Stereoselective Ir(III)-Catalyzed Dimerization Reaction of Enynes: an Entry to Functionalized Polyunsaturated and Cyclic Systems

Supporting Information

Mehdi Ez-Zoubir, Florent Le Boucher d'Herouville, Jack Brown, Virginie Ratovelomanana-Vidal* and Véronique Michelet*

General information

All manipulations were carried out under an argon atmosphere. ¹H NMR and ¹³C NMR were recorded on a Bruker AV 300 instrument. All signals were expressed as ppm (δ) and internally referenced to residual protio solvent signals. Coupling constants (*J*) are reported in Hz and refer to apparent peak multiplicities. Mass spectrometry analyses (direct introduction by chemical ionization with ammoniac or electrospray) were performed at the Ecole Nationale Supérieure de Chimie de Paris. High resolution mass spectra were performed at the Ecole Normale Supérieure (Paris) and University Pierre and Marie Curie (Paris). Infrared spectra were recorded on a FTIR-4100 Jasco.

Toluene was distilled over sodium benzophenone and degassed prior to use. Dichloromethane was distilled from calcium hydride. $Rh(cod)_2OTf$ was purchased from Aldrich. $[Ir(cod)Cl]_2$ was prepared according to the literature.¹ Enynes 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i, 1j were prepared in analogy with published procedures.² Enyne 1k was prepared according to published procedure.³

 $[Ir_2H_2I_3(rac-BINAP)_2]I$ was prepared according to the published procedure ⁴ and the spectral characterizations of $[Ir_2H_2I_3(rac-BINAP)_2]I$, ⁴ and **4a**, ⁵ are identical to those published in the literature.

Iridium catalyzed dimerization reaction

In a typical experiment, a Schlenk tube was charged with Ir-catalyst (0.014 mmol) under Ar. Then the enyne **1a** (0.35 mmol) in distilled and degassed toluene (0.12-0.19 M) was added. The reaction mixture was stirred at 80°C. The progress of the reaction was monitored by TLC. Then, the solvent was removed under reduced pressure and the product was purified by column chromatography on silica gel.

¹ (a) J. L. Herde, J. C. Lambert, C. V. Senoff, *Inorg. Synth.*, 1974, **15**, 18. (b) D. R. Baghurst, D. Michael, P. Mingos, M. J. Watson, *J. Organomet. Chem.*, 1989, **368(3)**, C43-C45.

² (a) C. Nevado, L. Charrault, V. Michelet, C. Nieto-Oberhuber, M. P. Munoz, M. Mendez, M. N. Rager, J. P. Genet, A. M. Echavarren, *Eur. J. Org. Chem.*, 2003, 706. (b) L. Charrault, V. Michelet, R. Taras, S. Gladiali, J. P. Genet, *Chem. Comm.*, 2004, 850. (c) C. Nevado, D. J. Cardenas, A. M. Echavarren, *Chem. Eur. J.*, 2009, 9, 2627. (d) M. P. Munoz, M. Mendez, D. J. Cardenas, C. Nevado, A. M. Echavarren, *J. Am. Chem. Soc.*, 2001, 123, 10511. (e) M. Nishizawa, M. Yadav, M. Skawarczynski, H. Takao, H. Imagawa, T. Sugihara, *Org. Lett.*, 2003, 5, 1609. (f) C. Nieto-Oberhuber, M. P. Munoz, C. Nevado, D. J. Cardenas, A. M. Echavarren, *Angew. Chem. Int. Ed.*, 2004, 43, 2402. (g) N. Mézailles, L. Ricard, F. Gagosz, *Org. Lett.*, 2005, 7, 4133. (h) A. K. Buzas, F. M. Istrate, F. Gagosz, *Angew. Chem. Int. Ed.*, 2007, 46, 1141. (i) E. Genin, L. Leseurre, P. Y. Toullec, J. P. Genet, V. Michelet, *Synlett*, 2007, 1780. (j) C. Nieto-Oberhuber, S. Lopez, A. M. Echavarren, *J. Am. Chem. Soc.*, 2005, 127, 6178. (k) P. Y. Toullec, E. Genin, L. Leseurre, J. P. Genet, V. Michelet, *Angew. Chem. Int. Ed.*, 2007, 698. (n) L. Leseurre, P. Y. Toullec, J. P. Genet, V. Michelet, *Org. Lett.*, 2007, 9, 4049. (o) C. M. Chao, P. Y. Toullec, V. Michelet, *Tetrahedron Lett.*, 2009, 50, 3719.
³ M. Hatano, K. J. Mikami, *J. Am. Chem. Soc.*, 2003, 125, 4704.

