ELECTRONIC SUPPLEMENTARY INFORMATION

Highly Fluorinated Cyclodextrins and their Host-Guest Interactions

Maria M. Becker and Bart Jan Ravoo

Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany

E-Mail: b.j.ravoo@uni-muenster.de

Synthesis

Synthesis of 6-chloro-6-deoxy-cyclodextrins 1a – 1c

The synthesis of perchlorinated cyclodextrins was accomplished as described by Guillo et al.¹ To a solution of 1 eq of cyclodextrin dissolved in DMF, 5.2 eq methylsulfonylchloride per glycose unit of the cyclodextrin is added and stirred at 65 °C for 4 d. The solution is concentrated, the residue is dissolved in methanol and neutralized with 3 M sodium methoxide. The product was precipitated in ice water, filtered out and washed with methanol. The product was vacuum-dried at 55 °C and was obtained as white solid.

Hexakis-(6-chloro-6-deoxy)-α-cyclodextrin 1a

Cyclodextrin $\boldsymbol{1a}$ was synthesized as described above with $\alpha\text{-cyclodextrin}$ (10.52 g,

10.81 mmol) and methylsulfonyl chloride (26.01, 335.6 mmol).

Empirical formula (MW in g/mol): $C_{36}H_{54}O_{24}Cl_6$ (1083.52)Yield:78 % (9.19 g, 8.48 mmol)MS (ESI, MeOH):560,04 [M + Ca]^{2+}, 1103.10[M + Na]^+,2183.22 [2 M + Na]^+

¹H NMR (400 MHz, DMSO) δ 5.76 (d, J = 5.4, 1H, 2-OH), 5.59 (s, 1H, 3-OH), 4.92 (d, J = 3.2, 1H, 1-H), 4.13 – 3.89 (m, 2H, 5-

H, 3-H), 3.90 – 3.71 (m, 2H, 4-H, 2-H), 3.44 (t, *J* = 8.9, 1H, 6a-H), 3.36 (s, 2H, 6b-H).

¹³C NMR (101 MHz, DMSO) δ 101.92 (1-C), 83.60 (4-C), 72.65 (3-C), 71.64 (2-C), 70.83 (5-C), 45.30 (6-C).

¹ F. Guillo, B. Hamelin, L. Jullien, J. Canceill, J. M. Lehn, L. de Robertis and H. Driguez, *Bull. Soc. Chim. Fr.*, 1995, **132**, 857.

Heptakis-(6-chloro-6-deoxy)-β-cyclodextrin 1b

Cyclodextrin **1b** was synthesized as described above with β -cyclodextrin (10.04 g, 8.81 mmol) and methylsulfonyl chloride (24.8, 230 mmol).

1b

Empirical formula (MW in g/mol): $C_{42}H_{63}O_{28}CI_7$ (1264.10)Yield:89 % (9.86 g, 7.80 mmol)MS (ESI, MeOH):1287.12 [M + Na]⁺, 1919.19[3 M + 2 Na]^{2+}

¹H NMR (300 MHz, DMSO) δ 6.00 (d, J = 6.6, 1H, 2-OH), 5.85 (d, J = 1.5, 1H, 3-OH), 4.96 (d, J = 3.5, 1H, 1-H), 4.13 – 4.02 (m,

1H, 5-H), 3.91 – 3.70 (m, 2H, 3-H, 4-H), 3.60 (dt, *J* = 8.5, 6.9, 1H, 6a-H), 3.42 – 3.29 (m, 3H, 2-H, 6b-H).

¹³C NMR (75 MHz, DMSO) δ 102.08 (1-C), 83.62 (4-C), 72.48 (3-C), 72.02 (2-C), 71.21 (5-C), 45.00 (6-C).

Octakis-(6-chloro-6-deoxy)-γ-cyclodextrin 1c

Cyclodextrin **1c** was synthesized as described above with γ -cyclodextrin (10.11 g, 7.79 mmol) and methylsulfonyl chloride (25.28, 325.78 mmol).

Empirical formula (MW in g/mol): $C_{48}H_{72}O_{32}CI_8$ (1444.69)Yield:84 % (9.49 g, 6.57 mmol)MS (ESI, MeOH):743.07 [M + 2 Na]^{2+}, 1467.13 [M + Na]^+

¹H NMR (300 MHz, DMSO) δ 6.01 (s, 2H, 2,3-OH), 4.98 (d, J =

^{1c} 3.7, 1H, 1-H), 4.02 (d, J = 9.9, 1H, 6a-H), 3.91 - 3.74 (m, 2H, 5-H), 3.60 (t, J = 9.2, 1H, 3-H), 3.37 (dd, J = 10.0, 7.8, 2H, 6b-H).

