Н	-1.783512 1.165404 1.529877
Н	0.538957 0.205789 5.321195
Η	1.477205 -1.136949 5.959229
Η	5.116405 -2.380041 1.926696
Н	-0.261897 2.088450 1.584060
Н	-0.847966 1.229315 3.034045
Η	4.950817 -0.618916 1.729554
Η	4.568384 -1.393372 3.292359
Н	2.808457 1.010241 5.956593
Η	3.574109 -0.206692 4.935678
Η	0.668634 2.115031 4.382880

H 4.706694 1.179995 3.470069 H 1.540095 3.037372 3.131964 H 3.544238 1.688449 1.951223 H 2.046945 3.133060 4.838989 H 4.022497 2.889890 3.388156

$^{3}[(Me_{6}TREN)Ru^{IV}O]^{2+}$

48		
Ene	rgy: -862.932808172	
Н	-0.883093 0.251845 0.321847	
Н	0.060493 -0.001527 2.392476	
Н	1.418529 -0.547548 -0.085634	
Н	2.384479 -0.270043 1.608348	
Η	3.190523 -0.070052 -2.367494	
Η	3.605213 -0.324002 -0.665095	
Н	4.464213 0.596567 0.902534	
С	-0.127608 0.981611 0.010525	
Η	4.852357 0.516034 2.635991	
С	1.020365 0.266510 -0.691927	
С	0.704450 0.883909 2.395849	
Η	-0.616897 1.685376 -0.667162	
Η	0.658585 -0.178161 -1.626246	
С	3.381841 0.434194 -1.414156	
Η	0.474155 1.440312 3.305598	
С	2.16/238 0.450934 2.3943/4	
С	4.486721 1.158427 1.829505	
H	2.415952 -0.021/35 3.350498	
H	4.225186 1.115415 -1.526396	
N	0.364/90 1./69281 1.20/492	
IN	2.164/62 1.213642 -1.00/206	
H	1 402700 1 520002 2 021200	
N	3 007385 1 637700 2 180038	
H	-1 085030 3 226667 0 687068	
Н	-1 412568 2 443909 2 227710	
C	-0.615841 2.858582 1.600920	
Č	1.791299 2.133100 -2.150288	
H	3.696954 1.788619 4.222218	
Ru	2.243646 2.751121 0.598004	
C	3.227362 2.427529 3.467568	
Н	2.652452 2.748736 -2.409396	
Н	0.946289 2.774188 -1.879518	
Н	3.862089 3.293060 3.287082	
С	0.093368 3.986857 2.344968	
Η	2.252084 2.735701 3.833859	
Η	-0.601283 4.821210 2.498251	
Η	0.428528 3.665207 3.332922	
0	3.754636 3.587671 0.080034	
Ν	1.312836 4.486346 1.591108	
Η	0.359854 4.597090 -0.347926	
Η	2.361410 4.941634 3.400055	
С	0.902360 5.243758 0.347929	
С	2.123279 5.415524 2.451399	
H	1./94234 5.641257 -0.136895	
H	3.042144 5.670528 1.923377	
н	0 238497 6 072154 0 617763	

⁵ $[(Me_6TREN)Ru^{IV}O]^{2+}$

н 1.545901 6.325882 2.645561

	48	3	
E:	ne	ergy: -862	.915227681
1	H	-4.808024	-2.104380 -3.136429
1	H	-2.615240	-1.890261 -2.809827
1	H	-5.399999	0.278618 -3.004524
1	Η	-3.284266	0.490767 -3.077629
1	H	-7.761829	1.600972 -1.980241
1	H	-6.089848	2.208339 -1.931215
1	H	-3.917612	2.532372 -2.239275
1	С	-5.177856	-1.730591 -2.177050
1	H	-2.189603	2.940059 -2.160745
1	С	-5.968804	-0.441588 -2.413225
1	С	-2.694130	-1.256336 -1.920663
1	H	-5.826846	-2.504943 -1.764717
1	H	-6.879478	-0.674877 -2.978578
1	С	-6.844376	1.644444 -1.383299
1	H	-1.886117	-1.550020 -1.247322
1	С	-2.548627	0.209426 -2.321718
1	С	-3.038175	2.539184 -1.595340
1	H	-1.557080	0.369478 -2.761956
1	H	-7.046858	2.135337 -0.431756
1	N	-4.011708	-1.539977 -1.213356
1	N	-6.352459	0.248001 -1.117504
1	H	-3.224512	3.165340 -0.722889
1	H	-8.333776	-0.532662 -0.963819
1	Ν	-2.726189	1.141996 -1.138633
1	H	-4.867123	-3.113070 -0.068082
1	Н	-3.288568	-3.517630 -0.732568
1	С	-3.868303	-2.718259 -0.259388

С	-7.414267	-0.510629 -0.367962
Н	-0.663828	1.598214 -0.823148
Ru	-4.437422	0.222125 0.035264
С	-1.503888	1.172519 -0.262897
Н	-7.613861	-0.004817 0.577374
Н	-7.100103	-1.537120 -0.180139
Н	-1.704927	1.797117 0.608324
С	-3.198640	-2.295782 1.045275
Н	-1.231408	0.166016 0.055647
Н	-3.163729	-3.146756 1.735040
Н	-2.167407	-1.972571 0.881117
0	-4.790319	1.664625 1.073481
Ν	-3.933320	-1.145528 1.713683
Н	-5.846351	-2.126761 1.670423
Н	-2.133053	-0.135199 2.276388
С	-5.203713	-1.607200 2.380261
С	-3.058551	-0.475891 2.740263
Η	-5.726903	-0.741898 2.789393
Η	-3.595373	0.375405 3.158893
Н	-4.953583	-2.295389 3.195265
Η	-2.819204	-1.189586 3.536047