⁴T. Yamagata, H. Tadaoka, M. Nagata, Y. Hirao, Y. Kataoka, V. Ratovelomanana-Vidal, J. P. Genet, K. Mashima, *Organometallics*, 2006, **25**, 2505.

⁵ Diethyl ester: (a) N. Chatani, T. Morimoto, S. Murai, *J. Am. Chem. Soc.*, 1994, **116**, 6049. (b) N. Chatani, N. Furukawa, H. Sakurai, S. Murai, *Organometallics*, 1996, **15**, 901. (c) N. Chatani, H. Inoue, T. Ikeda, S. Murai, *J. Org. Chem.*, 2000, **65**, 4913.

Rhodium catalyzed reductive C-C bond formation

In a typical experiment, the trienyne derivative 2c (0.20 mmol) was placed in a Schlenk tube under Ar and distilled dichloromethane (0.1 M) was added. Rh(cod)₂OTf (0.01 mmol) and *rac*-Binap (0.01 mmol) was added at room temperature. The system was then purged with hydrogen gas and the reaction mixture was allowed to stir under an atmosphere of hydrogen until completion of the reaction. The crude reaction mixture was then evaporated and the product was purified by column chromatography on silica gel.

(1E, 6E, 13E)-tetramethyl 1,14-diphenyltetradeca-1,6,13-trien-8-yne-4,4,11,11-tetracarboxylate (2a)

TLC (cyclohexane/ethyl acetate: 80/20) $R_f = 0.3$. White solid, m.p. = 122°C. ¹H-NMR (300 MHz, CDCl₃) 2.70 (dd, J = 1.1, 7.6 Hz, 2H), 2.73 (dd, J = 1.1, 7.6 Hz, 2H), 2.95 (m, 4H), 3.74 (s, 6H), 3.75 (s, 6H), 5.55 (d, J = 15.6 Hz, 1H), 5.89-6.08 (m, 3H), 6.43-6.53 (2d, J = 15.3 Hz, 2H), 7.18-7.35 (m, 10H). ¹³C-NMR (75MHz, CDCl₃) 23.9, 36.1, 36.5, 36.6, 52.6, 52.8, 57.5, 57.9, 81.7, 84.0, 113.7, 123.3, 123.5, 126.2, 127.5, 128.5, 134.3, 134.5, 137.0, 137.3, 170.3, 170.9. IR (neat, cm⁻¹) 1730.3, 1436.7, 1276.2, 1194.7, 1072.2, 979.2. CI-MS (NH₃) m/z 590 [M+NH₄]⁺ 573 [M+H]⁺.HRMS (CI-CH₄) calculated for C₃₄H₃₇O₈: 573.2488; found 573.2495.

(E)-tetramethyl 2,15-dimethylhexadeca-2, 7,14-trien-9-yne-5,5,12,12-tetracarboxylate (2b)

TLC (cyclohexane/ethyl acetate : 80/20) $R_f = 0.3$. Colorless oil. ¹H-NMR (300 MHz, CDCl₃) 1.59 (s, 3H), 1.63 (s, 3H), 1.68 (s, 6H), 2.55 (d, J = 7.5 Hz, 2H), 2.60 (dd, J = 1.3, 7.5 Hz, 2H), 2.72 (d, J = 7.5 Hz, 2H), 2.84 (d, J = 2.0 Hz, 2H), 3.70 (s, 6H), 3.72 (s, 6H), 4.88 (m, 2H), 5.39 (d, J = 15.6 Hz, 1H), 5.81 (dt, J = 7.5, 15.6, 1H). ¹³C-NMR (75 MHz, CDCl₃) 17.8, 17.9, 23.4, 25.9, 26.0, 30.9, 31.3, 36.1, 52.4, 52.6, 57.3, 57.8, 81.4, 84.2, 113.5, 117.1, 117.2, 136.0, 136.7, 137.4, 170.6, 171.2. CI-MS (CH₄) *m/z* 577 [M+H]⁺. HRMS (ESI) calculated for C₂₆H₃₆O₈Na: 499.2302; found 499.2286.