¹³C NMR (101 MHz, DMSO) δ 102.04 (1-C), 83.00 (4-C), 72.36 (3-C), 72.22 (2-C), 71.14 (5-C), 45.01 (6-C).

Synthesis of fluorinated cyclodextrins 2a – 2c

The synthesis of the 2,2,2-trifluoroethanethio-substituted cyclodextrins 2a - 2c from perchlorinated cyclodextrins 1a - 1c was performed according to the following procedure: 3 eq 2,2,2-trifluoroethanethiol per glycose unit of the cyclodextrin was dissolved in dry DMF at 0 °C and treated with 3 eq of a 60% dispersion of sodium hydride in mineral oil. After stirring for 30 min a solution of 1a - 1c in the minimal amount of DMF was added dropwise. The solution was stirred for 5 d at 70 °C. The solvent is concentrated and poured on water. The precipitation was collected by centrifugion, dissolved in DMF again and precipitated two times from diethyl ether. The product was vacuum-dried at 60 °C and obtained as light beige solid.

Hexakis-(6-deoxy-6-trifluoroethanethio)-α-cyclodextrin 2a

Cyclodextrin **2a** was synthesized as described above with 2,2,2-trifluoroethanethiol (0.15 mL, 1.69 mmol), 60 % sodium hydride suspension in mineral oil (67 mg, 1.66 mmol) and **1a** (0.11 g, 0.10 mmol).

¹H NMR (300 MHz, DMSO) δ 5.74 (d, *J* = 6.1, 1H, 2-OH), 5.58 (s, 1H, 3-OH), 4.90 (s, 1H, 1-H), 3.88 (s, 1H, 5-H), 3.72 (d, *J* = 6.6, 1H, 3-H), 3.60 – 3.29 (m, 4H, 4, 7, 2-H), 3.16 (d, *J* = 12.7, 1H, 6a-H), 3.01 (d, *J* = 6.3, 1H, 6b-H).

¹³C NMR (75 MHz, DMSO) δ 126.42 (q, J = 266.3, 1C, 8-C), 101.80 (1-C), 84.60 (4-C), 72.78 (3-C), 71.69 (2-C), 71.31 (5-C), 34.13 – 33.31 (6,7-C).

¹⁹F NMR (282 MHz, DMSO) δ -65.52 (t, *J* = 10.4, 3F).

Heptakis-(6-deoxy-6-trifluoroethanethio)-β-cyclodextrin 2b

Cyclodextrin **2b** was synthesized as described above with 2,2,2-trifluoroethanethiol (3.7 mL, 41.5 mmol), 60 % sodium hydride suspension in mineral oil (1 g, 41.5 mmol) and **1b** (2.5 g, 1.98 mmol).

¹H NMR (600 MHz, DMSO) δ 5.98 (d, *J* = 6.8, 1H, 2-OH), 5.86 (d, *J* = 1.9, 1H, 3-OH), 4.93 (d, *J* = 3.2, 1H, 1-H), 3.89 – 3.77 (m, 1H, 5-H), 3.61 (t, *J* = 9.1, 1H, 3-H), 3.50 – 3.39 (m, 3H, 4-, 7-H), 3.39 – 3.34 (m, 1H, 2-H), 3.17 (d, *J* = 12.3, 1H, 6a-H), 3.00 (dd, *J* = 14.2, 7.2, 1H, 6b-H).

¹³C NMR (151 MHz, DMSO) δ 126.33 (q, *J* = 276.45, 8-C), 102.05 (1-C), 84.22 (4-C), 72.38 (3-C), 72.06(2-C), 71.49 (5-C), 34.32 – 33.71 (6-, 7-C).

¹⁹F NMR (564 MHz, DMSO) δ -65.70 (t, *J* = 10.5, 3F).

Octakis-(6-deoxy-6-trifluoroethanethio)-γ-cyclodextrin 2c

Cyclodextrin **2c** was synthesized as described above with 2,2,2-trifluoroethanethiol (0.15 mL, 1.66 mmol), 60 % sodium hydride suspension in mineral oil (40 mg, 1.66 mmol) and **1c** (98 mg, 0.068 mmol).

