A Cyano-based Octanuclear {Fe^{III}₄Ni^{II}₄} Single-Molecule Magnet

Yuanzhu Zhang,^a Uma Prasad Mallik,^a Nigam Rath,^a Gordon T. Yee,^b Rodolphe Clérac^{*,cd} and Stephen M. Holmes^{*,a}

 ^a Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121 (USA)
^b Department of Chemistry, Virginia Polytechnic and State University, Blacksburg, VA 24061 (USA)
^c CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP), Equipe "Matériaux Moléculaires Magnétiques", 115 avenue du Dr. Albert Schweitzer, Pessac, F-33600, France
^d Université de Bordeaux, UPR 8641, Pessac, F-33600, France

Synthesis of	f [NEt ₄] ₂ [(Tp* ^{Me})Fe ^{III} (CN) ₃]·H ₂ O (1)	2
Table S1.	Crystallographic Data for 1 and 2	2
Table S2.	Selected Bond Distances (Å) and Angles (°) for 1 and 2	3
Fig. S1.	Truncated X-ray structure of 1	4
Fig. S2.	(top) Asymmetric unit of 2 . (bottom) Truncated structure of 2 showing core	4
Fig. S3.	Packing diagram of 2 illustrating extensive hydrogen bonding	
	interactions present within the <i>ab</i> -plane	5
Fig. S4.	(left) Truncated packing arrangement of octanuclear cores present	
	in complex 2 in the <i>ac</i> -plane. (right) Truncated packing arrangement	
	of cores present in complex 2 in the <i>bc</i> -plane	5
Magnetic pro	operties of 1	6
Fig. S5.	Left: χT vs T data for 1 at 1000 Oe; Right: M vs H data	
	for 2 below 8 K	6
Fig. S6.	χT vs T data for 2 at 1000 and 10000 Oe in linear (left) and	
	semi-logarithmic plots (right), respectively	6
Fig. S7.	(left) <i>M</i> vs <i>H</i> data for 2 below 10 K. (right) <i>M</i> vs <i>H</i> data	
	for 2 at 1.9 K	7
Fig. S8.	Temperature dependence of the in-phase (left) and out-of-phase (right)	
	components of the ac susceptibility between 1 and 1500 Hz (H_{ac} = 3 Oe;	
	H_{dc} = 0 Oe) for 2 below 8 K.	7
Fig. S9.	Frequency dependence of the in-phase (left) and out-of-phase (right)	
	components of the ac susceptibility at different temperatures between	_
	1.8 and 3.6 K (H_{ac} = 3 Oe; H_{dc} = 0 Oe) for 2 .	8
Fig. S10.	Cole-Cole plots at different temperature between 1.8 and 3.6 K for 2 ($H_{dc} = 0$).	8
Fig. S11.	Frequency dependence of the in-phase (left) and out-of-phase (right)	
	components of the ac susceptibility at different applied dc fields	~
	$(U \le H_{dc} \le 800 \text{ Oe}; H_{ac} = 3 \text{ Oe})$ for 2 at 1.9 K	9

Synthesis of [NEt₄]₂[(Tp^{*Me})Fe^{II}(CN)₃]·H₂O (1). Drop wise addition of a 1:1 DMF/MeCN (40 mL) solution of K(Tp^{*Me}) (2.40 g, 6.36 mmol) in a DMF solution (20 mL) of Fe(OAc)₂ (2.20 g, 12.6 mmol) over 30 min. afforded a gray mixture that was evacuated to dryness after 3 h at 50° C. The remaining gray solid was extracted with MeCN (2 × 20 mL), filtered, and was added drop wise to a MeCN (30 mL) solution of [NEt₄]CN (2.98 g, 19.1 mmol). The brown suspension was stirred for 4 h and filtered to remove a brown precipitate. The filtrate was concentrated to ca. 20 mL and addition of Et₂O (90 mL) afforded a red precipitate. The solid was isolated via suction filtration, washed with Et₂O (2 ×5 mL), and dried under vacuum for 2 min. Yield: 3.05 g (63.8%). Crystals are obtained from slow diffusion of Et₂O into a MeCN solution of [NEt₄]₂[(Tp^{*Me})Fe^{II}(CN)₃]·H₂O. IR (Nujol, cm⁻¹): 2507 ($\tilde{\nu}_{BH}$, s), 2044 ($\tilde{\nu}_{CN}$, s).

