Supporting Information

Induction of Axially Chiral N-C Bonds in *N*-Aryl Acridane and Related Complexes by Chromium Tricarbonyl Migration Reactions

Akiyoshi Mori, Shunsuke Kinoshita, Masaru Furusyo and Ken Kamikawa* Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

General Remarks

All manipulations involving organometallics were carried out under an atmosphere of nitrogen and using an inert gas/vacuum double manifold techniques. NMR spectra were recorded in CDCl_3 or C_6D_6 solvent with tetramethylsilane as an internal reference. IR spectra were determined on a JASCO FT/IR-4100 spectrometer. Mass spectra were determined on a JEOL MS700 with EI mode. Optical rotations were obtained on a JASCO DIP-370 automatic polarimeter at wavelength 589 nm (sodium D line) using a 1.0-dm cell with a total volume of 5 mL.

Absolute configuration in fluoro(arene)chromium complex

Optically active arene chromium complex **P1** was prepared by an optical resolution according to the reported procedure.¹ The absolute configuration of complex **P2** was determined as (1*S*) by a transformation to the literature known complex (1*S*)-**P3**.² Complex (1*S*)-**P2** was utilized as a starting material for the preparation of complexes **5f-5i**. Complexes **P2**, **P5** and **P6** were literature known compounds.³

Next, complex (1R)- **P5** was prepared from complex (1S)-**P1** by following three steps.

On the other hand, both (1*S*) and (1*R*)-**P5** were prepared by an optical resolution. Complex (1*S*)-**P5** was transformed to complex 9^{3b} or other derivatives^{3b}, and utilized as a starting material for the preparation of complexes 3 or **5a-5e**.

rac-**P5**

by slicagel 3) HCl aq. Me F 1 CHO Čr(CO)₃

+

(1*R*)-**P5**

[α]_D²² +844.4 (*c* 0.04, CHCl₃)

(1*S*)-**P5** [α]_D²² -838.7 (*c* 0.06, CHCl₃)

Me СНО Cr(CO)₃

P-TsOH, CH₃CN, 99%

Me 1 F Cr(CO)₃O

(1*R*)-**9** [α]_D³⁰ -378.6 (*c* 0.028, CHCl₃)

(1*S*)-**P5** [α]_D²² -838.7 (*c* 0.06, CHCl₃) General procedure for the preparation of complex 5 by a nucleophilic substitution reaction.

To a solution of **P6** (0.17 mmol) in toluene (5.0 mL), 18-crown-6 (0.24 mmol), NaH (0.24 mmol) was added at 25 °C under argon. The resulting mixture was stirred for 30 min at 25 °C, then a chromium complex (0.16 mmol) which was dissolved in toluene, was added to the reaction mixture and stirred for 2 h at 90 °C. The mixture was quenched with H_2O at 0 °C, extracted with ethyl acetate, washed with brine. The organic layer was dried over anhydrous MgSO₄, and filtrate was concentrated under reduced pressure. The residue was purified by silica gel chromatography to give chromium complex **5**. Carbazole chromium complex **3** was also prepared by a same procedure.

General procedure for the stereoselective chromium tricarbonyl migration reaction.

The toluene solution of chromium complex **5** was degassed by three freeze/vacuum/thaw cycles and heated reflux for 2 h under nitrogen. Toluene was removed under reduced pressure, the residue was purified by silica gel chromatography.

Note: Diastereomeric ratio was determined by ¹H-NMR of the crude product. Crude products were essentially stable in air.

Carbazole Complex 3

[α]_D²⁸ –67.6 (*c* 0.074, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.65 (3H, s), 3.60 (1H, d, J = 5.6 Hz), 3.74-3.80 (2H, m), 3.96 (1H, t, J = 5.6 Hz), 5.19 (1H, d, J = 6.1 Hz), 5.33 (1H, s), 5.47 (1H, d, J = 6.1 Hz), 5.79 (1H, t, J = 6.1 Hz), 6.91 (1H, d, J = 8.3 Hz), 7.27-7.39 (3H, m), 7.60 (1H, t, J = 8.3 Hz), 8.11 (2H, t, J = 8.3 Hz), 8.23 (1H, d, J = 8.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 17.04, 65.71, 65.91, 77.21, 84.44, 89.34, 93.55, 95.27, 99.43, 110.10, 111.52, 111.57, 120.10, 120.18, 120.20, 120.48, 120.55, 123.65, 126.07, 126.25, 128.13, 231.75; IR (CHCl₃) 1977, 1908, 1642, 1455 cm⁻¹; MS (relative intensity) m/z 465 (M⁺, 20), 381 (80), 353, (88), 69 (100); HRMS calcd for C₂₅H₁₉NO₅Cr, 465.0668. found 465.0666.