⁵[(Me_6TREN) $Fe^{IV}O$]²⁺ + C_6H_{12} , separated reactants

00	,	
Ene	ergy: -1128.32755956	
Н	-0.050793 -0.097687 -0.01980)7
Η	-0.144428 -0.092254 2.189487	7
н	2 344734 0 047928 -0 488205	
ц.	2 220023 _0 557281 1 559588	
11	2.220025 0.557201 1.5555500	
н	3.822218 1.581063 -2.458549	
Н	4.354892 1.211542 -0.800577	
Η	4.314623 0.179664 1.041160	
С	0.355138 0.899979 -0.206354	
Н	4 744517 -0 014960 2 752536	
~	1 695021 0 796500 0 047570	
C	1.005021 0.700590 -0.947570	
С	0.606468 0.696122 2.298708	
Н	-0.380244 1.436233 -0.807963	3
Η	1.511810 0.466240 -1.981936	
С	3.833797 1.936253 -1.422888	
н	0 357104 1 256166 3 201736	
~	0.000140 0 100406 0 400000	
C	2.002148 0.103430 2.400238	
C	4.385446 0.694235 1.998962	
Н	2.098058 -0.491198 3.315576	
Η	4.345242 2.895927 -1.364373	
Ν	0.515095 1.646269 1.114149	
N	2 417736 2 110614 -0 942865	
11	E 070120 1 E21270 1 021000	
н	5.0/9139 1.5312/8 1.921866	
н	1.//8213 2./62423 -2.869886	
Ν	3.034033 1.214113 2.404035	
Η	-0.860301 3.083234 0.359550	
Н	-1.493188 2.153311 1.713580	
C	-0 599752 2 656575 1 329744	
č	1 720020 2 117750 1 024550	
Ç	1./39029 3.11//39 -1.834550	
Н	3.543933 1.089226 4.472341	
Fe	2.300354 2.703475 1.073098	
С	3.153195 1.834952 3.772247	
Н	2.265622 4.069479 -1.765310	
ц.	0 604653 3 248274 -1 554781	
11	0.0040000 0.020274 1.004701	
н	3.841808 2.678114 3.723007	
С	-0.133550 3.737837 2.292328	
Η	2.178729 2.166168 4.131609	
Н	-0.881474 4.534615 2.366312	
н	0 020438 3 345187 3 300092	
0	3 703533 3 572228 1 038718	
2	1 105770 4 201276 1 001207	
IN	1.185//8 4.5215/6 1.82159/	
Н	0.386461 4.873677 -0.100110	
Η	2.036937 4.358228 3.785974	
С	0.977850 5.311652 0.701165	
С	1.884625 5.036148 2.948547	
ū	1 950028 5 625321 0 320779	
11	2 046210 5 401006 2 500014	
н	2.846218 5.401086 2.589814	
Н	0.444137 6.183763 1.092483	
Η	1.266697 5.878222 3.277582	
Η	20.910204 13.720840 1.157181	L
С	21.873822 14.242407 1.089243	3
ć	22 095627 14 765207 -0 34555	50
	22.05502/ 14./0520/ -0.34555	50
H	21.822099 15.099116 1.779900	,
С	23.471306 15.447800 -0.49262	23
Η	22.035498 13.920413 -1.04984	15
Н	21.294631 15.464168 -0.62216	59
C	24 615437 14 511628 -0 05091	17
ц Ц	23 6256/1 15 771330 -1 52005	. /
п.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20.020041 10.//1005 -1.00080	, ,
H	23.490133 10.35/138 0.128152	1
С	24.394800 13.989219 1.384049	1
Η	24.668685 13.655811 -0.74200)6

H 25.579623 15.033029 -0.120212 C 23.018758 13.307028 1.530567 H 25.195995 13.290542 1.660207 H 24.454863 14.833907 2.088086 H 23.000155 12.397384 0.909748 H 22.865268 12.983483 2.568982

⁵[(Me₆TREN)Fe^{IV}OJ²⁺ + C₆H₁₂, complexed reactants

66	5
Ene	ergy: -1128.32675937
Η	-0.057102 -0.100086 -0.020701
Н	-0.150754 -0.095502 2.188574
Н	2.338550 0.044659 -0.488493
н	2.214042 -0.560697 1.559388
н	3.81/634 1.5//212 -2.45/921
п	4.309814 0 176520 1 042321
C	0.349227 0.897525 -0.206850
н	4.739581 -0.016979 2.754134
С	1.679316 0.783754 -0.947883
С	0.600215 0.692789 2.298059
Η	-0.385887 1.434170 -0.808495
Η	1.506136 0.463635 -1.982328
С	3.829023 1.932412 -1.422307
Н	0.350624 1.252613 3.201168
C	1.995910 0.099925 2.400057
н	2 091380 -0 494860 3 315375
н	4.340642 2.892075 -1.363566
N	0.509153 1.643311 1.113852
Ν	2.412781 2.107418 -0.942794
Н	5.072508 1.529534 1.922883
Η	1.774031 2.759945 -2.870231
Ν	3.027871 1.210622 2.404497
Н	-0.865478 3.081228 0.359605
H	-1.498850 2.151507 1.713604
C	-0.000090 2.004218 1.029093
н	3 536687 1 085757 4 473252
Fe	2.294929 2.699967 1.073272
C	3.146195 1.831314 3.772881
Η	2.261292 4.066590 -1.765297
Η	0.690287 3.245749 -1.555205
Η	3.834575 2.674673 3.723897
С	-0.138220 3.735215 2.292455
Н	2.171609 2.162584 4.131832
н	-0.885806 4.532275 2.366786
п 0	3 698063 3 568161 1 038816
N	1.181423 4.318247 1.821667
Н	0.382788 4.871800 -0.099813
Н	2.033787 4.353930 3.785625
С	0.974189 5.309034 0.701842
С	1.880890 5.032360 2.948800
Н	1.946739 5.622162 0.321871
H	2.842347 5.397273 2.589664
н	1 263107 5 87/178 3 278765
н	5 919073 4 878376 1 054114
c	6.882494 5.399937 0.986244
С	7.104724 5.922763 -0.448576
Н	6.832190 6.257256 1.676724
С	8.480994 6.604112 -0.596866
Н	7.043662 5.077806 -1.152908
Н	6.304208 6.622482 -0.725140
С	9.624484 5.666922 -0.155519
н	0.033243 0.92/309 -1.033296 8 500962 7 513602 0 023760
С	9 404236 5 145057 1 279769
Н	9.676640 4.810817 -0.846466
Н	10.589120 6.187418 -0.225530
С	8.027468 4.464349 1.427143
Н	10.205104 4.445784 1.555627
Н	9.465360 5.989931 1.983607
Н	8.008084 3.554440 0.806421
Н	/.8/44/3 4.1410/8 2.465810