(E)-tetramethyl 2, 13-dimethyltetradeca- 1,6, 13-trien-8-yne-4,4,11,11-tetracarboxylate (2c)

TLC (cyclohexane/ethyl acetate: 80/20) R_f = 0.3.Colorless oil. ¹H-NMR (300 MHz CDCl₃) 1.58 (s, 3H), 1.60 (s, 3H), 2.59-2.63 (m, 4H), 2.75 (s, 2H), 2.86 (d, *J* = 2.1 Hz, 2H), 3.66 (s, 6H), 3.67 (s, 6H), 4.68 (d, *J* = 1.0 Hz, 1H), 4.75 (d, *J* = 1.0 Hz, 1H), 4.82 (t, *J* = 1.6 Hz, 1H), 4.84 (t, *J* = 1.6 Hz, 1H), 5.41 (d, *J* = 15.7 Hz, 1H), 5.83 (dt, *J* = 7.7, 15.7 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃) 22.0, 22.1, 22.6, 35.2, 38.7, 39.6, 51.4, 51.7, 55.7, 56.2, 80.8, 83.1, 112.5, 114.9, 115.2, 136.5, 138.8, 139.1, 169.6, 170.3. IR (neat, cm⁻¹) 1731.3, 1435.3, 1250.6, 1205.8, 1181.2. HRMS (CI-CH₄) calculated for C₂₄H₃₃O₈: 449.2175; found 449.2166.

(E)-tetramethyl tetradeca-1,6,13-trien-8-yne-4,4,11,11-tetracarboxylate (2d)

TLC (cyclohexane/ethyl acetate : 80/20) $R_f = 0.3$. White solid, m.p. = 62°C. ¹H-NMR (300 MHz, CDCl₃) 2.63 (m, 4H), 2.76 (d, J = 7.5 Hz, 2H), 2.88 (d, J = 2.0 Hz, 2H), 3.71 (s, 6H), 3.72 (s, 6H), 5.10-5.19 (m, 4H), 5.45 (d, J = 15.5 Hz, 1H), 5.55-5.71 (m, 2H), 5.80-5.92 (dt, J = 7.7, 15.5, 1H). ¹³C-NMR (75 MHz, CDCl₃) 23.6, 36.2, 36.7, 37.2, 52.5, 52.7, 57.2, 57.6, 81.5, 83.9, 113.7, 119.5, 119.7, 131.8, 132.0, 137.2, 170.2, 170.9. IR (neat, cm⁻¹) 1729.3, 1436.7, 1297.4, 1202.9, 940.6. HRMS (ESI) calculated for C₂₂H₂₈O₈Na: 443.1676; found: 443.1676.

(1E,6E,13E)-1,14-diphenyl-4,4,11,11-tetrakis(phenylsulfonyl)tetradeca-1,6,13-trien-8-yne (2e)

TLC (cyclohexane/ethyl acetate : 80/20) R_{f} = 0.1. Brown solid, m.p. = 220°C. ¹H-NMR (300 MHz CDCl₃) 3.04 (d, *J* = 7.0 Hz, 2H), 3.13 (d, *J* = 7.0 Hz, 2H), 3.23 (d, *J* = 7.0 Hz, 2H), 3.34 (s, 2H), 5.33 (d, *J* = 15.6 Hz, 1H), 6.18-6.26 (m, 2H), 6.40-6.51 (m, 3H), 7.27-7.35 (m, 9H), 7.54-7.59 (m, 9H), 7.67-7.69 (m, 4H), 8.03-8.13 (m, 8H). ¹³C-NMR (75 MHz, CDCl₃) 21.0, 32.3, 33.5, 32.7, 81.5, 82.7, 88.1, 89.0, 113.7, 119.7, 119.9, 125.4, 125.5, 126.8, 126.9, 127.6, 130.6, 133.8, 134.5, 134.9, 135.0, 135.4, 135.6. IR (neat, cm⁻¹) 1447.8, 1332.6, 1313.8, 1145.0, 1082.8. HRMS (ESI) calculated for C₅₀H₄₄O₈NaS₄: 923.1811; found: 923.1814.

