Using One Spin-Transition to Trigger Another in Solid Solutions of Two Different Spin-Crossover Complexes

Malcolm A. Halcrow*

School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT. E-mail: m.a.halcrow@leeds.ac.uk

Electronic Supplementary Information

Figure S1 Partial packing diagrams of $[Fe(bpp)_2][BF_4]_2$ and $[Co(terpy)_2][BF_4]_2$, showing the "terpyridine embrace" lattice.

Table S1 Elemental microanalyses of the solid solution materials and their pure precursor compounds.

Table S2 Experimental details for the single crystal structure determination of [Ru(bpp)₂][BF₄]₂

Table S3 Selected bond lengths and angles in the crystal structure of [Ru(bpp)₂][BF₄]₂.

Figure S2 View of the complex dication in [Ru(bpp)₂][BF₄]₂.

Figure S3 Selected powder X-ray diffraction data from the compounds in this work.

Table S4 Assignment of the ES mass spectra from $[M(bpp)_2][BF_4]_2$ (M = Fe and Ru), $[Co(terpy)_2][BF_4]_2$ and the solid solutions.

Figure S4 Electrospray mass spectra of 1b and 2b.

Figure S5 ¹H NMR spectra of 1b and 2b.

Table S5 Predicted and observed values of $\chi_{\rm M}T$ (cm³ mol⁻¹ K) from high- and low-spin **1a-1c** and **2a-2c**, based on the analytical compositions of the samples.

Figure S6 Experimental and simulated X-band EPR spectrum of 1a at 113 K.

Figure S7 Low temperature X-band powder EPR spectra of the solid solutions in this work.

Fig. S1 Partial packing diagrams of $[Fe(bpp)_2][BF_4]_2$ (top)^{11,12} and $[Co(terpy)_2][BF_4]_2$ (bottom)¹³ at 300 K, showing the "terpyridine embrace" lattice. The reference numbers are the same as those used in the main paper.

Both views are parallel to the [001] crystallographic vector, with [110] ($[Fe(bpp)_2][BF_4]_2$) or [100] ($[Co(terpy)_2][BF_4]_2$) running horizontally. The complex dications in both structures associate into alternating four-fold layers, coloured white and pink. Only one orientation of the disordered BF_4^- ions is shown, which are de-emphasised and coloured green.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Table S1 Elemental microanalyses of the solid solution materials $[Fe(bpp)_2]_z[Co(terpy)_2]_{1-z}[BF_4]_2$ (1a-1c),
$[\operatorname{Ru}(\operatorname{bpp})_2]_z[\operatorname{Co}(\operatorname{terpy})_2]_{1-z}[\operatorname{BF}_4]_2$ (2a-2c) and their pure precursor compounds [found, % (calcd, %)]. The
estimated error on z, based on these data, is ± 0.01 .

	z	С	Н	Ν	Fe	Co
$[Fe(bpp)_2][BF_4]_2$	_	40.3 (40.5)	2.75 (2.78)	21.5 (21.5)	8.3 (8.6)	_
$[Co(terpy)_2][BF_4]_2$	_	51.5 (51.5)	3.10 (3.17)	12.0 (12.0)	_	8.2 (8.4)
$[Ru(bpp)_2][BF_4]_2$	_	37.9 (37.9)	2.55 (2.60)	20.2 (20.1)	_	_
1a	0.97	41.0 (40.9)	2.70 (2.79)	21.3 (21.2)	8.4 (8.3)	0.3 (0.3)
1b	0.85	42.4 (42.3)	2.75 (2.84)	20.1 (20.0)	7.3 (7.2)	1.2 (1.3)
1c	0.76	43.3 (43.3)	2.80 (2.88)	19.2 (19.1)	6.3 (6.4)	1.9 (2.1)
2a	0.97	38.3 (38.3)	2.55 (2.62)	19.9 (19.8)	_	0.3 (0.3)
2b	0.85	39.9 (40.0)	2.65 (2.69)	19.0 (18.9)	_	1.2 (1.3)
2c	0.77	41.1 (41.0)	2.70 (2.73)	18.2 (18.2)	_	1.8 (1.9)

