Unusual fluorescein prototropism within aqueous acidic 1-butyl-3methylimidazolium tetrafluoroborate solution

Maroof Ali,^a Vinod Kumar^a and Siddharth Pandey^a*

^aDepartment of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi – 110016, India. Tel: 91-11-26596503; E-mail: <u>sipandey@chemistry.iitd.ac.in</u>

ESI

List of Contents.

Table S1. Absorbance and excitation maxima of fluorescein (7 μ M) in [bmim][BF₄]-added aqueous HCl (0.2 M) at different X_{[bmim][BF4]} at ambient conditions.

Table S2. pH of aqueous HCl (0.2 M and 0.05 M) after addition of different X_{[bmim][BF4]} at 25 °C.

Table S3. Recovered intensity decay parameters along with the goodness-of-the-fit (χ^2) for fluorescein in [bmim][BF4]-added aqueous HCl (0.2 M) at different X_{[bmim][BF4]} at ambient conditions. Errors in recovered decay times (τ 's) and pre-exponential factors (α 's) are ≤ 0.2 ns and $\leq 1\%$, respectively.

Fig. S1. Emission spectra of fluorescein (7 μ M) in aqueous HCl (0.01 M to 10 M) at ambient conditions.

Fig. S2. Absorbance spectra of fluorescein (7 μ M) in [bmim][BF₄]-added 0.2 M aqueous HCl after addition of different X_{[bmim][BF4]} from 0 to 1 at ambient conditions.

Fig. S3. Emission spectra ($\lambda_{\text{excitation}} = 435 \text{ nm}$) of 7 μ M fluorescein in [bmim][BF₄]-added aqueous HCl [0.2 M (panel A), 0.1 M (panel B) and 0.05 M (panel C)] at ambient conditions.

Fig. S4. Excitation spectra ($\lambda_{\text{emission}} = 480 \text{ nm}$ and 515 nm) of 7 μ M fluorescein in [bmim][BF₄]-added aqueous HCl [0.2 M (panel A and B) and 0.05 M (panel C and D)] at ambient conditions.

Fig. S5. Excited-state intensity decay data of fluorescein (7 μ M) in 0.2 M HCl and 0.2 M HCl + [bmim][BF₄] (X_{[bmim][BF4]} = 0.6) at ambient conditions. Excitation was carried out using 405 nm violet diode laser. The bottom curves (blue) denote the instrumental response function measured using a dilute glycogen suspension. The top panels (green) provide single and double-exponential fits to experimental data, and the lower panels show weighted residuals for the corresponding fits.

X _{[bmim][BF4]}	wt% [bmim][BF ₄]	λ _{max} absorbance (nm)	λ _{max} excitation (nm)	
			$\lambda_{\rm em} = 480 \ \rm nm$	$\lambda_{\rm em} = 515 \ \rm nm$
0.0	0	437	435	436
0.004	5	437	436	436
0.01	10	437	437	436
0.02	20	437	439	440
0.03	30	438	440	440
0.05	40	438	441	440
0.07	50	439	440	440
0.10	60	440	440	440
0.15	70	440	440	440
0.24	80	440	441	440
0.41	90	441	440	441
0.60	95		440	440

Table S1. Absorbance and excitation maxima of fluorescein (7 μ M) in [bmim][BF₄]-addedaqueous HCl (0.2 M) at different X_{[bmim][BF4]} at ambient conditions.

	wt% [bmim][BF ₄]	рН		
X _{[bmim][BF4]}		0.2 M Aqueous HCl	0.05 M Aqueous HCl	
0.0	0.0	0.80	1.49	
0.01	10.0	0.82	1.23	
0.02	20.0	0.79	1.20	
0.03	30.0	0.75	1.21	
0.05	40.0	0.79	1.22	
0.07	50.0	0.74	1.24	
0.10	60.0	0.74	1.28	
0.15	70.0	0.77	1.34	
0.24	80.0	0.75	1.44	
0.41	90.0	0.69	1.66	
0.60	95.0	0.44	3.43	

Table S2. pH of aqueous HCl (0.2 M and 0.05 M) after addition of different $X_{[bmim][BF4]}$ at 25 °C.

Table S3. Recovered intensity decay parameters along with the goodness-of-the-fit (χ^2) for fluorescein in [bmim][BF₄]-added aqueous HCl (0.2 M) at different X_{[bmim][BF4]} at ambient conditions. Errors in recovered decay times (τ 's) and pre-exponential factors (α 's) are ≤ 0.2 ns and $\leq 1\%$, respectively.

Solution	τ_1/ns ($\alpha_1/\%$)	τ_2/ns ($\alpha_2/\%$)	χ^2
	$\lambda_{\rm em} = 515 \ \rm nm$]	
0.01M HCl	3.0 (100)		0.95
0.2 M HCl	2.1 (100)		1.01
$0.2 \text{ M HCl} + X_{[bmim][BF4]} = 0.1$	3.8 (100) 3.6 (99)	7.9 (1)	1.52 0.89
$0.2 \text{ M HCl} + X_{[bmim][BF4]} = 0.3$	3.7 (100) 3.5 (97)	8.2 (3)	6.60 0.97
$0.2 \text{ M HCl} + X_{[bmim][BF4]} = 0.4$	3.2 (100) 2.9 (97)	9.3 (3)	1.98 1.02
$0.2 \text{ M HCl} + X_{[bmim][BF4]} = 0.6$	3.6 (100) 3.3 (98)	13.3 (2)	2.64 1.04
	$\lambda_{\rm em} = 475 \ \rm nm$		
0.01 M HCl	3.0 (100)		0.99
0.2 M HCl	2.2 (100)		0.94
$0.2 \text{ M HCl} + X_{[bmim][BF4]} = 0.1$	3.1 (100) 2.6 (85)	7.8 (15)	8.40 0.89
$0.2 \text{ M HCl} + X_{[bmim][BF4]} = 0.3$	1.7 (100) 1.6 (92)	7.4 (8)	6.60 0.83
$0.2 \text{ M HCl} + X_{[bmim][BF4]} = 0.4$	2.2 (100) 2.0 (95)	8.8 (5)	3.50 1.00
$0.2 \text{ M HCl} + X_{[bmim][BF4]} = 0.6$	3.2 (100) 2.9 (96)	8.1 (4)	2.30 1.08

Fig. S1. Emission spectra of fluorescein (7 μ M) in aqueous HCl (0.01 M to 10 M) at ambient conditions.

Fig. S2. Absorbance spectra of fluorescein (7 μ M) in [bmim][BF₄]-added 0.2 M aqueous HCl after addition of different X_{[bmim][BF4]} from 0 to 1 at ambient conditions.

Fig. S4. Excitation spectra ($\lambda_{em} = 480 \text{ nm}$ and 515 nm) of 7 μ M fluorescein in [bmim][BF₄]added aqueous HCl [0.2 M (panel A and B) and 0.05 M (panel C and D)] at ambient conditions.

Fig. S5. Excited-state intensity decay data of fluorescein (7 μ M) in 0.2 M HCl and 0.2 M HCl + [bmim][BF₄] (X_{[bmim][BF4]} = 0.6) at ambient conditions. Excitation was carried out using 405 nm violet diode laser. The bottom curves (blue) denote the instrumental response function measured using a dilute glycogen suspension. The top panels (green) provide single and double-exponential fits to experimental data, and the lower panels show weighted residuals for the corresponding fits.