Carbazole Complex 4

mp. 172 °C; $[\alpha]_D^{29}$ -6.7 (*c* 0.060, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.57 (3H, s), 3.84 (1H, dq, *J* = 6.8, 1.4 Hz), 3.94 (1H, dq, *J* = 6.8, 1.4 Hz), 4.06 (1H, dq, *J* = 6.8, 1.4 Hz), 4.16 (1H, dq, *J* = 6.8, 1.4 Hz), 5.21 (1H, t, *J* = 6.5 Hz), 5.39 (1H, t, *J* = 6.5 Hz), 5.65 (1H, s), 5.68 (1H, d, *J* = 6.5 Hz), 6.50 (1H, d, *J* = 6.5 Hz), 6.93 (1H, d, *J* = 7.9 Hz), 7.31 (1H, dt, *J* = 7.6, 1.2 Hz), 7.38-7.44 (2H, m), 7.53, (1H, t, *J* = 7.9 Hz), 7.78 (1H, dd, *J* = 7.6, 1.2 Hz), 7.95 (1H, d, *J* = 7.9 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 17.3, 65.4, 65.5, 78.4, 85.7, 87.4, 94.1, 99.1, 111.2, 120.3, 121.6, 122.5, 124.0, 126.0, 126.1, 12.4, 130.1, 132.6, 133.1, 137.0, 138.1, 143.7, 233.9; IR (CHCl₃) 2995, 1958, 1884 cm⁻¹; MS (relative intensity) *m*/*z* 465 (M⁺, 17), 381 (94), 353, (100); HRMS calcd for C₂₅H₁₉NO₅Cr, 465.0668. found 465.0668; HPLC condition; Chiralcel OD; hexane/2-propanol = 20/1; flow rate 1.0 mL/min; column temperature 40 °C; UV detector 254 nm, retention time, 13.3 min for (+)-isomer, 15.8 min for (-)-isomer.

Complex 5a

mp. 155 °C; $[\alpha]_D^{29}$ –86.92 (*c* 1.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 2.02 (3H, s), 3.84-4.18 (6H, m), 5.21 (1H, d, *J* = 5.1 Hz), 5.56-5.61 (3H, m), 6.38 (1H, d, *J* = 8.0 Hz), 6.94 (1H, t, *J* = 8.0 Hz), 7.01 (2H, t, *J* = 7.0 Hz), 7.16 (2H, d, *J* = 7.0 Hz), 7.28 (1H, t, *J* = 8.0 Hz), 7.74 (1H, d, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 17.5, 32.6, 66.1, 86.9, 91.2, 93.0, 99.9, 111.2, 116.1, 116.4, 117.7, 122.2, 124.4, 125.6, 126.3, 126.8, 127.6, 127.9, 141.2, 142.7, 231.8; IR (CHCl₃) 3007, 2956, 1975, 1905, 1597, 909 cm⁻¹; MS (relative intensity) *m/z* 479 (M⁺, 7), 395 (43), 343 (12), 298 (100); HRMS calcd for C₂₆H₂₁NO₅Cr, 479.0825. found 479.0831.

Complex 6a

mp. 149 °C; $[\alpha]_D^{26}$ +575.0 (*c* 0.040, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.99 (3H, s), 3.96-4.30 (6H, m), 4.67 (1H, d, *J* = 6.3 Hz), 5.00 (1H, t, *J* = 6.3 Hz), 5.26 (1H, t, *J* = 6.3 Hz), 5.45 (1H, d, *J* = 6.3 Hz), 5.80 (1H, s), 6.17 (1H, d, *J* = 7.3 Hz), 6.95-7.02 (2H, m), 7.14 (1H, d, *J* = 7.3 Hz), 7.41-7.49 (2H, m), 7.72 (1H, d, *J* = 7.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 17.5, 30.4, 65.5, 65.6, 81.3, 87.0, 91.9, 92.5, 93.6, 99.4, 115.2, 119.0, 122.7, 124.6, 126.6, 127.7, 128.6, 129.7, 133.7, 136.2, 136.4, 138.8, 139.5, 234.0; IR (CHCl₃) 3007, 1959, 1886, 1463, 909 cm⁻¹; MS (relative intensity) *m/z* 479 (M⁺, 8), 395 (43), 298 (100); HRMS calcd for $C_{26}H_{21}NO_5Cr$, 479.0825. found 479.0829; HPLC condition; Chiralcel OD; hexane/2-propanol = 20/1; flow rate 1.0 mL/min; column temperature 40 °C; UV detector 254 nm, retention time, 23.8min for (+)-isomer, 13.1 min for (–)-isomer.

