Supporting information

Direct functionalization of BODIPY dyes by oxidative nucleophilic hydrogen substitution at the 3- or 3,5-positions

Volker Leen, Verónica Zaragozí Gonzalvo, Wim M. Deborggraeve, Noël Boens and Wim Dehaen*

Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F – bus 02404, 3001 Leuven, Belgium

*To whom correspondence should be addressed: wim.dehaen@chem.kuleuven.be

Contents

1.	Experimental procedures and characterization data	S2
2.	NMR-analysis of base induced tautomerization	S8
3.	NMR-spectra of new compounds	S14

Experimental procedures and characterization data

Chemicals where purchased from Acros Organics, and used as received. All reactions were carried out in flame dried glassware, but no special precautions were to taken for the exclusion of moisture. Solvents were not dried prior to use. Oxygen gas was 99.5% pure.

¹H and ¹³C NMR spectra were recorded at room temperature on a Bruker Avance 300 instrument operating at a frequency of 300 MHz for ¹H and 75 MHz for ¹³C. In the case of ambiguous assignments, spectra were run on a Bruker 400 or Bruker 600. ¹H NMR spectra in CDCl₃ were referenced to tetramethylsilane (0.00 ppm) as an internal standard. ¹³C NMR spectra in CDCl₃ were referenced to the CDCl₃ (77.67 ppm) signal. ¹H NMR spectra in CD₃CN were referenced to CH₃CN (1.94 ppm) as an internal standard. ¹³C NMR spectra in CD₃CN were referenced to the CD₃CN (118.2 ppm) signal. Mass spectra were recorded on a Hewlett-Packard 5989A mass spectrometer (EI mode and CI mode). High-resolution mass data were obtained with a Kratos MS50TC instrument. Melting points were taken on a Reichert Thermovar and are uncorrected. ¹⁹F-NMR were recorded on a Bruker 600 MHz, and referenced to CFCl₃.

Absorption spectra where recorded on a Perkin Elmer Lambda 40. For the corrected steadystate emission spectra, a SPEX Fluorolog was used. Freshly prepared samples in 1-cm quartz cells were utilized to perform all UV–vis absorption and emission measurements. For the determination of the relative fluorescence quantum yields (Φ_f) in solution, only dilute solutions with an absorbance below 0.1 at the excitation wavelength of 500 nm were used. Rhodamine 6G ($\Phi_f = 0.95$)in spectrograde ethanol (Fluka) was used as standard to determine the fluorescence quantum yields. All spectroscopic measurements were done at 20 °C.

8-arylated BODIPY dyes were prepared according to standard literature procedures, through a water based dipyrromethane synthesisⁱ and oxidation and condensation.ⁱⁱ

Oxidative substitution:

Optimization of reaction protocol:

Solvent	Oxidizer	Reaction Time	Yield (%)
_ ^a	Air	16 h	11
CH ₃ CN	O_2	5 days	33
THF	O_2	14 days	16 ^b
DMSO	O_2	24 h	41
DMF	O ₂	16 h	65
NMP	O ₂	16 h	55
DMF	Air	24 h	48
DMF	DDQ	48 h	26
DMF	PCA	48 h	31
DMF	AgPyMnO ₄	48 h	16

Table 1: Optimization of oxidative nucleophlic hydrogen substitution with butylamine.

a) Butylamine was used as the solvent; b) Reaction not complete at this stage

Oxidative subsitution: General procedure for amine substitution

To a solution of BODIPY **1** (0.5 mmol, 134 mg) in DMF (5ml) is added the corresponding amine (0.55 mmol, 2.1 equiv.). The mixture is flushed with oxygen and stirred at room temperature for the indicated time under an oxygen atmosphere. Subsequently, the solution is poured in diethyl ether (100 ml), washed with saturated aqueous NaHCO₃, dried over MgSO₄, filtered, and evaporated to dryness. The crude product is purified by filtration over a silica pad with dichloromethane as solvent.

