Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Electronic supplementary information (ESI)

Combined sulfating and non-sulfating support to prevent water and sulfur poisoning of Pd catalysts

Gabriella Di Carlo*^a, Gérôme Melaet^b, Norbert Kruse^b, Leonarda F. Liotta^c, Giuseppe Pantaleo^c and Anna M. Venezia^c

Experimental

Preparation of the catalyst:

The precursors were mixed in appropriate amounts and refluxed under stirring at 80 °C. An aqueous solution of acetic acid at pH 5 was added at 80 °C in order to catalyse the simultaneous hydrolysis of both precursors. The gel was kept at this temperature for 1 h and then dried at 110 °C for 6 h in order to remove the solvent. The product was finally calcined at 450 °C for 4 h.

Then, palladium (1 wt.%) was deposited over the mixed oxide by impregnation using an aqueous solution of palladium nitrate. The sample was dried at 120 °C overnight and calcined at 400 °C for 4 h.

Equipments for the catalytic tests:

The inlet and outlet gas composition was analyzed by online mass quadrupole spectrometer (Thermostar, Balzers). IR analyzers (ABB Uras 14 and 26) were used for monitoring CO, CO₂ and CH₄ and a paramagnetic analyzer (ABB Magnos 206) for monitoring O₂.

 ^a Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) - CNR, Via Salaria km 29300, 00015 Monterotondo Stazione, Roma, Italy. E-mail: gabriella.dicarlo@ismn.cnr.it
^b Universite´ Libre de Bruxelles (ULB) Chemical Physics of Materials, Campus de la Plaine, C.P. 243, Bld du Triomphe, B-1050 Bruxelles, Belgium. E-mail: gerome.melaet@ulb.ac.be
^c Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) - CNR, Via Ugo La Malfa 153, 90146 Palermo, Italy.

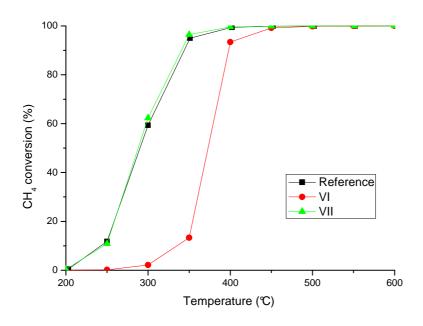


Fig. S1: Influence of an overnight treatment with $H_2O + SO_2$ on the conversion of methane: Reference curve obtained for Pd/TiO₂(10%)-SiO₂ (lean burn conditions), curve VI (1st run after the overnight treatment), curve VII (2nd run after the overnight treatment)

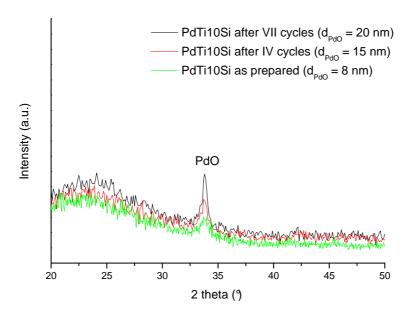


Fig. S2: XRD pattern of Pd/TiO₂(10%)-SiO₂: the peak centered on 34° is corresponding to PdO(101) while the broad peak centered on 23° can be attributed to amorphous SiO₂.