(E)- 2,13-dimethyl 1,8,13-triene tetradec-6-yne 4,4',11,11'-tetraphenylsulfone (2f)

TLC (cyclohexane/ethyl acetate : 70/30) R_f = 0.2. Brown solid, m.p. = 118°C. ¹H-NMR (300 MHz, CDCl₃) 1.77 (s, 3H), 1.95 (s, 3H), 2.97 (s, 2H), 3.09 (s, 2H), 3.15 (dd, *J* = 1.3, 6.0 Hz, 2H), 3.55 (d, *J* = 2.0 Hz, 2H), 4.90 (s, 1H), 5.02 (t, *J* = 1.4 Hz, 1H), 5.07 (t, *J* = 1.4 Hz, 1H), 5.11 (s, 1H), 5.40 (d, *J* = 15.6 Hz, 1H), 6.0 (dt, *J* = 7.0, 15.6, 1H), 7.52-7.59 (m, 8H), 7.66-7.70 (m, 4H), 7.98-8.05 (m, 8H). ¹³C-NMR (75 MHz, CDCl₃) 23.1, 24.0, 24.7, 33.9, 36.9, 37.4, 83.6, 84.4, 90.2, 91.3, 114.1, 119.1, 119.3, 128.5, 128.6, 131.6, 131.7, 134.7, 134.8, 136.1, 136.9, 137.3, 137.8, 138.1. IR (neat, cm⁻¹) 1446.8, 1331.6, 1309.4, 1143.1, 1073.2. HRMS (ESI) calculated for $C_{40}H_{40}O_8NaS_4$: 799.1498; found: 799.1511.

(E)-N, N-diallyl-N, N-ditosylhex-2-en-4-yne-1,6-diamine (2g)

TLC (petroleum ether/ethyl acetate : 80/20) $R_f = 0.3$. Brown solid, m.p. = 90°C. ¹H-NMR (300 MHz CDCl₃) 2.43 (s, 6H), 3.73 (d, J = 6.3 Hz, 4H), 3.78 (d, J = 6.4 Hz, 2H), 4.17 (d, J = 1.7 Hz, 2H), 5.06-5.30 (m, 4H), 5.33 (d, J = 16.0 Hz, 1H), 5.50-5.80 (m, 3H), 7.27-7.31 (m, 4H), 7.66-7.73 (m, 4H). ¹³C-NMR (75 MHz, CDCl₃) 21.5, 36.6, 48.2, 49.2, 49.9, 82.9, 83.0, 112.5, 119.4, 119.8, 127.2, 127.8, 129.5, 129.8, 132.0, 132.3, 136.0, 137.0, 138.2, 143.5, 143.6. IR (neat, cm⁻¹) 1343.7, 1161.4, 1092.9, 938.7. CI-MS (NH₃) *m/z* 516 [M+NH₄]⁺ 499 [M+H]⁺. HRMS (ESI) calculated for C₂₆H₃₀O₄N₂NaS₂: 521.1539; found: 521.1541.

(E)-N, N-di(2'-methylallyl)-N, N-ditosylhex-2-en-4-yne-1,6-diamine (2h)

TLC (cyclohexane/ethyl acetate : 70/30) $R_{f}= 0.4$. White solid, m.p. = 126°C. ¹H-NMR (300 MHz, CDCl₃) 1.63 (s, 3H), 1.75 (s, 3H), 2.42 (s, 6H), 3.62 (s, 2H), 3.66 (s, 3H), 3.69 (s, 1H), 4.12 (d, J = 2 Hz, 2H), 4.77 (s, 1H), 4.89 (d, J = 1.5 Hz, 1H), 4.91 (s, 1H), 4.95 (d, J = 1.5 Hz, 1H), 5.26 (d, J = 15.8 Hz, 1H), 5.58 (dt, J = 6.8, 15.8 Hz, 1H), 7.25-7.31 (m, 4H), 7.65-7.73 (m, 4H). ¹³C-NMR (75 MHz, CDCl₃) 19.6, 19.7, 21.5, 36.3, 48.3, 52.6, 53.5, 82.9, 112.8, 114.9, 115.4, 127.2, 127.8, 129.4, 129.7, 135.9, 136.9, 137.8, 139.3, 139.9, 143.5. IR (neat, cm⁻¹) 1594.4, 1342.7, 1330.2, 1157.6, 1096.3, 1002.8, 963.2, 908.3, 820.0, 759.8. HRMS (ESI) calculated for C₂₈H₃₄O₄N₂NaS₂: 549.1852; found: 549.1844.