⁵[(Me_6TREN) $Fe^{IV}OJ^{2+}$ + C_6H_{12} , transition state

Ene	ergy: -112	8.30856337
Н	0.146127	0.041636 -0.076967
н	0 083517	0 000806 2 139632
	0.000001/	0.147010 0.514440
н	2.54/924	0.14/919 -0.514449
Н	2.448037	-0.438281 1.525209
Н	4.042086	1.579500 -2.513080
н	4 586388	1 254674 -0 849129
11	4.500500	1.234074 0.045125
н	4.5/525/	0.285044 1.069692
С	0.573156	1.036691 -0.237642
Н	4.924104	-0.005111 2.787661
C	1 904674	0 898270 -0 979595
č	0.001017	0.000100 0.0575090
C	0.82131/	0.803188 2.253528
Н	-0.143449	1.592167 -0.845334
Н	1.718539	0.568735 -2.009746
С	4.073280	1.970776 -1.490050
ū	0 559/13	1 350068 3 161831
п	0.339413	1.330008 3.101831
C	2.219/84	0.2089/8 2.3/4012
С	4.618672	0.750051 2.054848
Н	2.288733	-0.407424 3.278294
ц	4 610280	2 917949 -1 473110
211	9.010200	1 757407 1 005001
IN	0.728169	1./5/42/ 1.085021
Ν	2.671766	2.197374 -0.994579
Н	5.342937	1.563952 2.044882
н	2 024543	2 862500 -2 919236
21	2.024345	1 207427 2 422275
IN	3.208/01	1.29/43/ 2.4222/3
Н	-0.615121	3.216709 0.339673
Н	-1.267587	2.303384 1.694962
C	-0 360226	2 781476 1 307897
č	0.000220	2.101470 1.507057
C	2.012050	3.21081/ -1.882063
Н	3.712406	1.155020 4.508113
Fe	2.644072	2.850311 1.058048
C	3 353094	1 906224 3 796021
	0.5050001	4 154507 1 000000
н	2.363924	4.134397 -1.820933
Η	0.976808	3.380592 -1.587044
Η	4.050889	2.743830 3.775080
С	0.111305	3.863974 2.272504
ū	2 3715/1	2 249676 4 124326
11	2.3/1341	2.249070 4.124920
Η	-0.648260	4.650889 2.352711
Η	0.264885	3.463218 3.277805
0	4.101583	3.765711 1.023007
N	1 421336	4 465215 1 816609
11	0 641240	F 001017 0 112220
н	0.041348	5.001817 -0.113239
Η	2.270319	4.494507 3.780729
С	1.212379	5.451013 0.697470
C	2 097329	5 181920 2 953701
	2 10/520	5 770055 0 227000
11	2.104333	5.770055 0.527050
н	3.049881	5.5/6399 2.603458
Н	0.659954	6.318816 1.074672
Η	1.460253	6.003507 3.300393
н	5 234595	4 456780 1 018654
~	6 202774	5 007069 1 007102
C	0.293774	5.097008 1.007193
C	6.466604	5.646559 -0.401081
Η	6.094521	5.883263 1.748325
С	7.847159	6.358143 -0.519150
ū	6 131628	1 824732 -1 131196
11	5.334020	
Н	J.001427	0.343894 -0.653919
С	8.994115	5.420480 -0.097937
Н	7.985133	6.702057 -1.551839
Н	7.846488	7.251507 0.121278
Ċ	9 770/50	A 961339 1 221004
C	0.119432	4.001338 1.321004
Η	9.063813	4.586093 -0.811654
Η	9.950438	5.957877 -0.145151
С	7.400164	4.147428 1.442268
й	9 573717	4 151426 1 583542
11	0.004400	
н	0.824493	J.00133U ∠.US1544
Η	7.407973	3.258850 0.794661
Η	7.246169	3.806537 2.472801

$^{5}[(Me_{6}TREN)Fe^{IV}O]^{2+} + C_{6}H_{12}, intermediate$

	66)		
H	lne	ergy: -112	28.3169505	56
	Н	0.150492	-0.008813	3 -0.073473
	Н	0.084704	-0.044745	5 2.136088
	Н	2.548389	0.141418	-0.519951
	Н	2.456560	-0.449432	2 1.520271
	Н	4.009541	1.593266	-2.528787
	Н	4.564122	1.287319	-0.865493
	Н	4.575691	0.315382	1.065721
	С	0.559071	0.993443	-0.238465
	Н	4.922918	0.013109	2.781558
	С	1.889242	0.877107	-0.986236
	С	0.811907	0.767414	2.249706
	Η	-0.169828	1.534100) -0.845109
	Η	1.703612	0.537975	-2.013575
	С	4.033612	1.990157	-1.507552
	Η	0.542584	1.309785	3.158471
	С	2.218265	0.192229	2.370733
	С	4.608028	0.771391	2.055781