3-(N-Butylamino)-8-phenyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene 4a

Red crystals; Mp 120°C; ¹H-NMR (CDCl₃, 600 MHz): δ 7.47 (m, 6H), 6.93 (d, 1H, J = 5.49 Hz), 6.42 (d, 1H, J = 2.73 Hz), 6.33 (d, 1H, J = 1.83 Hz), 6.32 (s, br, 1H, NH), 6.18 (d, 1H, J = 4.56 Hz), 3.41 (q, 2H, J = 6.39 Hz, J = 13.68 Hz), 1.73 (m, 2H), 1.46 (m, 2H), 0.97 (t, 3H, J = 9.72 Hz); ¹³C-NMR (CDCl₃, 100 MHz): δ 161.9, 136.2, 134.7, 133.5, 132.8, 132.6, 130.9, 130.4, 129.1, 128.2, 119.8, 113.4, 110.4, 44.5, 32.2, 19.8, 13.7; ¹⁹F-NMR (CDCl₃, 564 MHz): δ -149.50 (q, J = 35 Hz); MS (EI): 339; HRMS: Calculated for C₁₉H₂₀N₃BF₂: 339.17183, found 339.17353.

3-(N-Dodecylamino)-8-phenyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene 4b

Red oil; ¹H-NMR (CDCl₃, 300 MHz): δ 7.46 (s, 6H), 6.93 (d, 1H, J = 4.56 Hz), 6.41 (s, 1H), 6.33 (s, 1H), 6.28 (s, br, 1H, NH), 6.18 (d, 1H, J = 5.49 Hz), 3.39 (q, 2H, J = 6.39 Hz, J = 12.78 Hz)), 1.69 (m, 2H), 1.26 (m, 18 H), 0.87 (t, 3H, J = 7.32 Hz); ¹³C-NMR (CDCl₃, 75 MHz): δ 161.9, 136.2, 134.8, 133.5, 132.8, 131.0, 130.4, 129.2, 128.3, 119.9, 113.5, 110.4, 44.9, 32.0, 30.2, 29.7, 29.6, 29.5, 29.4, 29.3, 26.7, 22.8, 14.2; MS (EI): 451; HRMS: Calculated for C₂₇H₃₆N₃BF₂: 451.2970, found 451.29731.

3-(N-Benzylamino)-8-phenyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene 4c

Red solid; Mp 156°C; ¹H-NMR (CDCl₃, 300 MHz): δ 7.88 (d, 1H, J = 8.22 Hz), 7.43 (m, 10H), 6.9 (d, 1H, J = 4.56 Hz), 6.66 (s, br, 1H, NH), 6.34 (s, 1H), 6.13 (d, 1H, J = 4.6 Hz), 4.61 (d, 1H, J = 6.39 Hz); ¹³C-NMR (CDCl₃, 75 MHz): δ 161.9, 136.7, 136.2, 134.6, 133.9, 133.4, 132.7, 131.7, 130.4, 129.8, 129.3, 129.1, 128.2, 126.9, 120.6, 113.8, 110.3, 48.3; MS (EI): 373; HRMS: Calculated for C₂₂H₁₈N₃BF₂: 373.1561, found 373.15777.

3-(N-Piperidinyl)-8-phenyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene 4d

Red crystals; Mp 55°C; ¹H-NMR (CDCl₃, 300 MHz): δ 7.44 (m, 6H), 6.86 (d, 1H, J = 5.46 Hz), 6.32 (s, 2H), 6.26 (d, 1H, J = 5.49 Hz), 3.90 (d, 4H, J = 4.56 Hz), 1.78 (m, 6H); ¹³C-NMR (CDCl₃, 150 MHz): δ 162.1, 135.7, 135.6, 135.4, 131.9, 131.5, 130.7, 130.5, 128.9, 128.1, 117.9, 113.9, 51.9, 26.5, 24.8; IR (thin film): 2937, 2857; MS (EI): 351; HRMS: Calculated for C₂₀H₂₀N₃BF₂: 351.17183, found 351.17179.

Oxidative subsitution: General procedure for malonate substitution

To a solution of BODIPY 1 (0.5 mmol, 134 mg) in DMF (5ml) is added the corresponding malonate (0.55 mmol, 1.1 equiv.), followed by Na_2CO_3 (1 mmol, 106 mg, 2 equiv.). The mixture is flushed with oxygen and stirred at room temperature for the indicated time under an oxygen atmosphere. Subsequently, the solution is poured in diethyl ether (100 ml), washed with diluted aqueous HCl and brine, dried over MgSO4, filtered, and evaporated to dryness. The crude product is purified by column chromatography (silica, CH_2Cl_2).