(E)-N, N'-(hex-2-en-4-yne-1,6-diyl)bis(N-(cyclohex-2-en-1-yl)-4-methylbenzenesulfonamide) (2i)

TLC (cyclohexane/ethyl acetate : 80/20) R_{f} = 0.3. Brown solid, m.p. = 74°C. ¹H-NMR (300 MHz, CDCl₃) 1.48-1.87 (m, 12H), 2.35 (s, 6H), 3.66 (dd, J = 5.4, 17.1, 1H), 3.86 (dd, J = 5.4, 17.1 Hz, 1H), 4.05 (d, J = 13.9 Hz, 1H), 4.24 (d, J = 13.9 Hz, 1H), 4.43 (m, 2H), 4.93 (d, J = 10.0 Hz, 1H), 5.24 (d, J = 10.0 Hz, 1H), 5.50 (d, J = 15.9 Hz, 1H), 5.70-5.82 (m, 2H), 5.87-5.94 (dt, J = 5.7, 15.9 Hz, 1H), 7.26-7.31(m, 4H), 7.72 (d, J = 6.2 Hz, 2H), 7.83 (d, J = 6.2 Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃) 21.4, 21.5, 21.6, 24.3, 27.9, 28.9, 33.5, 45.4, 55.0, 55.3, 81.7, 86.7, 111.3, 127.1, 127.4, 129.4, 129.7, 132.9, 138.0, 138.1, 141.0, 143.2. IR (neat, cm⁻¹) 1339.3, 1331.6, 1161.9, 1088.6, 1032.7. CI-MS (NH₃) m/z 596 [M+NH₄]⁺ 579 [M+H]⁺. HRMS (ESI) calculated for C₃₂H₃₈O₄N₂NaS₂: 601.2165; found: 601.2151.

(E)-tetramethyl 2,17-dimethyloctadeca-2, 9, 16-trien-7-yne-5,5,12,12-tetracarboxylate (2j)

TLC (petroleum ether/ethyl acetate : 80/20) R_{f} = 0.5. Colorless oil. ¹H-NMR (300 MHz, CDCl₃) 1.56 (s, 3H), 1.58 (s, 3H), 1.67 (s, 6H), 1.85-1.89 (m, 6H), 2.01-2.05 (m, 2H), 2.65 (dd, J = 1.0, 7.6 Hz, 2H), 2.90 (d, J = 2 Hz, 2H), 3.69 (s, 6H), 3.72 (s, 6H), 5.05-5.08 (m, 2H), 5.43 (d, J= 15.6 Hz, 1H), 5.81 (dt, J = 7.5, 15.6 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃) 17.5, 22.7, 23.7, 25.6, 32.2, 32.7, 36.4, 52.2, 52.6, 56.9, 57.4, 81.3, 83.9, 113.4 , 122.7, 132.6, 137.3, 170.8, 171.3. IR (neat, cm⁻¹) 1735.6, 1438.1, 1274.2, 1217.3, 1174.4. CI-MS (NH₃) *m/z* 522 [M+NH₄]⁺ 505 [M+H]⁺. HRMS (CI-CH₄) calculated for C₂₈H₄₁O₈: 505.2801; found 505.2798.

2-((3*E*)-4-(2-(*N*-((*E*)-2-methylbut-2-enyl)-*N*-tosylamino)phenyl)but-3-en-1-ynyl)-*N*-((*E*)-2-methylbut-2-enyl)-*N*-tosylbenzenamine (2k)

TLC (petroleum ether/ethyl acetate : 80/20) $R_f = 0.4$. White solid, m.p. = 142°C.¹H-NMR (300 MHz, CDCl₃) 1.37 (d, J = 6.7 Hz, 3H), 1.44 (d, J = 6.7 Hz, 3H), 1.66 (s, 3H), 1.70 (s, 3H), 2.32 (s, 3H), 2.41 (s, 3H), 3.70 (m, 1H), 4.29 (s, 3H), 5.0 (m, 1H), 5.24 (m, 1H), 5.90 (d, J = 16.3 Hz, 1H), 6.6 (dd, J = 0.8, 6.0 Hz, 1H), 6.61-7.18 (m, 2H), 7.21-7.29 (m, 8H), 7.40-7.43 (m, 1H), 7.52-7.61 (m, 5H). ¹³C-NMR (75 MHz, CDCl₃) 13.4, 14.1, 14.6, 21.5, 21.6, 58.0, 60.3, 89.2, 93.7, 109.2, 123.8, 124.6, 125.3, 125.7, 127.8, 128.0, 128.3, 128.5, 128.6, 128.9, 129.4, 129.5, 129.9, 130.6, 132.0, 133.5, 135.7, 137.1, 137.2, 137.5, 139.5, 143.1, 143.6. IR (neat, cm⁻¹) 1339.8, 1332.0, 1159.5, 1034.1. HRMS (CI-CH₄) calculated for C₄₀H₄₃O₄N₂S₂: 679.2664; found 679.2660.