Н	2.293658 -	-0.426027 3.2	73223
H	4.550525 2	2.948530 -1.4	96623
N	0.704322 1	1.00457 1.08	186/
IN	2.629284 2	2.188457 -1.0	09084
Н	5.320515 1	1.595852 2.05	6469 20562
H	1.95/5/1 2	2.841322 -2.9	30363
IN	0 665724	2 152104 0 2	2040
п U	-1 305468	2 218040 1 6	24309 22170
C	-0 406988	2 718771 1 3	12658
c	1 946136 3	3 194188 -1 8	92639
н	3.690261 1	1.158679 4.51	1162
Fe	2.621139 2	2.861577 1.05	6562
С	3.321108 1	L.903891 3.79	7614
Н	2.480791 4	4.143230 -1.8	35138
Н	0.909108 3	8.338109 -1.5	90663
Н	4.005897 2	2.752494 3.78	0085
С	0.031612 3	8.809028 2.27	3885
Η	2.333906 2	2.232926 4.12	3899
Н	-0.750125	4.574412 2.3	53419
Η	0.190118 3	3.407945 3.27	8203
0	4.096915 3	3.834159 1.01	7456
Ν	1.325503 4	1.442431 1.82	6759
H	0.547551 4	1.958164 -0.1	08600
Н	2.1/1/34 4	483856 3./9	1/00
C	1.099002 3	5.422812 U./U	1332
	2 064672 8	5.170034 2.90	/04J /152
п	2 922073 5	5 593180 2 62	4133 N401
н	0 519360 6	5 275423 1 07	8952
Н	1.322915 5	5.973846 3.31	9877
Н	4.936943 4	1.388017 1.04	5299
С	6.504503 5	5.331759 1.09	5276
С	6.616062 5	5.828088 -0.3	20370
Η	6.140731 6	5.029606 1.85	2024
С	8.062963 6	5.367302 -0.5	69981
Η	6.442711 5	5.003669 -1.03	30385
Η	5.879906 6	5.609874 -0.5	35443
С	9.119414 5	5.312556 -0.1	86822
Η	8.163677 6	5.653498 -1.6	24192
H	8.212707	1.275590 0.02	9696
C	8.954183 4	1.83/026 1.26	9861
H	9.033148 4	5 726504 0	220120
Н	TO.IZ392/	3./20394 -U.	2002
U U	0 670/06 /	1.230/1/ 1.32. 1.0/8723 1.50	2983 2983
п	9 147210 5	5 673143 1 95	5868
Н	7 388279 3	3 378784 0 92	5981
Н	7.387095 4	1.025914 2.57	7306

³[(Me₆TREN)Ru^{IV}OJ²⁺ + C₆H₁₂, separated reactants

66	
Ene	rgy: -1098.75567243
Н	-0.915716 0.325333 0.337345
Н	0.043920 0.049605 2.401388
Η	1.356477 -0.540937 -0.088953
Η	2.358190 -0.275565 1.618121
Η	3.140589 -0.133131 -2.353950
Η	3.548332 -0.376091 -0.648251
Η	4.450670 0.542357 0.885512
С	-0.142666 1.033085 0.018540
Η	4.839228 0.444704 2.618200
С	0.980045 0.285947 -0.691513
С	0.705845 0.921672 2.399294
Η	-0.617380 1.748777 -0.656812
Η	0.600543 -0.146167 -1.624749
С	3.346162 0.378226 -1.407381
Н	0.488859 1.485873 3.307514
С	2.159379 0.457265 2.398036
С	4.490934 1.100256 1.814615
Н	2.399367 -0.013377 3.357614
Н	4.208525 1.033405 -1.529448
Ν	0.379735 1.810543 1.209359
Ν	2.152173 1.199320 -1.010482
Η	5.166795 1.946971 1.705833
Η	1.485147 1.531184 -3.024929
Ν	3.117104 1.619584 2.179352
Η	-1.036808 3.302413 0.695010
Н	-1.371643 2.533287 2.240862
С	-0.569566 2.925400 1.606386
С	1.810431 2.120028 -2.160578
Н	3.737080 1.776445 4.205574
Ru	2.278633 2.742329 0.585683
С	3.273417 2.416751 3.449154
Η	2.694462 2.698390 -2.428478

Н	+ 0.992854 2.796434 -1.8920	534
Н	I 3.922751 3.268562 3.25694	11
С	0.173295 4.037251 2.3420	71
Н	1 2.307655 2.747571 3.82072	26
Н	H -0.499993 4.887836 2.5008	304
Н	I 0.510880 3.709254 3.32708	39
0	3.800983 3.544323 0.04774	17
Ν	1.396165 4.506435 1.57469	90
Н	1 0.429563 4.620212 -0.3568	359
Н	1 2.478910 4.946224 3.36663	37
С	0.990708 5.261888 0.32883	34
С	2.233210 5.424412 2.42182	26
Н	H 1.885936 5.637791 -0.1669	971
Н	H 3.145169 5.669892 1.87692	25
Н	1 0.345457 6.105334 0.59664	17
Н	H 1.672147 6.342382 2.6270	54
Н	4 13.959936 18.641151 -4.84	11776
С	2 14.888877 19.125671 -4.53	1674
С	2 14.652946 20.640829 -4.34	11571
Н	H 15.153259 18.689799 -3.53	35415
С	2 15.951735 21.375710 -3.94	19893
Н	H 14.276787 21.053804 -5.29	90145
Н	1 13.874694 20.821032 -3.58	37822
С	2 17.085168 21.090713 -4.95	57068
Н	1 15.769553 22.456212 -3.88	30238
Н	I 16.266779 21.042630 -2.94	18987
С	2 17.324535 19.575807 -5.12	22968
Н	4 16.816346 21.522346 -5.93	33635
Н	H 18.010529 21.587512 -4.63	36573
С	16.026200 18.839666 -5.53	14412
Н	4 18.103866 19.395346 -5.8°	75487
Н	H 17.700619 19.164296 -4.1	73435
Н	H 15.713657 19.169975 -6.53	L7197
н	1 16 209225 17 758584 -5 58	31568

