Supporting Information for:

Metal-free Reductions of N-Heterocycles via Lewis Acid Catalyzed Hydrogenation

Stephen J. Geier, Preston A. Chase, Douglas W. Stephan*

General Considerations: All substituted quinolines were purchased from Sigma-Aldrich and used without further purification. $B(C_6F_5)_3$ purchased from Boulder Scientific and used without further purification. Toluene was dried using an Innovative Technologies drying column, degassed and stored over molecular sieves. H_2 was passed through a dririte column prior to use. $CDCl_3$ was distilled over CaH₂.

General procedure for $B(C_6F_5)_3$ -catalyzed hydrogenations: A sealed 50 or 100 mL Schlenk bomb was charged with 100 mg of quinoline and the appropriate amount of $B(C_6F_5)_3$, dissolved in 5 mL of toluene. The bomb was subjected to 3 freeze-pump-thaw cycles and subsequently exposed to 1 atm of H₂ at 78 K (~4 atm). The reaction was carried out over times and temperatures shown in Table 1. Following the reaction, 5 mL of ethyl acetate was added to the solution and the mixture was run through a short plug of silica, volatiles were removed *in vacuo*.

NMR data for compounds **1-4** and **6** matched that previously published: acridan (**1**);¹ 1,2,3,4-tetrahydro-2-phenylquinoline (**2**);² 1,2,3,4-tetrahydro-2-methylquinoline (**3**);²⁻⁴ 1,2,3,4-tetrahydro-8-methylquinoline (**4**);³ 1,2,3,4-tetrahydro-phenanthroline (**6**)⁵

1,10-phenanthroline-B(C₆F₅)₃ (**5**) – 1,10-phenanthroline (7 mg, 0.04 mmol) was added to $B(C_6F_5)_3$ (20 mg, 0.039 mmol) in 2 mL of CH₂Cl₂. The solution was allowed to stir for 2 hours, pumped to dryness and washed with pentane (2x2mL). The resulting white solid was again pumped to dryness. X-Ray quality crystals were grown from a layered solution of CDCl₃/pentane. Yield: 26 mg (96%). $C_{30}H_8BF_{15}N_2$: C, 52.06%; H, 1.16%; N, 4.05%. Found: C, 51.78%; H, 1.19%; N, 4.23%.

¹H NMR (CDCl₃) δ : 7.77 (m, 2H), 7.84 (m, 1H), 8.09 (dd, ³J_{H-H}=8 Hz, ⁴J_{H-H}=2 Hz, 1H), 8.51 (d, ³J_{H-H}=9 Hz, 1H), 8.72 (d, ³J_{H-H}=8 Hz, 1H), 9.19 (q, ³J_{H-H}=5 Hz, 1H); ¹⁹F NMR (CDCl₃) δ : -124.9 (br s, 1F, *o*-C₆*F*₅), -130.1 (br s, 1F, *o*-C₆*F*₅), -131.5 (br s, 1F, *o*-C₆*F*₅), -132.5 (br s, 1F, *o*-C₆*F*₅), -134.9 (br s, 1F, *o*-C₆*F*₅), -155.8 (br s, 1F, *p*-C₆*F*₅), -159.0 (br s, 1F, *p*-C₆*F*₅), -161.7 (br s, 1F, *p*-C₆*F*₅), -162.2 (br s, 1F, *m*-C₆*F*₅), -163.0 (br s, 1F, *m*-C₆*F*₅), -166.0 (br s, 1F, *m*-C₆*F*₅), -166.3 (br s, 1F, *m*-C₆*F*₅), -166.8 (br s, 1F, *m*-C₆*F*₅), -167.7 (br s, 1F, *m*-C₆*F*₅); ¹¹B NMR (CDCl₃) δ : -3.2;

¹³C NMR (CDCl₃) (partial) δ: 123.2 (dm, ¹J_{C-F} =227 Hz, *CF*), 125.9, 130.9 (dm, ¹J_{C-F}=296 Hz, *CF*), 136.5, 146.0 (dm, ¹J_{C-F}=279 Hz, *CF*), 153.2.

General procedure for hydrosilylation: a 20 mL vial was charged with acridine (or 2-phenylquinoline) and ~1.25 equivalents of Et₃Si in CDCl₃. B(C₆F₅)₃ (5 mol %) was added and the solution was stirred. Hydrosilylation of 2-phenylquinoline reached 76% conversion after 4 hours and reached a maximum of 85% conversion to (**7**) after 48 hours.

(7) ¹H NMR (CDCl₃) δ : 0.80 (m, 15H, CH₂CH₃), 3.26 (d, ³J_{H-H}=5 Hz, 2H, CH₂), 5.33 (t, ³J_{H-H}=5 Hz, 2H alkenyl-CH), 6.95 (td, ³J_{H-H}=6 Hz, ⁴J_{H-H}=2 Hz, 1H), 7.01 (d, ³J_{H-H}=7 Hz, 1H), 7.09 (m, 2H), 7.24 (m, 3H), 7.45 (m, 3H), 8.14 (m, 1H). ²⁹Si NMR (CDCl₃) δ : 14.3.

Figure 1: ¹H NMR of (8) in CDCl₃ after 48 hours at 25°C (Particularly characteristic of (7) are the resonance at 3.26 and 5.33 ppm, corresponding to the methylene and alkenyl protons, respectively).

- 1. P. Nandi, J. L. Dye and J. E. Jackson, *The Journal of Organic Chemistry*, 2009, **74**, 5790-5792.
- 2. M. R. Pitts, J. R. Harrison and C. J. Moody, *Journal of the Chemical Society, Perkin Transactions* 1, 2001, 955-977.
- 3. S. Murahashi, Y. Imada and Y. Hirai, *Bulletin of the Chemical Society of Japan*, 1989, **62**, 2968-2976.
- 4. S.-M. Lu, X.-W. Han and Y.-G. Zhou, *Journal of Organometallic Chemistry*, 2007, **692**, 3065-3069.
- 5. C. Bianchini, V. Dal Santo, A. Meli, S. Moneti, R. Psaro, L. Sordelli and F. Vizza, *Inorganica Chimica Acta*, 2008, **361**, 3677-3680.