¹H NMR (300 MHz, DMSO) δ 5.97 (s, 2H, 2,3-OH), 4.96 (d, *J* = 3.0, 1H, 1-H), 4.01 – 3.72 (m, 1H, 5-H), 3.57 (t, *J* = 9.2, 1H, 3-H), 3.43 (dd, *J* = 14.7, 6.9, 4H, 4,7,2-H), 3.17 (d, *J* = 12.4, 1H, 6a-H), 2.99 (dd, *J* = 13.7, 7.1, 1H, 6b-H).

¹³C NMR (75 MHz, DMSO) δ 102.09 (1-C), 83.91 (4-C), 72.31 (3-C), 72.13 (2-C) 71.63 (5-C), 33.91 (6+7-C).

¹⁹F NMR (282 MHz, DMSO) δ -65.63 (t, J = 10.4, 3F).

Synthesis of fluorinated cyclodextrins 3a – 3c

Fluorinated cyclodextrins 3a - 3c were synthesized according to the following procedure: cyclodextrin 2a - 2c was solved in dry DMF and treated with 1.5 eq sodium hydride per glycose unit of the cyclodextrin. After stirring for 1 h at room temperature, 3 eq triethylene glycol toluenesulfonate ester per glycose unit was added dropwise. The mixture was stirred for 2 d at room temperature. The solvent was removed and the raw product purified by size eclusion chromatography on a Sephadex LH-20 column. The product was dried at 60 °C in vacuum and obtained as brown highly viscous oil.

Hexakis-(2-O-(2-(2-(2-hydroxyethoxy)ethoxy)ethyl), 6-deoxy-6trifluoroethanethio)-α-cyclodextrin 3a

Cyclodextrin **3a** was synthesized as described above with **2a** (0.2 g, 0.13 mmol), sodium hydride (46 mg, 1.18 mmol) and triethylene glycol toluenesulfonate ester (0.95 g, 3.14 mmol).

Empirical Formula (MW in g/mol): $C_{84}H_{138}F_{18}O_{42}S_6$ (2354.33) 100 % (0.31g, 0.13 mmol) Yield: MS (ESI, MeOH): 1397.93 [M_{EO27} + 2 Na]²⁺, 1331.90 [M_{EO24} + 2 Na^{2+} , 1265.86 [M_{FO21} + 2 Na]²⁺, 1199.32 [M_{FO18} + 2 Na]²⁺, 1133.28 $[M_{EO15} + 2 \text{ Na}]^{2+}$, 1067.24 $[M_{EO12} + 2 \text{ Na}]^{2+}$, 2243.58 [M_{EO15} + Na]⁺, 2375.66 [M_{EO18} + Na]⁺, 2508.74 [M_{EO21} + Na]²⁺ Elemental analysis $(C_{84}H_{138}O_{42}F_{18}S_6)$ Calculated [%]: C, 42.85; H, 5.91; N, 0.0 Determined [%]: C, 43.05; H, 5.75; N, 0.0 ¹H NMR (300 MHz, CDCl3) δ 4.90 (d, J = 22.9, 1H, 1-H), 4.82 – 4.55 (m, 1H, 3-OH), 4.02 (dd, J = 18.0, 9.8, 2H, 3-H, 5-H), 3.92 -3.71 (m, 2H, 14-H), 3.56 (dd, J = 18.7, 6.4, 11H, 9-H, 10-H), 3.45 - 3.30 (m, 2H, 2-H, 4-H), 3.20 (dd, J = 27.2, 18.0, 4H, 6a-H, 7-H), 2.90 (dd, J = 14.7, 5.3, 1H, 6b-H).

¹³C NMR (75 MHz, CDCl3) δ 126.09 (q, J = 276.1, 8-C), 101.00 (1-C), 86.17 (4-C), 80.54 (2-C), 77.65 - 70.39 (9-C, 10-C, 11-C, 12-C, 13-C), 61.65 (14-C), 35.39 - 34.36 (6-C, 7-C).

¹⁹F NMR (282 MHz, CDCl₃) δ -66.38 (t, *J* = 9.9, 3F).

Heptakis-(2-O-(2-(2-(2-hydroxyethoxy)ethoxy)ethyl), 6-deoxy-6trifluoroethanethio)-β-cyclodextrin 3b

Cyclodextrin **3b** was synthesized as described above with **2b** (95 mg, 0.052 mmol), sodium hydride (13.2 mg, 0.55 mmol) and triethylene glycol toluenesulfonate ester (0.45 g, 1.46 mmol).