³[(Me₆TREN)Ru^{IV}OJ²⁺ + C₆H₁₂, complexed reactants

66 Energy: -1098 754508

PILE	ardð: -10:	JO./J4JU0
Η	-0.911437	7 0.307489 0.339024
Н	0.039781	0.043222 2.406830
н	1 366576	-0 545787 -0 084280
	2 264462	0 201654 1 621600
п	2.334432	-0.281034 1.021090
н	3.144214	-0.123621 -2.360562
Н	3.555277	-0.372862 -0.656575
Н	4.445019	0.536017 0.888397
С	-0.142276	5 1.019213 0.019657
Н	4.836437	0.442124 2.620666
С	0.984964	0.277324 -0.688747
Ċ	0.701611	0.915351 2.402143
н	-0 620713	3 1 731380 -0 656794
11	0 6000776	0 150105 1 621079
п	2 240505	-0.139183 -1.021078
C	3.348303	0.384134 -1.411/89
н	0.485022	1.482015 3.308924
С	2.155221	0.451433 2.401259
С	4.486140	1.095730 1.816367
Н	2.395313	-0.018569 3.361126
Η	4.207554	1.044055 -1.531772
Ν	0.375206	1.800909 1.209925
N	2.151061	1.197595 -1.009520
н	5 160868	1 942997 1 704869
	1 484454	1 529585 -3 024085
NT N	2 112206	1 614006 0 100000
IN	3.112306	1.014220 2.182239
н	-1.041999	3.290460 0.690220
Н	-1.381896	2.519/15 2.234250
С	-0.577939	9 2.913682 1.603315
С	1.800446	2.118798 -2.156546
Н	3.735380	1.771128 4.207483
Ru	2.272816	2.737797 0.589478
С	3.269316	2.411017 3.452188
Н	2.677798	2.709234 -2.420018
Н	0.973904	2.783840 -1.887662
н	3 916825	3 264076 3 259347
 C	0 160208	4 026139 2 342873
ц Ц	2 303586	2 730807 3 825560
п.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.303360	2.733837 3.823360
н	-0.515224	4.8/5341 2.499906
н	0.494852	3.69/86/ 3.328802
0	3.794531	3.543372 0.054736
Ν	1.384867	4.498300 1.580111
Н	0.420055	4.615953 -0.352359
Н	2.461419	4.938893 3.376192
С	0.981903	5.255656 0.334600
С	2.218474	5.416415 2.430331
Н	1.878468	5.630490 -0.159596
н	3 132572	5 661613 1 888990
11	0 220222	6 100170 0 602046
н	0.338232	0.1001/0 0.002846

Н	1.656617	6.334406	2.633263
Н	6.312845	4.128182	0.848357
С	7.242660	4.611740	1.177535
С	7.008561	6.126738	1.351400
Н	7.509088	4.173550	2.152202
С	8.308896	6.859497	1.742055
Η	6.630871	6.542171	0.404511
Η	6.232002	6.306040	2.107108
С	9.440485	6.575023	0.732590
Н	8.128014	7.940079	1.813801
Н	8.625214	6.524470	2.741906
С	9.677436	5.060156	0.562740
Η	9.170944	7.009355	-0.242581
Η	10.367048	7.069686	1.052913
С	8.377392	4.326941	0.171598
Η	10.455304	4.880332	-0.191442
Η	10.054402	4.645843	1.510703
Н	8.063319	4.660777	-0.829540
Н	8.558688	3.245797	0.100833

³[(Me_6TREN) $Ru^{IV}O$]²⁺ + C_6H_{12} , transition state

66

Ene	rgy: -109	8.72065892
Η	-0.524813	0.459658 0.154870
Н	0.281561	0.092919 2.242270
Н	1.783384	-0.351571 -0.207831
H	2.640807	-0.1926/1 1.595484
H	3.694992	0.242387 -2.346740
н	3.909003 1 752136	0 672800 1 010108
C	0 253821	1 191/15 _0 087629
н	5 042734	0 485058 2 762135
C	1.420566	0.501702 -0.781305
č	0.943554	0.960405 2.331289
Н	-0.193967	1.938028 -0.746902
Н	1.095006	0.117448 -1.755325
С	3.820152	0.688478 -1.353731
Н	0.667195	1.478504 3.251004
С	2.393513	0.501563 2.396918
С	4.734246	1.182128 1.976548
Η	2.581612	-0.013857 3.345417
Н	4.670143	1.370701 -1.367112
N	0.703251	1.910648 1.169162
IN	2.382100 5.419400	2.027554 1.057027
п	2 081329	1 865948 -3 032016
N	3 342293	1 682805 2 280411
Н	-0.706311	3.404349 0.635739
Н	-1.133043	2.538548 2.107998
С	-0.298094	2.984919 1.556700
С	2.284354	2.421598 -2.109814
Н	3.846109	1.732636 4.349965
Ru	2.597001	2.899058 0.693400
С	3.421065	2.406925 3.599533
Η	3.148702	3.069802 -2.251689
Н	1.405920	3.029478 -1.877690
н	4.0/011/	3.2/4424 3.4945/1
с ц	2 432407	2 713228 3 930243
н	-0 341188	4 891660 2 563130
Н	0.649919	3.691382 3.383760
0	4.081731	3.904338 0.063238
Ν	1.615267	4.600583 1.732479
Н	0.728062	4.848425 -0.219931
Η	2.596789	4.932345 3.605052
С	1.262447	5.441434 0.526113
С	2.383687	5.471862 2.685827
H	2.182541	5.828923 0.089389
H	3.314856	5.779214 2.210493
H U	1 701024	6 361356 2 927//3
п	5 110680	4 152436 0 587287
C	6 323263	4 553499 1 110911
č	6.318716	6.062947 0.956507
Н	6.258701	4.215911 2.153416
С	7.726103	6.631859 1.309871
Η	6.084577	6.329968 -0.083886
Η	5.559440	6.528777 1.595600
С	8.827566	5.943267 0.481786
Н	729295	7.715143 1.135710
H	/.91/665	6.4/6380 2.380960
C	8./90224	4.411962 U.645922
H U	0.09/30/	0.190932 -U.38U2U2 6 325720 0 781010
С	7 38310/	3 841773 0 201/0/
Н	9.542593	3.934358 0.005931
Н	9.033576	4.146383 1.684411
Н	7.199066	4.008917 -0.779561