Dimethyl 2-(8-phenyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacen-3-yl) malonate

Orange solid; Mp 138°C; ¹H-NMR (CDCl₃, 400 MHz): δ 7.88 (s, 1H), 7.58-7.48 (m, 5H), 6.92 (d, 1H, J = 4.28 Hz), 6.88 (d, 1H, J = 4 Hz), 6.68 (d, 1H, J = 4.28 Hz), 6.52 (m, 1H), 5.52 (s, 1H), 3.81 (s, 6H); ¹³C-NMR (CDCl₃, 150 MHz): δ 166.7, 150.5, 147.1, 144.1, 134.9, 133.5, 131.8, 131.5, 130.7, 130.4, 128.4, 119.5, 118.8, 53.3, 51.8; MS (EI): 398; HRMS: Calculated for C₂₀H₁₇N₂O₄BF₂: 398.1249, found 398.12325.

Di-t-butyl 2-(8-phenyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacen-3-yl) malonate

Orange solid; ¹H-NMR (CDCl₃, 400 MHz): δ 7.86 (s, 1H), 7.58-7.48 (m, 5H), 6.92 (d, 1H, J = 4.28 Hz), 6.85 (d, 1H, J = 3.76 Hz), 6.70 (d, 1H, J = 4.52 Hz), 6.50 (d, 1H, J = 2.52 Hz), 5.30 (s, 1H), 1.50 (s, 18H); ¹³C-NMR (CDCl₃, 100 MHz): δ 165.5, 153.0, 146.6, 143.2, 135.2, 134.7, 133.9, 132.1, 130.8, 130.7, 130.5, 128.5, 119.9, 118.3, 82.9, 54.6, 27.9; MS (EI): 482; HRMS: Calculated for C₂₆H₂₉BF₂N₂O₄: 482.2188, found 482.2194.

3,5-Bis-(di-t-butylmalon-2-yl)-8-phenyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene

Orange solid; Mp 178°C; ¹H-NMR (CDCl₃, 300 MHz): δ 7.53 (m, 5H), 6.84 (d, 2H, J = 4.14 Hz), 6.67 (d, 2H, J = 4.14 Hz), 1.49 (s, 36H); ¹³C-NMR (CDCl₃, 100 MHz): δ 165.5, 151.9, 145.8, 134.7, 133.8, 131.2, 130.5, 128.4, 119.6, 82.8, 54.4, 27.9; MS (EI): 696; HRMS: Calculated for C₃₇H₄₇BF₂N₂O₈: 696.3394, found 696.3394.

3-(Phenacyl)-8-(*p*-tolyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene

To a solution of 8-tolyl-BODIPY (0.5 mmol, 141 mg) in DMF (5ml) is added acetophenone (3g, 1.1 equiv.) followed by potassium bis(trimethylsilyl)amide (KHMDS, 1 mmol, 200 mg, 2 equiv.). The mixture is flushed with oxygen and stirred at room temperature for 6h under an oxygen atmosphere. Subsequently, the dark solution is poured in diethyl ether (100 ml), washed with diluted aqueous HCl and brine, dried over MgSO₄, filtered, and evaporated to dryness. The crude product is purified by column chromatography (silica, CH₂Cl₂).

Orange solid; Mp 113-115°C; ¹H-NMR (CDCl₃, 300 MHz): δ 8.09 (d, 2H, J = 7.32 Hz), 7.99 (s, 1H), 7.61-7.44 (m, 5H), 7.31 (d, 2H, J = 7.74 Hz), 6.94 (d, 1H, J = 3.9 Hz), 6.86 (d, 1H, J = 3.39 Hz), 6.51 (m, 2H), 4.70 (s, 2H), 2.46 (s, 3H); ¹H-NMR (CD₃CN, 600 MHz): 8.05 (d, 2H, J = 7.14 Hz), 7.83 (s, 1H), 7.66 (t, 1H, J = 7.56 Hz), 7.55 (t, 2H, J = 7.5 Hz), 7.51 (d, 2H, J = 8.28 Hz), 7.38 (d, 2H, J = 7.56 Hz), 7.01 (d, 1H, J = 3.78 Hz), 6.90 (d, 1H, J = 3.36 Hz), 6.56 (m, 2H), 4.75 (s, 2H), 2.45 (s, 3H); ¹³C-NMR (CD₃CN, 100 MHz): δ 195.7, 157.2, 147.2, 142.6, 142.4, 137.4, 136.0, 134.9, 134.4, 133.4, 133.2, 131.6, 131.5, 131.0, 130.0, 129.7, 129.1, 122.5, 118.8, 39.7, 21.3; ¹⁹F-NMR (CDCl₃, 565 MHz): δ -144.6 (q, J = 31 Hz) ppm; MS (EI): 400; HRMS: Calculated for C₂₄H₁₉BF₂N₂O: 400.1559, found 400.15672.