Complex 5b

[α]_D³⁰ -64.8 (*c* 0.040, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.27 (1H, d, *J* = 13.6 Hz), 1.96 (3H, s), 2.06-2.16 (1H, m), 3.60 (1H, t, *J* = 11.6 Hz), 3.75 (1H, t, *J* = 11.6 Hz), 3.93-4.13 (3H, m), 4.22 (1H, d, *J* = 6.8 Hz), 5.13 (1H, d, *J* = 6.0 Hz), 5.22 (1H, s), 5.57 (1H, t, *J* = 6.4 Hz), 5.71 (1H, d, *J* = 6.4 Hz), 6.37 (1H, d, *J* = 8.0 Hz), 6.90-7.03 (3H, m), 7.16 (2H, t, *J* = 7.6 Hz), 7.27 (1H, d, *J* = 7.6 Hz), 7.65 (1H, d, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 14.3, 17.8, 22.8, 25.4, 31.7, 32.8, 67.7, 67.8, 87.7, 91.3, 93.2, 98.1, 116.6, 117.8, 122.3, 122.4, 126.4, 127.1, 127.8, 127.9, 232.2; IR (CHCl₃) 1955, 1871, 1597 cm⁻¹; MS (relative intensity) *m*/*z* 493 (M⁺, 15), 409 (62), 298 (100); HRMS calcd for C₂₇H₂₃NO₅Cr, 493.0981. found 493.0976.

Complex 6b

 $[\alpha]_{D}^{28}$ +23.7 (*c* 0.070, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.41 (1H, d, *J* = 12.4 Hz), 1.99 (3H, s), 2.21-2.27 (1H, m), 3.84 (1H, t, *J* = 12.4 Hz), 3.95 (1H, d, *J* = 19.6 Hz), 4.08 (1H, dd, *J* = 11.0, 4.0 Hz), 4.24-4.33 (3H, m), 4.68 (1H, d, *J* = 6.8 Hz), 5.00(1H, t, J = 6.0 Hz), 5.27 (1H, t, J = 6.8 Hz), 5.52 (1H, d, J = 6.0 Hz), 5.71 (1H, s), 6.26 (1H, d, J = 7.6 Hz), 6.98-7.02 (2H, m), 7.15 (1H, d, J = 8.4 Hz), 7.39 (1H, d, J = 6.8 Hz), 7.48 (1H, d, J = 7.6 Hz), 7.81 (1H, d, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 17.8, 26.1, 30.5, 67.3, 67.5, 76.8, 81.2, 86.8, 93.1, 94.4, 98.1, 115.9, 122.9, 126.6, 127.6, 128.5, 130.0, 133.4, 234.4; IR (CHCl₃) 1954, 1869, 1638 cm⁻¹; MS (relative intensity) *m/z* 493 (M⁺, 5), 409 (19), 357 (97), 298 (100); HRMS calcd for C₂₇H₂₃NO₅Cr, 493.0981. found 493.0944; HPLC condition; Chiralcel OD-H; hexane/2-propanol = 9/1; flow rate 1.0 mL/min; column temperature 40 °C; UV detector 254 nm, retention time, 15.9 min for (+)-isomer, 6.8 min for (-)-isomer.

Complex 5c

¹H NMR (400 MHz, CDCl₃) δ 2.08 (3H, s), 3.25 (3H, s), 4.07 (2H, s), 4.16 (1H, d, J = 4.0 Hz), 4.44 (1H, d, J = 4.0 Hz), 4.54 (1H, d, J = 6.8 Hz), 4.59 (1H, d, J = 6.8 Hz), 5.24 (1H, d, J = 5.6 Hz), 5.56 (1H, d, J = 5.6 Hz), 5.66 (1H, t, J = 6.0 Hz), 6.25 (1H, d, J = 7.6 Hz), 6.94-7.03 (3H, m), 7.17 (2H, d, J = 7.6 Hz), 7.27 (1H, d, J = 7.6 Hz), 7.72 (1H, d, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 17.6, 32.6, 55.7, 64.6, 87.9, 90.8, 94.2, 96.7, 112.3, 112.5, 114.9, 117.4, 122.3, 122.4, 126.5, 127.1, 128.1, 128.5, 232.3; IR (CHCl₃) 2362, 2344, 1964, 1883 cm⁻¹; MS (relative intensity) *m*/*z* 481 (M⁺, 6), 397 (25), 337 (60), 284 (100); HRMS calcd for C₂₆H₂₃NO₅Cr, 481.0981. found 481.0977.