2,9-Bis-methoxycarbonyl-dec-4-en-6-ynedioic acid dimethyl ester (21)

TLC (cyclohexane/ethyl acetate : 70/30) R_{f} = 0.2. Colorless oil. ¹H-NMR (300 MHz, CDCl₃) 2.62 (m, 2H), 2.86 (dd, J = 1.8, 7.8 Hz, 2H), 3.40 (t, J = 7.5 Hz, 1H), 3.56 (t, J = 7.6 Hz, 1H), 3. 74 (2s, 12H), 5.50 (d, J = 16.2 Hz, 1H), 5.91 (dt, J = 7.2, 16.2 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃) 19.3, 31.9, 51.0, 52.6, 52.7, 80.4, 85.0, 112.6, 138.6, 168.3, 168.9. IR (neat, cm⁻¹) 1734.7, 1437.2, 1342.7, 1284.8, 1239.5, 1154.2, 1026.9. HRMS (ESI) calculated for C₁₆H₂₀O₈Na: 363.1050; found: 363.1046.

2,9-Bis-ethoxycarbonyl-2,9-diphenyl-dec-4-en-6-ynedioic acid diethyl ester (2m)

TLC (cyclohexane/ethyl acetate : 70/30) R_{f} = 0.3 .Yellow solid, m.p. = 100°C. ¹H-NMR (300 MHz, CDCl₃) 1.19-1.29 (m, 12H), 3.03 (dd, *J* = 1.1, 7.4 Hz, 2H), 3.25 (d, *J* = 1.9 Hz, 2H), 4.15-4.29 (m, 8H), 5.38 (d, *J* = 15.8 Hz, 1H), 5.88-5.96 (dt, *J* = 7.6, 15.8 Hz, 1H), 7.28-7.46 (m, 10H). ¹³C-NMR (75 MHz, CDCl₃) 14.0, 27.2, 39.6, 61.7, 61.9, 62.1, 62.3, 62.97, 81.9, 84.7, 113.4, 127.6, 127.8, 127.9, 128.0, 128.1, 135.9, 136.6, 137.9, 169.5, 170.0. IR (neat, cm⁻¹) 1725.9, 1445.4, 1295.4, 1231.3, 1181.2, 1021.6. HRMS (ESI) calculated for C₃₂H₃₆O₈Na: 571.2302; found: 571.2298.

2,9-Dichloro-2,9-bis-methoxycarbonyl-dec-4-en-6-ynedioic acid dimethyl ester (2n)

TLC (cyclohexane/ethyl acetate : 80/20) R_{f} = 0.3. Brown oil. ¹H-NMR (300 MHz, CDCl₃) 3.01 (dd, J = 1.3, J = 7.3 Hz, 2H), 3.27 (d, J = 1.7 Hz, 2H), 3.81 (s, 6H), 3.84 (s, 6H), 5.60 (d, J = 15.8 Hz, 1H), 6.00 (dt, J = 7.4, 15.8, 1H). ¹³C-NMR 30.2, 41.2, 53.9, 54.1, 68.3, 69.0, 82.0, 82.6, 114.8, 135.6, 166.1, 166.6. IR (neat, cm⁻¹) 1749.1, 1435.7, 1271.8, 1246.3, 1201.9, 1094.9, 1040.4, 1013.9, 963.7. HRMS (CI-CH₄) calculated for C₁₆H₁₉O₈Cl₂: 409.0457; found 409.0460.