¹H-NMR (CD₃CN, 600 MHz): 7.89 (m, 2H), 7.81 (d, 1H, J = 5.16 Hz), 7.43 (m, 3H), 7.40 (d, 2H, J = 7.32 Hz), 7.27 (d, 2H, J = 7.38 Hz), 7.11 (s, 1H), 6.74 (d, 1H, J = 5.16 Hz), 6.66 (s, 1H), 6.16 (d, 1H, J = 2.22 Hz), 6.04 (d, 1H, J = 2.16 Hz), 2.40 (s, 3H, Tolyl-CH₃); ¹³C-NMR (CD₃CN, 150 MHz): δ 185.6, 166.9, 144.0, 138.9, 1138.5, 135.0 134.2, 133.2, 132.0, 131.2, 130.7, 129.6, 129.0, 127.7, 126.7, 126.0, 121.0, 112.2, 111.7, 92.9, 21.2.

Ethyl (8-phenyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacen-3-yl) phenylacetate

To a solution of 8-tolyl-BODIPY (0.5 mmol, 134 mg) in DMF (5ml) is added ethyl phenylacetate (90 mg, 1.1 equiv.) followed by NaOtBu (1 mmol, 112 mg, 2 equiv.). The mixture is flushed with oxygen and stirred at room temperature for 6h under an oxygen atmosphere. Subsequently, the dark solution is poured in diethyl ether (100 ml), washed with diluted aqueous HCl and brine, dried over MgSO₄, filtered, and evaporated to dryness. The crude product is purified by column chromatography (silica, CH_2Cl_2).

Orange solid; No crystals obtained; ¹H-NMR (CDCl₃, 300 MHz): δ 7.84 (s, 1H), 7.47-7.28 (m, 9H), 6.88-6.84 (m, 2H), 6.54 (d, 1H, J = 4.5 Hz), 6.50 (m, 1H), 5.76 (s, 1H), 4.33-4.15 (m, 2H), 2.44 (s, 3H), 1.27 (t, 3H, J = 7.14 Hz); ¹³C-NMR (CDCl₃, 100 MHz): δ 170.6, 158.2, 146.9, 142.4, 141.1, 136.5, 135.2, 134.5, 132.1, 131.1, 130.9, 130.6, 130.3, 129.2, 129.0, 128.7, 127.9, 120.0, 117.9, 61.8, 51.1, 23.5, 14.1; MS (EI): 444; HRMS: Calculated for C₂₆H₂₃BF₂N₂O₂: 444.1821, found 444.1837.

Spectroscopic data

BODIPY	Solvent	λ_{abs}/nm	λ_{em}/nm	$\Delta \overline{v}$ /cm ⁻¹	$\Phi_{ m f}$
	MeCN	466	530	2591	0.013
10	MeOH	468	529	2464	0.012
4a	THF	493	533	1522	0.019
	Toluene	505	533	1040	0.033
	MeCN	502	520	690	0.017
10	MeOH	503	520	650	0.041
40	THF	506	523	642	0.064
	Toluene	509	526	635	0.14
	MeCN	503	521	687	0.03
1 £	MeOH	504	520	611	0.040
41	THF	507	523	603	0.06
	Toluene	509	527	671	0.14
	MeCN	551	592	1257	0.002
41	MeOH	569	625	1575	0.022
41	THF	506	523	642	0.08
	Toluene	508	526	674	0.087

NMR-analysis of base induced tautomerization

4h, ¹H, 600 MHz, CD₃CN, Full spectrum \downarrow

4h, ¹H, 600 MHz, $CD_3CN + DBU + CF_3COOD$, Full spectrum \downarrow

NMR-spectra of new compounds

4a, ¹H, 300 MHz, CDCl₃ \downarrow

|--|--|--|

4f, ¹H, 400 MHz, $CDCl_3 \downarrow$

4i, ¹H, 300 MHz, CDCl₃ \downarrow

ⁱ T. Rohand, E. Dolusic, T. Ngo, W. Maes, W. Dehaen, *ARKIVOC*, 2007, **10**, 307.

ⁱⁱ H. Kee, C. Kirmaier, L. Yu, P. Thamyongkit, W. Youngblood, M. Calder, L. Ramos, B. Noll, D. Bocian, W. Scheidt, R. Birge, J. Lindsey, D. Holten, *J. Phys. Chem. B*, 2005, **109**, 20433-20443.