Complex 5d

¹H NMR (400 MHz, CDCl₃) δ 0.74 (3H, t, *J* = 7.6 Hz), 1.25 (2H, s), 1.66 (3H, s), 1.88-2.16 (2H, m), 5.21-5.26 (2H, m), 5.92 (1H, t, *J* = 6.0 Hz), 7.26-7.30 (2H, m), 7.43 (1H, t, *J* = 8.0 Hz), 7.75 (2H, d, *J* = 8.0 Hz), 7.87 (1H, t, *J* = 8.0 Hz), 8.30 (2H, t, *J* = 5.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 14.3, 15.3, 19.4, 24.1, 27.8, 37.8, 60.7, 86.8, 87.4, 89.8, 97.4, 113.1, 113.2, 113.5, 120.5, 120.8, 128.1, 129.4, 131.5, 233.7; IR (CHCl₃) 3421, 1955, 1870 cm⁻¹; MS (relative intensity) *m*/*z* 435 (M⁺, 8), 351 (36), 180 (100); HRMS calcd for C₂₅H₂₁NO₃Cr, 435.0927. found 435.0930.

Complex 5e

 $[\alpha]_{D}^{24}$ –129.8 (*c* 0.25, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.99 (3H, s), 2.25 (3H, s), 2.30 (3H, s), 3.81-4.17 (6H, m), 4.69 (1H, dd, *J* = 5.6, 1.6 Hz), 5.54-5.59 (3H, m), 6.23 (1H, d, *J* = 8.0 Hz), 6.80 (1H, d, *J* = 8.0 Hz), 6.95 (2H, s), 7.07 (1H, d, *J* = 8.0 Hz), 7.60 (1H, d, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 17.6, 20.6, 20.7, 32.7, 66.2, 66.3, 87.0, 91.4, 93.2, 100.1, 111.4, 111.5, 116.0, 117.6, 124.2, 125.6, 126.9, 127.4, 128.4, 128.7, 131.4, 131.5, 139.2, 140.6, 232.1; IR (CHCl₃) 3748, 2368, 1951, 1866 cm⁻¹; MS (relative intensity) *m*/*z* 507 (M⁺, 7), 423 (34), 371 (96), 326 (100); HRMS calcd for C₂₈H₂₅NO₅Cr, 507.1138. found 507.1139.

Complex 6e

 $[\alpha]_{D}^{25}$ +157.1 (*c* 0.014, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 2.12 (3H, s), 2.26 (3H, s), 2.36 (3H, s), 3.80-3.85 (2H, m), 3.93-4.05 (3H, m), 4.23 (1H, d, *J* = 19.6 Hz), 4.60 (1H, d, *J* = 6.8 Hz), 4.93 (1H, dd, *J* = 6.8, 1.6 Hz), 5.19 (1H, s), 5.58 (1H, s), 5.94 (1H, d, *J* = 8.8 Hz), 6.78 (1H, d, *J* = 8.0 Hz), 6.96 (1H, s), 7.43-7.47 (2H, m), 7.48-7.61 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ 18.7, 20.1, 20.7, 30.4, 65.4, 65.5, 81.4, 91.3, 93.0, 100.3, 114.4, 126.6, 128.4, 129.5, 133.3, 133.4, 235.2; IR (CHCl₃) 2889, 2377, 2347, 2305, 1951, 1873 cm⁻¹; MS (relative intensity) *m/z* 507 (M⁺, 7), 423 (35), 371 (38), 326 (100); HRMS calcd for C₂₈H₂₅NO₅Cr, 507.1138. found 507.1130; HPLC condition; Chiralcel OD; hexane/2-propanol = 20/1; flow rate 1.0 mL/min; column temperature 40 °C; UV detector 254 nm, retention time, 14.3 min for (+)-isomer, 11.3 min for (-)-isomer.