2-Butyl-2,9,9-tris-ethoxycarbonyl-tridec-4-en-6-ynoic acid ethyl ester (20)

TLC (petroleum ether/ethyl acetate: 80/20) R_f = 0.6. Colorless oil. ¹H-NMR (300 MHz, CDCl₃) 0.88 (m, 6H), 1.11-1.14 (m, 4H), 1.14-1.21 (t, *J* = 7.1 Hz, 12 H), 1.24-1.33 (m, 4H), 1.78-1.84 (m, 2H), 1.95-2.00 (m, 2H), 2.62 (dd, *J* = 1.1, 7.6 Hz, 2H), 2. 87 (d, *J* = 1.8 Hz, 2H), 4.11-4.20 (m, 8H), 5.40 (d, *J* = 15.8 Hz, 1H), 5.83 (dt, *J* = 7.6, 15.8 Hz, 1H). ¹³C-NMR 13.7, 14.0, 22.8, 23.5, 26.0, 30.8, 31.6, 32.0, 36.0, 57.0, 57.4, 61.1, 61.5, 81.2, 83.9, 113.2, 137.4, 170.4, 171.0. IR (neat, cm⁻¹) 2958.7, 2928.4, 1733.2, 1462.7, 1210.6, 1037.0. HRMS (CI-CH₄) calculated for C₂₈H₄₅O₈: 509.3114; found 509.3113.

(*E*)-(oct-3-en-5-yne-1,8,8-tetrayltetrasulfonyl)tetrabenzene (2p)

TLC (cyclohexane/ethyl acetate : 50/50) $R_{f}= 0.5$. Brown solid, m.p. = 188°C. ¹H-NMR (300 MHz, DMSO-d₆) 2.90-2.95 (t, J = 5.6 Hz, 2H), 3.21 (d, J = 3.9 Hz, 2H), 5.37 (d, J = 15.9 Hz, 1H), 5.82-5.88 (m, 1H), 5.93 (t, J = 5.6 Hz, 1H), 6.01 (t, J = 5.6 Hz, 1H), 7.69-8.01 (m, 20H). ¹³C-NMR 16.7, 28.3, 78.5, 79.2, 81.5, 83.3, 112.0, 128.9, 129.2, 134.6, 134.7, 137.6, 137.8, 138.0. IR (neat, cm⁻¹) 1451.2, 1322.9, 1312.3, 1151.8, 1074.6, 729.9. HRMS (CI-CH₄) calculated for $C_{32}H_{29}O_8S_4$: 669.0745; found 669.0740.

(E)-N, N'-(hex-2-en-4-yne-1,6-diyl)bis(4-methyl-N-tosylbenzenesulfonamide) (2q)

TLC (cyclohexane/ethyl acetate : 80/20) R_{f} = 0.3. Brown solid, m.p. = 220°C. ¹H-NMR (300 MHz, CDCl₃) 2.40 (s, 6H), 2.42 (s, 6H), 4.28 (dd, J = 0.9, 6.6 Hz, 2H), 4.62 (d, J = 1.8 Hz, 1H), 5.57 (d, J= 15.8 Hz, 1H), 5.82-5.88 (dt, J = 6.7, 15.8 Hz, 1H), 7.19-7.27 (m, 8H), 7.78-7.85 (m, 8H). ¹³C-NMR 21.6, 38.7, 50.1, 82.1, 85.0, 114,1, 128.2, 128.3, 129.6, 129.7, 136.5, 136.7, 137.9, 145.2, 145.3. IR (neat, cm⁻¹) 1599.2, 1367.8, 1165.3, 1083.8, 1041.4, 816.7, 787.8. HRMS (ESI) calculated for C₃₄H₃₄O₈N₂NaS₄: 749.1090; found 749.1098.

(4*E*)-dimethyl 4-((*E*)-5,5-di(methoxycarbonyl)-7-methylocta-2,7-dienylidene)-3,3-dimethylcyclopentane-1,1-dicarboxylate (7)

TLC (cyclohexane/ethyl acetate : 80/20) $R_f = 0.3$. Colorless oil. ¹H-NMR (300 MHz CDCl₃) 1.05 (s, 6H), 1.66 (s, 3H), 2.29 (s, 2H), 2.69 (s, 2H), 2.70 (d, J = 6.0 Hz, 2H), 3.13 (d, J = 2.3 Hz, 2H), 3.70 (s, 12H), 4.74 (s, 1H), 4.88 (s, 1H), 5.36-5.44 (m, 1H), 5.74 (d, J = 11.0 Hz, 1H), 6.13 (dd, J = 11.0, 15.0 Hz, 1H). ¹³C-NMR (75MHz, CDCl₃) 23.1, 29.3, 36.2, 37.4, 40.4, 42.2, 48.1, 52.3, 52.8, 57.6, 58.0, 115.8, 119.5, 125.8, 131.5, 140.5, 150.1, 171.6, 172.5. IR (neat, cm⁻¹) 1729.8, 1432.8, 1258.3, 1199.0, 1172.5, 1077.0. HRMS (ESI) calculated for C₂₄H₃₄O₈Na: 473.2145; found: 473.2131.