Η	H 7.366055 2.759061 0.463160	I
5.		/ o 1 ² +
1	[(Me ₆ TREN)Ru"	<i>0]²</i> -
(CH12 transition	state
U		Sinc
6) Ene	66 nergy: -1098.70164684	
H H	H -0.095975 -0.001563 0.5220 H 0.330898 0.250127 2.677421	94
H	H 2.214396 -0.210105 -0.2922	23
н Н	H 3.497119 0.738055 -2.73035	5
H H	H 4.209745 0.598595 -1.10604 H 4.649358 0.166359 0.982854	4
С	C 0.381523 0.898552 0.123528	
С	C 1.545917 0.500308 -0.78253	2
C H	2 1.091127 1.028714 2.551289 H -0.376661 1.433636 -0.4501	.70
H	H 1.155349 0.007643 -1.68222	1
Н	H 0.981774 1.721629 3.387978	
C C	C 2.480073 0.402776 2.559845 C 4.830062 0.767773 1.873869	
H	H 2.654743 -0.083836 3.52784	0
N	N 0.816386 1.803330 1.272764	2
N H	N 2.378526 1.697416 -1.18105 H 5.579897 1.527599 1.653273	1
H	H 1.487027 2.032352 -3.09442	3
N H	N 3.558534 1.434568 2.310319 H -0.644511 3.174387 0.56338	9
H C	H -1.041341 2.483230 2.13373 C -0.222639 2.887216 1.52789	19 15
C	C 1.658023 2.582095 -2.16131	7
Ru	u 2.663874 2.839037 0.707277	
C H	C 3.832878 2.238758 3.549919 H 2.275325 3.457129 −2.36828	6
Н	H 0.694290 2.896448 -1.76137	2
H C	H 4.567981 3.012254 3.323472 C 0.392654 4.095693 2.220827	
Н	H 2.917425 2.699513 3.922176 H -0 364507 4 881016 2 33305	0
Н	H 0.748753 3.847535 3.223991	
0 N	5 4.140736 3.843253 0.021698 N 1.572156 4.644126 1.442115	
Н	H 0.464975 4.851929 -0.38380	5
C	c 1.126519 5.444777 0.246980	1
C H	3 2.420320 5.518450 2.322/32 H 2.006670 5.741847 -0.32439	9
H	H 3.258132 5.896509 1.738028 H 0 589539 6 338962 0 583310	
Н	H 1.824462 6.361521 2.690596	
H C	H 5.093990 4.218825 0.608098 C 6.265004 4.727776 1.147589	
С н	2 6.270363 6.193479 0.756157 H 6 124750 4 552597 2 221976	
C	2 7.652374 6.825165 1.104778	
H H	н 6.105777 6.290621 -0.32629 Н 5.471535 6.747426 1.262819	19
C	2 8.805081 6.027164 0.466645	
н Н	H 7.774486 6.840657 2.196952	
C H	2 8.759066 4.541443 0.870233 H 8.741980 6.108859 -0.62863	0

C 0.159826 1.170075 -0.076469 H 4.975192 0.466309 2.733595 C 1.309189 0.461114 -0.776825 C 0.879264 0.982450 2.339135 H -0.293940 1.908051 -0.740697 H 0.970770 0.069879 -1.744047 C 3.704815 0.629304 -1.373843 н 0.622256 1.524624 3.250472 C 2.323283 0.505481 2.395903 C 4.668654 1.154570 1.939668 H 2.516548 0.005725 3.351564 H 4.556966 1.307679 -1.407159 N 0.638330 1.911341 1.159079 N 2.473495 1.406110 -0.999482 H 5.363445 1.993024 1.903785 H 1.975369 1.820481 -3.047015 N 3.282891 1.673956 2.246255 H -0.771408 3.402251 0.609028 H -1.181366 2.573861 2.106979 -0.352121 3.002704 1.534202 С C 2.176256 2.373241 -2.122942 н 3.809243 1.761623 4.309275 Ru 2.530285 2.862076 0.650687 C 3.383168 2.424515 3.549468 H 3.042283 3.020043 -2.264879 H 1.295315 2.978603 -1.893021 н 4.040733 3.282256 3.418440 C 0.331001 4.099173 2.341672 H 2.402012 2.749176 3.884852 H -0.359556 4.939115 2.484779 H 0.617838 3.746890 3.334839 O 4.123865 3.795890 0.040723 N 1.585296 4.588409 1.649005 0.676138 4.803740 -0.298070 Н H 2.589992 4.956104 3.504095 C 1.244930 5.400310 0.419147 C 2.385215 5.470171 2.568389 H 2.171952 5.742969 -0.041279 н 3.319540 5.737691 2.074648 H 0.636027 6.265447 0.702217 1.816789 6.381720 2.783298 Н H 4.956759 3.868325 0.568199 C 6.916067 4.504848 1.533913 6.916067 C 6.645956 5.982735 1.433946 H 6.822831 4.026704 2.510666 7.990835 6.775644 1.483705 н 6.157390 6.217074 0.473515 5.977409 6.325976 2.233386 Н C 8.988747 6.242032 0.434479 H 7.789930 7.842292 1.319880 H 8.425887 6.676656 2.488464 C 9.239674 4.729500 0.598671 H 8.593510 6.438182 -0.57478 H 9.939180 6.786482 0.511752 C 7.897768 3.930864 0.546574 H 9.915070 4.362193 -0.186033 H 9.730993 4.539738 1.564043 H 7.500860 4.018599 -0.478465 H 8.085689 2.867649 0.734272