¹H NMR (300 MHz, CDCl3) δ 4.99 (d, J = 3.2, 1H, 1-H), 4.91 (s,

 $_{3b}$ 1H, 3-OH), 4.11 (dd, J = 7.4, 3.6, 2H, 3-H, 5-H), 3.84 (dd, J = 17.9, 9.9, 5H, 14-H), 3.74 – 3.50 (m, 20H, 9-H, 10-H, 11-H, 12-H, 13-H), 3.40 (dt, J = 12.8, 6.4, 3H, 2-H, 4-H), 3.20 (dd, J = 17.2, 7.6, 6H, 6a-H, 7-H), 2.93 (dd, J = 14.1, 6.7, 1H, 6b-H).

¹³C NMR (75 MHz, CDCl3) δ 126.14 (q, J = 276.1, 8-C), 101.37 (1-C), 85.76 (4-C), 81.08 (2-C), 73.17 - 70.49 (3-C, 5-C, 9-C, 10-C, 11-C, 12-C, 13-C), 61.78 (14-C), 35.51 - 34.29 (6-C, 7-C).

¹⁹F NMR (282 MHz, CDCl₃) δ -66.64 (t, *J* = 9.7, 3F).

Octakis-(2-O-(2-(2-(2-hydroxyethoxy)ethoxy)ethyl), 6-deoxy-6trifluoroethanethio)-γ-cyclodextrin 3c

Cyclodextrin **3c** was synthesized as described above with **2c** (113 mg, 0.054 mmol), sodium hydride (15.6 mg, 0.65 mmol) and triethylene glycol toluenesulfonate ester (0.53 g, 1.74 mmol).

$$\begin{split} \text{Empirical Formula (MW in g/mol): $C_{112}H_{184}F_{24}O_{56}S_8$ (3139,11)$\\ \text{Yield:} & 78 \% (133 \text{ mg, } 0.04 \text{ mmol})$\\ \text{MS (ESI, MeOH):} & 981.23 \ [M_{EO18} + 3 \text{ Na}]^{3+}, \ 1024.93[M_{EO21} + 3 \text{ Na}]^{3+}, \ 1069.29 \ [M_{EO24} + 3 \text{ Na}]^{3+}, \ 1113.32 \ [M_{EO27} + 3 \text{ Na}]^{3+}, \\ 1157.34 \ [M_{EO30} + 3 \text{ Na}]^{3+}, \ 1201.36 \ [M_{EO33} + 3 \text{ Na}]^{3+}, \ 1393.82 \\ [M_{EO15} + 2 \text{ Na}]^{2+}, \ 1459.86 \ [M_{EO18} + 2 \text{ Na}]^{2+}, \ 1525.90 \ [M_{EO21} + 2 \text{ Na}]^{2+}, \\ \text{Na}]^{2+}, \ 1592.44 \ [M_{EO24} + 2 \text{ Na}]^{2+}, \ 1658.48 \ [M_{EO27} + 2 \text{ Na}]^{2+} \end{split}$$

$(C_{112}H_{184}O_{56}F_{24}S_8)$
C, 42.85; H, 5.91; N, 0.0
C, 42.81; H, 5.97; N, 0.0

¹H NMR (300 MHz, CDCl3) δ 5.05 (d, J = 3.4, 1H, 1-H), 4.93 (s, 1H, 3-OH), 4.19 – 3.99 (m, 1H, 3-H), 3.99 – 3.48 (m, 13H, 5-H,

 $_{3c}$ 9-H, 10-H, 11-H, 12-H, 13-H, 14-H), 3.41 (s, 3H, 2-H, 4-H), 3.19 (dd, J = 18.9, 9.4, 3H, 6a-H, 7-H), 3.00 – 2.89 (m, 1H, 6b-H).

¹³C NMR (101 MHz, CDCl3) δ 126.12 (dd, J = 552.6, 276.7, 8-C), 100.99 (1-C), 84.81 (4-C), 81.27 (2-C), 72.94 - 70.31, 61.67 (14-C), 35.36 - 34.18 (6-C, 7-C).

¹⁹F NMR (282 MHz, CDCl₃) δ -66.67 (t, J = 9.7, 3F).