	1	2			
crystal color	red	red			
formula	$C_{29}H_{50}BFeN_{10}O$	$C_{58}H_{105}B_2CI_2Fe_2N_{28}Ni_2O_{11.5}$			
crystal system	monoclinic	triclinic			
formula wt	621.45	1700.34			
space group	P2 ₁ /n	<i>P</i> -1			
wavelength, Å	0.71073	0.71073			
Temperature, K	100(2)	100(2)			
<i>a</i> , Å	9.9051(6)	14.058(1)			
b, Å	16.122(1)	14.568(1)			
c, Å	20.399(1)	23.412(2)			
α , deg	90	75.052(3)			
β , deg	93.661(2)	77.373(3)			
γ, deg	90	62.117(3)			
V, Å ³	3250.8(4)	4067.5(5)			
D _c , g cm⁻³	1.270	1.338			
Ζ	4	2			
<i>μ</i> , mm⁻¹	0.503	0.941			
R_1^a	0.0447	0.0622			
wR_2^a	0.1414	0.1598			

Table S1. Crystallographic Data for $[NEt_4][(Tp^{*Me})Fe^{III}(CN)_3] \cdot H_2O$ (1) and $\{[(Tp^{*Me})Fe^{III}(CN)_3]_{4-1}$ $[Ni^{II}(tren)]_4[CIO_4]_4\} \cdot 7H_2O \cdot 4MeCN$ (2).

^[a] $l \ge 2\sigma(l)$: $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$, $wR_2 = \{\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}^{1/2}$

Table S2. Selected Bond Distances (Å) and Angles (°) for [NEt ₄][(Tp* ^{Me})Fe ^{III} (CN) ₃]·H ₂ O (1) ar	۱d
{[(Tp* ^{Me})Fe ^{III} (CN) ₃] ₄ [Ni ^{II} (tren)] ₄ [CIO ₄] ₄ }·7H ₂ O·4MeCN (2).	

		1					2	
Fe1-C19	1.920(2)	C19-Fe1-C20	89.34(7)		Fe1-C1	1.921(4)	 C1-Fe1-C2	86.2(2)
Fe2-C20	1.921(2)	C19-Fe1-C21	86.90(7)		Fe2-C2	1.919(4)	C1-Fe1-C3	90.8(2)
Fe1-C21	1.923(2)	C20-Fe1-C21	87.45(7)		Fe1-C3	1.935(4)	C2-Fe1-C3	89.2(2)
Fe1-N1	2.002(1)	C19-Fe1-N1	90.37(6)		Fe1-N8	2.001(4)	C1-Fe1-N8	92.2(2)
Fe1-N3	2.006(1)	C19-Fe1-N3	91.36(6)		Fe1-N10	1.979(4)	C1-Fe1-N10	92.5(2)
Fe1-N5	2.007(1)	C19-Fe1-N5	179.42(6)		Fe1-N12	2.021(4)	C1-Fe1-N12	177.3(2)
C19-N7	1.149(2)	N1-Fe1-N3	89.24(5)		Fe2-C4	1.921(5)	N8-Fe1-N10	98.9(2)
C20-N8	1.153(2)	N1-Fe1-N5	89.82(5)		Fe2-C5	1.932(5)	N8-Fe1-N12	90.0(1)
C21-N9	1.154(2)	N3-Fe1-N5	89.20(5)		Fe2-C6	1.927(6)	N10-Fe1-N12	89.0(2)
		Fe1-C19-N7	178.1(1)		Fe2-N14	2.009(4)	Fe1-C1-N1	179.3(5)
		Fe1-C20-N8	177.9(2)		Fe2-N16	1.997(4)	Fe1-C2-N2	179.4(4)
		Fe1-C21-N9	178.7(2)		Fe2-N18	1.981(4)	Fe1-C3-N3	172.3(4)
					Ni1-N2	2.038(4)	C4-Fe2-C5	84.3(2)
					Ni1-N3A	2.132(4)	C4-Fe2-C6	85.2(2)
					Ni1-N19	2.133(4)	C5-Fe2-C6	87.7(2)
					Ni1-N20	2.106(4)	C4-Fe2-N14	174.0(2)
					Ni1-N21	2.090(4)	C4-Fe2-N16	94.3(2)
					Ni1-N22	2.094(4)	C4-Fe2-N18	94.0(2)
					Ni2-N1	2.050(4)	N14-Fe2-N16	90.0(2)
					Ni2-N4	2.126(4)	N14-Fe2-N18	90.4(2)
					Ni2-N23	2.093(4)	N16-Fe2-N18	88.2(2)
					Ni2-N24	2.119(4)	Fe2-C4-N4	172.0(4)
					Ni2-N25	2.129(4)	Fe2-C5-N5	177.5(5)
					Ni2-N26	2.096(4)	Fe2-C6-N6	178.0(5)
					C1-N1	1.152(6)	N2-Ni1-N3	89.9(4)
					C2-N2	1.153(6)	N2-Ni1-N19	100.8(2)
					C3-N3	1.157(6)	N2-Ni1-N20	94.9(2)
					Fe1···Fe2	7.524(6)	N2-NI1-N21	92.2(2)
					NI1…NI2	7.181(5)	N2-NI1-N22	1/5.2(2)
							N3-N11-N19	84.U(Z)
							N3-N11-N20	88.4(Z)
							N3-N11-N21	1/0.0(2)
							N3-INI I-INZZ	94.5(1)
							N10 Ni1 N21	102.3(2)
							N10 Ni1 N21	92.0(2) 81.6(2)
								170 6(3)
							Ni1_N3_C3	1587(1)
							N1-Ni2-N4	92 5(1)
							N1-Ni2-N23	90 2(2)
							N1-Ni2-N24	99 2(2)
				_			N1-Ni2-N25	95.8(1)
				_			N1-Ni2-N26	173.4(2)
				_			N4-Ni2-N23	176.7(2)
							N4-Ni2-N24	85.8(2)
							N4-Ni2-N25	84.9(2)
							N4-Ni2-N26	93.8(2)
							Ni2-N1-C1	175.1(4)
							Ni2-N4-C4	158.7(4)