Single crystal structure of [Ru(bpp)₂][BF₄]₂

Single crystals of this compound were obtained by diffusion of diethyl ether vapour into a nitromethane solution of the complex. Experimental details for the structure determination are given in Table S2. One of the two BF_4^- anions is disordered over two sites, with a 0.7:0.3 occupancy ratio. The refined restraints B-F = 1.40(2) and F...F = 2.29(2) Å were applied to these disordered residues. All non-H atoms except for the minor anion disorder site were refined anisotropically, and H atoms were placed in calculated positions and refined using a riding model. CCDC 771524.

Table S2 Experimental details for the single crystal structure determination of [Ru(b	$opp)_2[[BF_4]]$
--	------------------

Molecular formula	$C_{22}H_{18}B_2F_8N_{10}Ru$	μ (Mo-K _{α}) (mm ⁻¹)	0.661
$M_{ m r}$	697.15	<i>T</i> (K)	150(2)
Crystal class	Monoclinic	Measured reflections	22696
Space group	$P2_1$	Independent reflections	6364
a (Å)	8.5703(8)	$R_{\rm int}$	0.062
<i>b</i> (Å)	8.6188(7)	$R(F)^{\mathrm{a}}$	0.034
<i>c</i> (Å)	18.6937(16)	$\mathrm{w}R(F^2)^\mathrm{b}$	0.075
β (°)	97.706(6)	Goodness of fit	1.037
$V(Å^3)$	1368.4(2)	Flack parameter	-0.02(2)
Z	2		
${}^{a}R = \Sigma \left[\left F_{o} \right - \left F_{c} \right \right] / \Sigma \left F_{o} \right $	$bwR = [\Sigma w(F_0^2 - F_c^2)]/$	$\Sigma w F_{0}^{4}]^{1/2}$	

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

55 Sciected Dolla lenguis	und ungles in the erystar		1,).
Ru(1)–N(2)	2.023(2)	Ru(1)–N(18)	2.022(3)
Ru(1)–N(9)	2.103(3)	Ru(1)–N(25)	2.095(3)
Ru(1)–N(14)	2.081(3)	Ru(1)–N(30)	2.079(3)
N(2)-Ru(1)-N(9)	78.41(11)	N(9)-Ru(1)-N(30)	92.54(11)
N(2)-Ru(1)-N(14)	78.35(11)	N(14)–Ru(1)–N(18)	101.06(11)
N(2)-Ru(1)-N(18)	178.26(19)	N(14)-Ru(1)-N(25)	92.16(12)
N(2)-Ru(1)-N(25)	103.82(14)	N(14)-Ru(1)-N(30)	90.29(12)
N(2)-Ru(1)-N(30)	99.83(13)	N(18)–Ru(1)–N(25)	77.82(13)
N(9)–Ru(1)–N(14)	156.73(10)	N(18)–Ru(1)–N(30)	78.51(13)
N(9)–Ru(1)–N(18)	102.13(11)	N(25)-Ru(1)-N(30)	156.23(10)
N(9)-Ru(1)-N(25)	94.46(11)		

Table S3 Selected bond lengths and angles in the crystal structure of [Ru(bpp)₂][BF₄]₂ (Å, °).

Fig. S2 View of the complex dication in $[Ru(bpp)_2][BF_4]_2$, showing the atom numbering scheme employed. All H atoms have been omitted for clarity, and thermal ellipsoids are at the 50% probability level.

 $[Ru(bpp)_2][BF_4]_2$ is isostructural with $[Fe(bpp)_2][BF_4]_2$, and its crystal packing diagram is visually indistinguishable from those in Fig. S1.

Fig. S3 Selected powder X-ray diffraction data from the compounds in this work at 298 K ($\lambda = 1.5418$ Å).