⁵[(Me₆TREN)Fe^{IV}O]²⁺ + CH₃CN, separated reactants

54

F	ne	rg	Y	:	-1	.02	25	•	22	9	1	42	9	5						
	Н	0.1	2:	23	63	37	0	. 1	05	7	9!	56		- ().	1!	53	2	08	З
	Н	-0	. '	02	41	.08	3	0	.0	4	5!	51	3	2	2.	04	47	2	02	2
	Н	2.	6	42	52	26	0		15	3	92	26		- ().	4	86	7	5(D
	Н	2.	3	54	00)5	-	0	. 4	9	1:	35	9	1	ι.	53	39	6	29	Э
	Н	4.3	2	66	01	.1	1		67	2	7:	19		-2	2.	32	29	2	8	5
	Н	4.	6	94	90	0 (1	. :	28	2	4	15		- ().	6	46	0	04	1
	Н	4.	5	07	46	53	0	. :	20	7	2	69		1.	. 1	4	14	4	5	
	С	Ο.	6	59	99	92	1		04	9	1	63		- ().	31	0 0	9	0'	7
	Н	4.	8	00	35	54	-	0	. 0	9	2'	70	4	2	2.	8	66	5	13	3
	С	2.	0:	27	50)3	0	•	91	7	91	66		- ().	91	66	4	05	5
	С	Ο.	7.	46	46	59	0		B 0	5	1:	38		2.	. 2	1:	11	2	3	
	Н	-0	. 1	02	87	1!	5	1	. 6	0	8	85	6	-	- 0	. :	93	5	24	4 C
	Н	1.	91	07	38	88	0		62	3	7	68		-2	2.	0	15	9	2(D
	С	4.3	2:	26	18	35	2		02	1	4	60		-1	ι.	2 !	92	0	3(5
	Н	Ο.	4	65	34	15	1	. :	36	1	0	35		з.	. 1	0'	74	6	1	
	С	2.	1	12	05	50	0		16	1	41	87		2.	. 3	7	98	3	8	
	С	4.	5	31	33	39	0		66	9	72	21		2.	. 1	2'	73	7	4	
	Н	2.	1	35	91	.1	-	0	. 4	5	2	43	3	3	З.	21	87	0	39	Э
	Н	4.	7	55	67	7	2	•	96	8	1	45		-1	ι.	1	97	8	43	5
	Ν	Ο.	7	57	97	19	1	. '	77	3	0	14		1.	. 0	31	31	3	3	
	Ν	2.	7	89	76	50	2		22	3	7.	46		- ().	8	91	4	00	D
	Н	5.3	2	68	47	13	1		47	1	71	38		2.	. 1	4.	42	8	5	

 $^{3}[(Me_{6}TREN)Ru^{IV}O]^{2+} +$

 C_6H_{12} , intermediate

Hergy, -109442 0.450143 0.195548 H 0.203615 0.123363 2.277552 H 1.673621 -0.388128 -0.198554 H 2.552790 -0.206762 1.604580 H 3.563691 0.172045 -2.359200 H 3.878808 -0.165190 -0.649642 H 4.675574 0.631217 0.98846

Energy: -1098.72691065

H 9.768271 6.463437 0.761805 C 7.377617 3.907383 0.522650 H 9.550415 3.975928 0.362537 H 8.935811 4.446291 1.950804 H 7.263880 3.897498 -0.570797 7.352711 2.86626 0.86351

Η	2.285816 2.925102 -2.840013
Ν	3.179669 1.234346 2.462696
Н	-0.518189 3.265465 0.220160
Н	-1.270987 2.331121 1.508673
С	-0.338740 2.813498 1.197233
С	2.189947 3.263075 -1.802606
Н	3.573568 1.062952 4.553713
Fe	2.571218 2.775351 1.128935
С	3.239859 1.829397 3.846164
Н	2.731279 4.201290 -1.682182
Н	1.133057 3.413050 -1.586393
Η	3.949947 2.656030 3.848184
С	0.091720 3.862086 2.210882
Н	2.255378 2.179191 4.157302
Н	-0.633454 4.682458 2.245421
Н	0.158963 3.447411 3.219364
0	4.003039 3.594769 1.201328
Ν	1.459752 4.409037 1.848003
Η	0.813456 5.029194 -0.109701
Н	2.156257 4.374143 3.872760
С	1.365335 5.429245 0.738771
С	2.097734 5.073055 3.040307
Н	2.372293 5.712472 0.431958
Н	3.098886 5.405007 2.767774
Н	0.838048 6.312622 1.113242
Н	1.489920 5.933310 3.339965
Н	21.387540 12.971710 3.014278
С	21.736674 13.679883 2.257080
С	20.773667 13.777813 1.169122
Н	21.876331 14.655421 2.732352
Ν	19.998711 13.857536 0.292754
Н	22.704701 13.336174 1.880481

⁵[(Me₆TREN)Fe^{IV}OJ²⁺ + CH₃CN, complexed

reactants

54	1
Ene	ergy: -1025.23086977
Η	0.197127 0.079934 -0.193948
Η	-0.096238 0.056301 2.002924
Η	2.625422 0.152923 -0.484245
Η	2.278717 -0.523085 1.528664
Η	4.280660 1.582401 -2.270627
Η	4.728443 1.348647 -0.560996
Η	4.438826 0.141245 1.155157
С	0.647900 1.066979 -0.325806
Η	4.728524 -0.159407 2.881200
С	2.025157 0.925532 -0.969458
С	0.685716 0.800260 2.184430
Η	-0.023148 1.640587 -0.966854
Η	1.918840 0.636940 -2.022123
С	4.237846 2.016194 -1.265756
Η	0.401073 1.354040 3.081029
С	2.036636 0.130314 2.368704
С	4.467178 0.604376 2.140920
Η	2.036328 -0.488438 3.272877
Η	4.729916 2.986898 -1.261278
Ν	0.732918 1.777677 1.020842
Ν	2.797081 2.223321 -0.877856
Η	5.210539 1.400763 2.156088
Η	2.305994 2.926445 -2.828756
Ν	3.120927 1.184569 2.472855
Η	-0.505766 3.297110 0.196863
Η	-1.292252 2.366557 1.468274
С	-0.347943 2.835044 1.172684
С	2.218/01 3.2/3066 -1./928/2
_Н	3.489166 0.980640 4.565576
F.e	2.559899 2.750446 1.147390
C	3.1/8651 1./61963 3.863/11
н	2./8/290 4.1959/5 -1.6//491
н	1.165646 3.446181 -1.576486
н	3.904903 2.5/4185 3.882918
U II	0.080339 3.809742 2.200080 2 109261 2 129129 4 160249
п	0 620274 4 600110 2 224760
п U	0 137801 3 //5837 3 205788
0	4 005137 3 537611 1 282703
N	1 465290 4 400202 1 855839
н	0 839781 5 046147 -0 099494
н	2 160946 4 334714 3 879995
C	1.399034 5.428706 0.752045
č	2.101686 5.046295 3.058525
H	2.412312 5.690622 0.445962
Н	3.102839 5.380459 2.789537
Н	0.891092 6.322237 1.129430
Н	1.494610 5.902960 3.370187
Н	6.349294 4.816776 1.509451