Complex 5f

 $[\alpha]_{D}^{26}$ –217.97 (*c* 0.18, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 2.15 (3H, s), 3.93-4.17 (4H, m), 5.11 (1H, d, *J* = 5.6 Hz), 5.47 (1H, d, *J* = 5.6 Hz), 5.61 (1H, t, *J* = 5.6 Hz), 5.69 (1H, s), 6.10 (1H, d, *J* = 7.6 Hz), 6.70-6.87 (5H, m), 6.97 (1H, t, *J* = 7.6 Hz), 7.51 (1H, d, *J* = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 17.7, 65.6, 66.3, 85.8, 90.5, 94.1, 99.9, 113.0, 115.5, 115.9, 116.5, 118.0, 121.5, 123.2, 123.3, 123.4, 123.6, 123.7, 231.7; IR (CHCl₃) 3654, 1970, 1893 cm⁻¹; MS (relative intensity) *m/z* 481 (M⁺, 9), 397 (27), 345

(100); HRMS calcd for $C_{25}H_{19}NO_6Cr$, 481.0617. found 481.0597.

Complex 6f

[α]_D²⁶ +248.4 (*c* 0.12, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 2.20 (3H, s), 4.04-4.23 (4H, m), 4.47 (1H, d, J = 5.6 Hz), 4.89 (1H, s), 5.05 (1H, s), 5.26 (1H, d, J = 5.6 Hz), 5.93-5.98 (2H, m), 6.74-6.79 (3H, m), 7.46-7.49 (2H, m), 7.73 (1H, d, J = 5.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 17.8, 65.7, 65.8, 79.5, 80.2, 87.5, 88.4, 99.5, 114.8, 116.4, 123.5, 124.9, 126.9, 130.3, 134.0, 233.7; IR (CHCl₃) 2890, 1957, 1871 cm⁻¹; MS (relative intensity) *m/z* 481 (M⁺, 2), 397 (6), 345 (100); HRMS calcd for C₂₅H₁₉NO₆Cr, 481.0617. found 481.0565; HPLC condition; Chiralcel OD; hexane/2-propanol = 9/1; flow rate 1.0 mL/min; column temperature 40 °C; UV detector 254 nm, retention time, 8.2 min for (+)-isomer, 7.0 min for (-)-isomer.

Complex 5g

mp. 158 °C; $[\alpha]_D^{20}$ +16.8 (*c* 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 3.80-3.88 (2H, m), 3.95-4.10 (4H, m), 5.45-5.53 (4H, m), 5.71 (1H, d, *J* = 6.4 Hz), 6.98-7.05 (4H, m), 7.13-7.26 (4H, m); ¹³C NMR (100 MHz, CDCl₃) δ 33.2, 65.9, 66.1, 90.2, 90.3, 91.8, 96.1, 99.6, 110.5, 117.0, 118.0, 122.5, 126.2, 126.5, 127.7, 143.3, 231.6; IR (CHCl₃) 3006, 1978, 1907 cm⁻¹; MS (relative intensity) *m/z* 465 (M⁺, 11), 381 (45), 284 (100); HRMS calcd for C₂₅H₁₉NO₅Cr, 465.0668. found 465.0671.

Complex 6g

mp. 157 °C; $[\alpha]_D^{22}$ –335.2 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 3.83-4.06 (5H, m), 4.24 (1H, d, *J* = 19 Hz), 4.46 (1H, d, *J* = 7.6 Hz), 4.98 (1H, t, *J* = 6.4 Hz), 5.28 (1H, t, *J* = 6.4 Hz), 5.51 (1H, d, *J* = 6.4 Hz), 5.72 (1H, s), 6.11-6.13 (1H, m), 6.97-6.99 (2H, m), 7.13-7.15 (1H, m), 7.58-7.61 (2H, m), 7.62 (1H, d, *J* = 7.6 Hz), 7.83 (1H, d, *J* = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 30.7, 65.4, 65.6, 80.3, 86.1, 92.2, 94.1, 94.2, 99.9, 115.4, 118.7, 122.8, 124.9, 127.5, 128.6, 128.9, 129.8, 131.2, 131.8, 137.1, 137.5, 140.2, 234.4; MS (relative intensity) *m/z* 465 (M⁺, 22), 381 (79), 284 (100); HRMS calcd for C₂₅H₁₉NO₅Cr, 465.0668. found 465.0667; HPLC condition; Chiralpak AD; hexane/2-propanol = 20/1; flow rate 1.0 mL/min; column temperature 40 °C; UV detector 254 nm, retention time, 15.1 min for (+)-isomer, 11.7 min for (-)-isomer.