Table S4 Assignment of the electrospray (ES) mass spectra from $[M(bpp)_2][BF_4]_2$ (M = Fe and Ru), $[Co(terpy)_2][BF_4]_2$ and the solid solutions (Figure S4, next page). All peaks show correct isotopic distributions for their assigned molecular ions. Molecular ions of sodium- or formate-containing species arise from the sodium formate present in the ES carrier solution.

<u>m/z</u>	Intensity (%) ^a	Assignment
$[Fe(bpp)_2][BF_4]_2$		
565.1	11	$[{}^{56}\text{Fe}(\text{bpp})_2({}^{11}\text{BF}_4)]^+$
497.1	43	$[{}^{56}$ Fe(bpp) ₂ F] ⁺
445.2	5	$[^{23}Na(bpp)_2]^+$
312.0	40	$[^{56}\text{Fe}(\text{bpp})(\text{O}_2\text{CH})]^+$
286.0	25	$[^{56}\text{Fe}(\text{bpp})\text{F}]^+$
239.1	35	$[{}^{56}\text{Fe}(\text{bpp})_2]^{2+}$
234.1	100	$[^{23}Na(bpp)]^+$
212.1	90	$[\text{Hbpp}]^+$
$[\mathbf{Ku}(\mathbf{Dpp})_2][\mathbf{BF}_4]_2$	10	$(102\mathbf{p} (1)) (11\mathbf{p}\mathbf{p}))^{\dagger}$
611.1	13	$\begin{bmatrix} \text{Ru}(\text{bpp})_2(\text{BF}_4) \end{bmatrix}$
262.0	100	$[\text{Ku}(\text{bpp})_2]$
$[Co(terpy)_2][BF_4]_2$		
612.1	44	$[^{59}$ Co(terpy) ₂ (¹¹ BF ₄)] ⁺
544.1	16	$[^{59}Co(terpy)_{2}F]^{+}$
311.0	9	$[^{59}Co(terpy)F]^+$
262.6	100	$[^{59}$ Co(terpy) ₂ $]^{2+}$
A 1 1 ¹ .1 1 1 1	41 14 1	
Additional peaks seen in	Ib and Ic only	59 - 4
251.6	3-5°	$[5^{5}Co(bpp)(terpy)]^{2}$
250.1	3-4°	[⁵⁰ Fe(bpp)(terpy)] ²⁺

^aIntensities in the spectra of the pure complexes. The relative intensities of the same peaks in the spectra of **1a-1c** closely mirror those seen for the pure compounds (Fig. S4). ^bIntensity relative to the parent ion for $[{}^{59}Co(\text{terpy})_2]^{2+}$ at m/z = 262.6.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Fig. S4 Electrospray mass spectra of **1b** (top) and **2b** (bottom) from MeCN solution. Peaks are labeled according to whether they are also found in the spectra of pure $[Fe(bpp)_2][BF_4]_2$ ([Fe]), $[Ru(bpp)_2][BF_4]_2$ ([Ru]) or $[Co(terpy)_2][BF_4]_2$ ([Co]; Table S4).

The circled peaks in the spectrum of **1b** are assigned to the mixed-ligand species $[M(bpp)(terpy)]^{2+}$ (M = ⁵⁶Fe, m/z = 250.1 and M = ⁵⁹Co, m/z = 251.6). No peaks from $[M(bpp)(terpy)]^{2+}$ (M = ¹⁰²Ru, m/z = 273.1 and M = ⁵⁹Co, m/z = 251.6) are observed in the spectrum of **2b**.

Fig. S5 ¹H NMR spectra of 1b (top) and 2b (bottom) at 298 K (CD₃NO₂, 300.1 MHz). Peaks are labeled according to whether they are also found in the spectra of pure [Fe(bpp)₂][BF₄]₂ ([Fe]), [Ru(bpp)₂][BF₄]₂ ([Ru]) or [Co(terpy)₂][BF₄]₂ ([Co]).