(4*E*)-dimethyl 4-((*E*)-5,5-di(phenylsulfonyl)-7-methylocta-2,7-dienylidene)-3,3-dimethylcyclopentane-1,1-dicarboxylate (8)

TLC (cyclohexane/ethyl acetate : 70/30) $R_{f}= 0.2$. Yellow solid, m.p. = 94°C. ¹H-NMR (300 MHz, CDCl₃) 1.12 (s, 6H), 1.86 (s, 3H), 2.61 (s, 2H), 3.03 (s, 2H), 3.22 (d, J = 6.7 Hz, 2H), 3.50 (s, 2H), 4.93 (s, 1H), 5.06 (s, 1H), 5.58-5.71 (m, 2H), 6.17 (dd, J = 11.1, 14.8 Hz, 1H), 7.54- 7.69 (m, 12H), 8.00-8.05 (m, 8H). ¹³C-NMR (75 MHz, CDCl₃) 24.7, 29.3, 34.5, 35.2, 37.6, 43.4, 44.0, 91.6, 91.9, 119.3, 125.3, 128.6, 128.9, 131.5, 131.8, 134.5, 134.7, 136.2, 137.4, 138.0, 148.9. IR (neat, cm⁻¹) 1449.7, 1326.8, 1307.5, 1141.6, 1076.6. HRMS (ESI) calculated for C₄₀H₄₂O₈NaS₄: 801.1655; found: 801.1664.

3-[4(2-methyl-*N*-tosylallyl-but-2-enylidène]-4,4 dimethyl-*N*-tosyl-pyrrolidine (9)

TLC (cyclohexane/ethyl acetate : 70/30) $R_{f}= 0.4$. Yellow solid, m.p. = 80°C. ¹H-NMR (300 MHz, CDCl₃) 1.07 (s, 6H), 1.67 (s, 3H), 2.41 (s, 3H), 2.42 (s, 3H), 2.98 (s, 2H), 3.66 (s, 2H), 3.76 (d, J = 6.7 Hz, 2H), 3.88 (d, J = 2.2 Hz, 2H), 4.81 (s, 1H), 4.91 (s, 1H), 5.33 (dt, J = 7.0, 14.8 Hz, 1H), 5.62 (d, J = 10.9 Hz, 1H), 5.83 (dd, J = 10.9, 14.8 Hz, 1H), 7.26-7.35 (m, 4H), 7.66-7.72 (m, 4H). ¹³C-NMR (75 MHz, CDCl₃) 19.8, 21.5, 26.3, 42.2, 48.6, 49.9, 53.0, 60.6, 114.6, 118.3, 127.2, 127.8, 129.6, 129.7, 129.9, 132.5, 137.2, 140.2, 143.2, 143.7, 146.8. IR (neat, cm⁻¹) 1446.8, 1338.8, 1156.1, 1094.4, 1034.6, 823.9, 816.2. HRMS (ESI) calculated for $C_{28}H_{36}O_4N_2NaS_2$: 551.2008; found: 551.2007.

dimethyl 2-cinnamyl-2-(2-iodoallyl)malonate (5a)

TLC (cyclohexane/ethyl acetate: 80/20) $R_f = 0.5$. Brown oil. ¹H-NMR (300 MHz, CDCl₃) 2.91 (dd, J = 1.3, 7.5 Hz, 2H), 3.21 (d, J = 0.9 Hz, 2H), 3.7 (s, 6H), 5.97 (d, J = 1.5 Hz, 1H), 6.0 (dt, J = 7.5, 15.8 Hz, 1H), 6.20 (d, J = 1.5 Hz, 1H), 6.45 (d, J = 15.8 Hz, 1H), 7.21-7.36 (m, 5H) ¹³C-NMR (75 MHz, CDCl₃) 35.6, 46.5, 52.7, 57.8, 100.9, 123.5, 126.2, 127.5, 128.5, 131.4, 134.4, 136.9, 170.4. IR (neat, cm⁻¹) 1733.2, 1433.3, 1288.2, 1246.3, 1208.7, 1183.1, 970.0. CI-MS (NH₃) m/z 432 [M+NH₄]⁺ 415 [M+H]⁺.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