С	6.719078	5.530584	0.766677
С	5.765531	5.628071	-0.329081
Η	6.853764	6.503722	1.247917
V.	4.980266	5.686349	-1.198299
Η	7.691320	5.187276	0.401027

⁵[(Me₆TREN)Fe^{IV}OJ²⁺ + CH₃CN, transition state

54	
Ene	ergy: -1025.19846661
Н	0.224281 0.067481 -0.127291
Н	0.094443 0.008660 2.083909
Н	2.630665 0.218596 -0.528497
Н	2.470286 -0.424250 1.498699
н	4 121341 1 680745 -2 473567
ц Ц	A 664081 1 386473 -0 804256
11 U	A 596963 0 337687 1 062798
	0 626014 1 070557 0 271270
	4 022022 0 007125 2 774244
п	1 001262 0 064662 0 001702
c	1.981303 0.904002 -0.991/93
	0.833093 0.803309 2.223966
H	-0.080982 1.621981 -0.880843
н	1.820376 0.650265 -2.030442
С	4.13/886 2.082889 -1.454/84
Н	0.556895 1.339328 3.135642
C	2.228429 0.21058/ 2.353025
С	4.627509 0.771420 2.062217
Н	2.289953 -0.416590 3.249894
Η	4.653041 3.042344 -1.450176
Ν	0.762326 1.777368 1.065052
Ν	2.725978 2.278967 -0.973308
Η	5.351359 1.584619 2.089424
Н	2.104117 2.970251 -2.895276
Ν	3.271207 1.304840 2.430085
Н	-0.576792 3.239542 0.311756
Н	-1.252511 2.294194 1.633072
С	-0.341918 2.789592 1.278017
С	2.061433 3.303792 -1.852401
Η	3.697671 1.128063 4.515279
Fe	2.649030 2.872684 1.090942
С	3.339699 1.891087 3.815650
Η	2.591595 4.252345 -1.761175
Н	1.016083 3.436731 -1.577156
Н	4.033040 2.732266 3.816159
С	0.100786 3.854036 2.273029
Н	2.353142 2.221315 4.142441
Н	-0.661324 4.638149 2.350635
Н	0.235281 3.436845 3.274038
0	4.113297 3.790854 1.121088
Ν	1.418803 4.468993 1.853901
Н	0.672713 5.040489 -0.080300
Н	2.235882 4.458840 3.832223
С	1.224560 5.476901 0.750144
С	2.066961 5.165202 3.020892
Н	2.199495 5.823743 0.405847
Н	3.017781 5.585681 2.698501
Н	0.655639 6.329120 1.137467
Н	1.410131 5.966806 3.376564
Н	5.128093 4.410366 1.116208
С	6.273785 5.104562 1.060950
Ċ	6.625607 5.161037 -0.313624
H	5.987030 6.057932 1.506352
N	6.861100 5.170020 -1.468582
н	6.936233 4.503904 1.685499

⁵[(Me₆TREN)Fe^{IV}OJ²⁺ + CH₃CN, intermediate

54
Energy: -1025.22861294
н 0.078990 -0.108871 -0.029077
н 0.077646 -0.158261 2.181411
Н 2.454973 0.096076 -0.555356
н 2.433576 -0.522943 1.487601
Н 3.824791 1.600239 -2.597010
Н 4.433142 1.291258 -0.951253
н 4.517915 0.276215 0.964903
C 0.459995 0.903187 -0.200171
н 4.939493 -0.019151 2.665303
C 1.765875 0.820767 -0.994034
C 0.795763 0.664036 2.277797
н -0.300764 1.432174 -0.777441
H 1.552172 0.485084 -2.016964
C 3.868488 1.986867 -1.572444
н 0.548124 1.196686 3.198392

С	2.213822 0.110128 2.349503	3
С	4.580462 0.732908 1.953291	
Н	2.327798 -0.512619 3.24499	8
Н	4.365209 2.955748 -1.56380	9
Ν	0.635906 1.622997 1.120937	7
Ν	2.474842 2.148062 -1.03088	80
Н	5.274023 1.572753 1.925255	5
Н	1.727380 2.795587 -2.92611	.7
Ν	3.226407 1.228814 2.374471	
Н	-0.784719 3.034353 0.42954	12
Н	-1.363601 2.076815 1.78791	. 8
С	-0.487374 2.598510 1.38528	33
С	1.741596 3.142852 -1.88626	50
Н	3.737949 1.084916 4.445948	3
Fe	2.526179 2.800899 1.042578	3
С	3.338142 1.830264 3.748827	7
Н	2.256539 4.103279 -1.84006	55
Н	0.711794 3.262788 -1.55085	59
Н	4.013943 2.685445 3.712089)
С	-0.039310 3.689529 2.35117	4
Η	2.358921 2.147950 4.109106	5
Η	-0.834326 4.437022 2.46412	25
Η	0.160689 3.282581 3.346044	ł
0	3.984440 3.789939 0.973581	
Ν	1.225357 4.351755 1.867802	2
Η	0.368728 4.872663 -0.03214	12
Η	2.130211 4.389686 3.805673	3
С	0.946138 5.337260 0.765820)
С	1.908423 5.079880 2.992095	5
Η	1.893682 5.703610 0.368104	ł
Η	2.836552 5.511010 2.619332	2
Η	0.372370 6.181291 1.165546	5
Η	1.255046 5.875668 3.368622	2
Η	4.812261 4.335104 0.905920)
С	8.457002 6.614350 0.585195	5
С	7.283025 5.893429 0.689271	
Н	9.248766 6.471973 1.310784	ł
Ν	6.278177 5.275757 0.778585	5
Н	8.592752 7.325528 -0.22077	7