The circled peaks in the spectrum of 1b correspond to a diamagnetic terpy-containing contaminent, that is not present in solutions of [Co(terpy)₂][BF₄]₂. The contaminent peaks are also not observed in freshly prepared mixtures of [Fe(bpp)₂][BF₄]₂ and [Co(terpy)₂][BF₄]₂, but grow in slowly over a period of hours.

Possible assignments of the contaminant include $[Fe(terpy)_2]^{2+}$ or, more likely, $[Co(terpy)_2]^{3+}$. It cannot be assigned as either of the mixed-ligand complexes $[M(bpp)(terpy)]^{2+}$ (M = Fe or Co), though (*c.f.* Fig. S4).

The peaks from $[Ru(bpp)_2][BF_4]_2$ are much more intense than those of $[Co(terpy)_2][BF_4]_2$ in the spectrum of 1b because of the diamagnetism of the ruthenium compound.

Table S5 Predicted and observed values of $\chi_M T$ (cm³ mol⁻¹ K) from high- and low-spin $[Fe(bpp)_2]_z[Co(terpy)_2]_{1-z}[BF_4]_2$ (**1a-1c**) and $[Ru(bpp)_2]_z[Co(terpy)_2]_{1-z}[BF_4]_2$ (**2a-2c**), based on the analytical compositions of the samples.

	Z.	Low-spin iron + low-spin cobalt (calc)	High-spin iron + high-spin cobalt (calc)	Observed 5 K	ł χ _M T at: 100 K	400 K
1a	0.97	0.012	3.46	0.015	0.020	3.41
1b	0.85	0.060	3.32	0.057	0.077	3.26
1c	0.76	0.10	3.21	0.10	0.12	3.15
	_	Low-spin ruthenium +	Low-spin ruthenium +	Observed	$\chi_{\rm M}T$ at:	
	Z.	Low-spin ruthenium + low-spin cobalt (calc)	Low-spin ruthenium + high-spin cobalt (calc)	Observed 5 K	l χ _M T at: 100 K	400 K
2a	z 0.97	Low-spin ruthenium + low-spin cobalt (calc) 0.012	Low-spin ruthenium + high-spin cobalt (calc) 0.069	Observed 5 K 0.015	l χ _M T at: 100 K 0.017	400 K 0.064
2a 2b	z 0.97 0.85	Low-spin ruthenium + low-spin cobalt (calc) 0.012 0.060	Low-spin ruthenium + high-spin cobalt (calc) 0.069 0.35	Observed 5 K 0.015 0.084	l χ _M T at: 100 K 0.017 0.11	400 K 0.064 0.33
2a 2b 2c	z 0.97 0.85 0.77	Low-spin ruthenium + low-spin cobalt (calc) 0.012 0.060 0.092	Low-spin ruthenium + high-spin cobalt (calc) 0.069 0.35 0.53	Observed 5 K 0.015 0.084 0.13	1 χ _M T at: 100 K 0.017 0.11 0.19	400 K 0.064 0.33 0.53

The calculations use the following $\chi_M T$ values for the pure components of the solid solutions; high-spin [Fe(bpp)₂][BF₄]₂, = 3.5; low-spin [Fe(bpp)₂][BF₄]₂, 0; high-spin [Co(terpy)₂][BF₄]₂, 2.3; low-spin [Co(bpp)₂][BF₄]₂, 0.4; [Ru(bpp)₂][BF₄]₂, 0.

Fig. S6 Experimental (top) and simulated (bottom) *X*-band EPR spectrum of solid **1a** at 113 K ($\nu = 9.54$ GHz). See the main text for the simulation parameters. Other EPR data are shown in Fig. S7, and in Fig. 2 of the main paper.

Fig. S7 Low temperature X-band powder EPR spectra of the solid solutions in this work as powder samples (v = 9.54 GHz). A simulation of the spectrum of **1a** is shown in Fig. S6.