Isothermal Titration Calorimetry

Isothermal titration calorimetry (ITC) was performed on a *Nano-Isothermal Titration Calorimeter III (Model CSC 5300)* made by *Calorimetry Sciences Corporation* (USA). Analyte solutions for ITC measurements were prepared with destilled and deionized water and degassed for 20 min at room temperature. The guest solution (10-fold excess) was titrated into the cyclodextrin solution. 20 injections of 10 μ L were performed with an interval of 300 s. The stirring rate was 300 rpm. The data were fitted to a 1:1 model (2:1 in case of diflunisal and **3c**) using a spread sheet method.²

Table S1: Analyte solutions for ITC with α -cyclodextrin 3a.

compound	М	n	m	С
	[^g / _{mol}]	[mmol]	[mg]	[mM]
CD 3a	2354,33	0,0551	129,7	5,509
<i>p</i> -fluorophenol	112,1	0,275	31	55,09
<i>p</i> -trifluoromethylphenol	162,11	0,275	44,8	55,09
<i>m</i> -trifluormethylphenol	162,11	0,275	44,7	55,09
phenol	94,11	0,25	23,4	50
<i>p</i> -cresol	108,14	0,275	29,7	55

Figure S1: ITC of 3a with p-fluorophenol.

² J. Huskens, H. van Bekkum and J. A. Peters, Computers & Chemistry, 1995, 19, 409.

Figure S2: ITC of 3a with p-trifluoromethylphenol.

Figure S3: ITC data of 3a with m-trifluoromethylphenol.

Figure S4: ITC of 3a with phenol.

Figure S5: ITC of 3a with p-cresol.

compound	М	n	m	С
	[^g / _{mol}]	[mmol]	[mg]	[mM]
CD 3b	2744,78	0,055	151	5,5
<i>p</i> -fluorophenol	112,1	0,275	30,8	55
<i>p</i> -trifluoromethylphenol	162,11	0,275	44,7	55
CD 3b	2744,78	0,05	137,3	5
<i>m</i> -trifluormethylphenol	162,11	0,275	40,5	50
phenol	94,11	0,25	23,4	50
<i>p</i> -cresol	108,14	0,25	27,1	50
CD 3b	2744,78	0,008	22,9	1,67
4-(trifluoromethyl)cyclo-	196,17	0,25	49	16,7
hexanecarboxylic acid				
CD 3b	2744,78	0,0096	26,4	1,6
4-methylcyclo-	142,196	0,08	11,4	16
hexanecarboxylic acid				
CD 3b	2744,78	0,015	41,8	3
diflunisal	250,198	0,15	37,8	30

Table S2: Analyte solutions for ITC with β -cyclodextrin 3b.

Figure S6: ITC of 3b with p-fluorophenol.

Figure S7: ITC of 3b with p-trifluoromethylphenol.

Figure S8: ITC of 3b with m-trifluoromethylphenol.

Figure S9: ITC of 3b with phenol.

Figure S10: ITC of 3b with p-cresol.

Figure S11: ITC of 3b with 4-(trifluoromethyl)cyclohexane carboxylic acid.

Figure S12: ITC of 3b with 4-methylcyclohexane carboxylic acid.

Figure S13: ITC of 3b with diflunisal in borate buffer at pH 9.

Table S3: Analyte solutions for ITC with γ -cyclodextrin **3c**.

Compound	М	n	m	С
	[^g / _{mol}]	[mmol]	[mg]	[mM]
CD 3c	3139,11	0,01	31,4	1
diflunisal	250,198	0,15	37,9	30

Figure S14: ITC of 3c with diflunisal in borate buffer at pH 9.

NMR Titration

NMR titration of cyclodextrin 3b with p-trifluoromethylphenol

NMR titration of β -cyclodextrin **3b** with *p*-trifluoromethylphenol is characterized by a fast exchange of free and complexed guest relative to the NMR time-scale. The NMR spectrum displays an average (δ_{obs}) of the shift of free (δ_G) and complexed guests (δ_C):

$$\partial_{obs} = \partial_G (1 - x) + x \partial_C \qquad \qquad x = \frac{[C]}{[G]_0}$$
$$x = \frac{\partial_{obs} - \partial_G}{\partial_C - \partial_G} \qquad \qquad [C] = x[G]_0$$

The shift of complexed guest (δ_C) was obtained from NMR titrations and extrapolation. In view of the small shifts observed in ¹H-NMR, only ¹⁹F-NMR data (Table S4) were used to determine complex stoichiometry (Job's Plot) and binding constant K_a. Once δ_C is known, the concentration of the complex in equilibrium can be determined and the equilibrium contact K can be calculated according to:

$$K = \frac{[C]}{[G][CD]}$$
$$K = \frac{[C]}{([G]_0 - [C])([CD]_0 - [C])}$$

(with $[G]_0$ = guest concentration and $[CD]_0$ = cyclodextrin concentration)