Figure S1. Truncated X-ray structure of **1**. All cations, lattice solvents, and hydrogen atoms are eliminated for clarity.

Figure S2. (top) Asymmetric unit of **2**. Note: Nearly parallel alignment of pseudo C_3 rotation axes. (bottom) Truncated structure of **2** showing octanuclear core of the complex.

Figure S3. Packing diagram of **2** illustrating extensive hydrogen bonding interactions present within the *ab*-plane.

Figure S4. (left) Truncated packing arrangement of octanuclear cores present in complex **2** in the *ac*-plane. (right) Truncated packing arrangement of cores present in complex **2** in the *bc*-plane.

Magnetic properties of [NEt₄][(Tp^{*Me})Fe^{III}(CN)₃]·H₂O (1). At room temperature, the χT product for 1 is 0.66 cm³.K/mol indicating an $S = \frac{1}{2}$ spin ground state with a *g* factor around 2.65. Large *g* factors are expected for this type of [L₃Fe^{III}(CN)₃] building blocks that display significant spin-orbit coupling effects. Indeed spin-orbit coupling is also responsible for the decrease of the χT product as the temperature is lowered (Figure S5 left). In the whole range of the temperature the Fe^{III} ion can be considered as an S = 1/2 spins as confirmed by the field dependence of the magnetization below 10 K that saturates at 1.8 K and 7 T around 1.1 µ_B.

Figure S5. Left: χT vs T data for **1** (with χ defined as the magnetic susceptibility and equal to M/H) at 1000 Oe; Right: M vs H data for **1** below 8 K.

Figure S6. χT vs *T* data for **2** (with χ defined as the magnetic susceptibility and equal to *M*/*H*) at 1000 and 10000 Oe in linear (left) and semi-logarithmic plots (right), respectively.

Figure S7. (left) *M* vs *H* data for 2 below 10 K. (right) *M* vs *H* data for 2 at 1.9 K.

Figure S8. Temperature dependence of the in-phase (χ ', left) and out-of-phase (χ '', right) components of the ac susceptibility between 1 and 1500 Hz (H_{ac} = 3 Oe; H_{dc} = 0 Oe) for **2** below 8 K. The solid lines are guides for the eyes.

Figure S9. Frequency dependence of the in-phase (χ' , left) and out-of-phase (χ'' , right) components of the ac susceptibility at different temperatures between 1.8 and 3.6 K (H_{ac} = 3 Oe; H_{dc} = 0 Oe) for **2**. The solid lines are the best fits obtained with a generalized Debye model using α parameters consistently lower than 0.31.

Figure S10. Cole-Cole plots at different temperature between 1.8 and 3.6 K for compound **2** measured in zero-dc field. The solid lines are the best fits obtained with a generalized Debye model using α parameters always lower than 0.31.

Figure S11. Frequency dependence of the in-phase (χ' , left) and out-of-phase (χ'' , right) components of the ac susceptibility at different applied dc fields ($0 \le H_{dc} \le 800$ Oe; $H_{ac} = 3$ Oe) for **2** at 1.9 K. The solid lines are guides for the eyes.