¹⁹ F-NMR								
sample	∆ _{guestt} [ppm]	∆ _{host} [ppm]	Δ δ _{guest} [ppm]	Δ δ _{host} [ppm]	n(G) [mmol]	n(H) [mmol]	n(G)/(n(G)+n(H)))	ratio G:H
1	0	-66,81	0	0	0	0,0036	0,000	00:01
2	-60,72	-66,83	0,46	-0,02	0,0003	0,0033	0,083	01:11
3	-60,74	-66,86	0,44	-0,05	0,0006	0,003	0,167	02:10
4	-60,76	-66,89	0,42	-0,08	0,0009	0,0027	0,250	01:03
5	-60,8	-66,91	0,38	-0,1	0,0012	0,0024	0,333	01:02
6	-60,83	-66,94	0,35	-0,13	0,0015	0,0021	0,417	05:07
7	-60,87	-66,97	0,31	-0,16	0,0018	0,0018	0,500	01:01
8	-60,93	-67	0,25	-0,19	0,0021	0,0015	0,583	07:05
9	-60,99	-67,03	0,19	-0,22	0,0024	0,0012	0,667	02:01
10	-61,06	-67,05	0,12	-0,24	0,0027	0,0009	0,750	03:01
11	-61,1	-67,09	0,08	-0,28	0,003	0,0006	0,833	10:02
12	-61,16	-67,16	0,02	-0,35	0,0033	0,0003	0,917	11:01
13	-61,18	0	0	0	0,0036	0	1,000	01:00

Table S4: ¹⁹F-NMR data for the titration of cyclodextrin **3b** with *p*-trifluoromethylphenol.

Figure S15: Determination of δ_{C} .

The shift of the inclusion complex $\delta_c = -60.7$ is obtained from extrapolation of ¹⁹F-NMR data (Figure S15). A fit for 1:1 complexation gives a binding constant $K_a = 2.06 \times 10^3 \text{ M}^{-1}$.

NMR titration of cyclodextrin 3a with p-trifluoromethylphenol

NMR titration of α -cyclodextrin **3a** with *p*-trifluoromethylphenol was carried out as described for **3b**.

Figure S16: ¹⁹F-NMR titration spectra of **2a** with *p*-trifluoromethylphenol.

¹⁹ F-NMR								
sample	Δ _{guest} [ppm]	Δ _{host} [ppm]	Δ δ _{guest} [ppm]	Δδ _{host} [ppm]	n(G) [mmol]	n(H) [mmol]	n(G)/(n(G)+n(H)))	ratio G:H
1	-	-66,49	-	0	0	0,0036	0	00:01
2	-59,87	-66,51	1,31	-0,02	0,0003	0,0033	0,083	01:11
3	-59,93	-66,52	1,25	-0,03	0,0006	0,003	0,167	02:10
4	-60,02	-66,53	1,16	-0,04	0,0009	0,0027	0,25	01:03
5	-60,08	-66,55	1,1	-0,06	0,0012	0,0024	0,333	01:02
6	-60,2	-66,55	0,98	-0,06	0,0015	0,0021	0,417	05:07
7	-60,35	-66,57	0,83	-0,08	0,0018	0,0018	0,5	01:01
8	-60,49	-66,59	0,69	-0,1	0,0021	0,0015	0,583	07:05
9	-60,7	-66,61	0,48	-0,12	0,0024	0,0012	0,667	02:01
10	-60,96	-66,62	0,22	-0,13	0,0027	0,0009	0,75	03:01
11	-61,11	-66,61	0,07	-0,12	0,003	0,0006	0,833	10:02
12	-61,17	-	0,01	-	0,0033	0,0003	0,917	11:01
13	-61,18	-	0	-	0,0036	0	1	01:00

Table S5: ¹⁹F-NMR data for the titration of α -CD **2a** with *p*-trifluoromethylphenol.

The complex stoichiometry of **3a** with *p*-trifluoromethylphenol was determined by plotting guest shift signals multiplied by molar amount against ratio of guest and host in a Job's Plot (see Figure S1).

Figure S17: Job's plot for the titration of **3a** with *p*-trifluoromethylphenol.

Figure S18: Determination of δ_C by extrapolation of ¹⁹F-NMR data.

The ¹⁹F-NMR data of **3a** were extrapolated to obtain $\delta_c = -59.72$ ppm (see Figure S18). A fit for 1:1 complexation gives a binding constant $K_a = 1.37 \times 10^2 \text{ M}^{-1}$.

Figure S19: 1H-NMR titration of 3a with p-trifluoromethylphenol.