Complex 5h

mp. 157 °C; $[\alpha]_D^{18}$ +118.0 (*c* 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 3.90-4.01 (2H, m), 4.07 (1H, q, *J* = 6.1 Hz), 4.16 (1H, q, *J* = 6.1 Hz), 5.27 (1H, t, *J* = 6.3 Hz), 5.49 (1H, t, *J* = 6.3 Hz), 5.58 (2H, t, *J* = 6.3 Hz), 5.68 (1H, s), 6.81-6.88 (8H, m); ¹³C NMR (100 MHz, CDCl₃) δ 66.2, 66.3, 88.0, 90.1, 91.8, 96.8, 99.5, 110.5, 116.0, 117.8, 118.1, 123.5, 123.6, 134.7, 147.0, 231.2; IR (CHCl₃) 1979, 1911, 1487 cm⁻¹; MS (relative intensity) *m/z* 467 (M⁺, 19), 383 (100), 331 (48); HRMS calcd for C₂₄H₁₇NO₆Cr, 467.0461. found 467.0453.

Complex 6h

 $[\alpha]_{D}^{22}$ –248 (*c* 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 3.95-4.13 (4H, m), 4.29 (1H, dd, *J* = 6.4, 0.8 Hz), 4.87 (1H, dt, *J* = 6.4, 0.8 Hz), 5.07 (1H, dt, *J* = 6.4, 0.8 Hz), 5.29 (1H, dd, *J* = 6.4, 0.8 Hz), 5.85 (1H, s), 5.93 (1H, dd, *J* = 7.6, 1.2 Hz), 6.71-6.81 (3H, m), 7.57-7.62 (1H, m), 7.65-7.73 (2H, m), 7.81 (1H, dd, *J* = 7.6, 1.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 65.6, 65.8, 79.8, 81.0, 87.8, 88.4, 100.2, 115.2, 116.4, 123.5, 124.8, 128.8, 130.2, 130.3, 132.4, 234.1; IR (CHCl₃) 3009, 2360, 1959, 1882 cm⁻¹; MS (relative intensity) *m/z* 467 (M⁺, 28), 383 (91), 353 (51), 331 (41), 270 (100); HRMS calcd for C₂₄H₁₇NO₆Cr, 467.0461. found 467.0470; HPLC condition; Chiralcel OD; hexane/2-propanol = 9/1; flow rate 1.0 mL/min; column temperature 40 °C; UV detector 254 nm, retention time, 12.42 min for (+)-isomer, 21.51 min for (-)-isomer.

Complex 5i

[α]_D²² +120 (*c* 0.42, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 2.29 (6H, s), 3.89-4.19 (4H, m), 5.27 (1H, t, J = 5.6 Hz), 5.47 (1H, t, J = 5.6 Hz), 5.55-5.60 (2H, m), 5.70 (1H, s), 6.67 (2H, d, J = 7.2 Hz), 6.74-6.79 (4H, m); ¹³C NMR (100 MHz, CDCl₃) 15.5, 66.3, 88.2, 90.3, 91.6, 96.7, 99.5, 115.8, 122.6, 125.2, 125.5, 134.7, 231.4; IR (CHCl₃) 1972, 1898, 1637 cm⁻¹; MS (relative intensity) *m*/*z* 495 (M⁺, 22), 411 (79), 359 (76), 298 (100); HRMS calcd for C₂₆H₂₁NO₆Cr, 495.0774. found 495.0776.

Complex 6i

 $[\alpha]_{D}^{22}$ –234 (c 0.65, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 2.24 (3H, s), 2.32 (3H, s), 3.93-4.16 (5H, m), 4.95 (2H, d, J = 3.2 Hz), 5.76 (1H, d, J = 8.4 Hz), 5.86 (1H, s), 6.63 (1H, t, J = 8.0 Hz), 6.70 (1H, d, J = 8.0 Hz), 7.56-7.60 (1H, m), 7.68 (2H, d, J = 3.2 Hz),7.79 Hz); $^{13}\mathrm{C}$ (1H, d. J =8.0 **NMR** (100)MHz, $CDCl_3$) δ 15.3, 15.6, 65.5, 65.7, 89.0, 89.4, 100.0, 112.7, 123.9, 125.3, 128.6, 130.1, 130.4, 132. 1, 234.6; IR (CHCl₃) 2348, 2307, 1952, 1862 cm⁻¹; MS (relative intensity) m/z 495 (M⁺, 34), 411 (98), 298 (100); HRMS calcd for C₂₈H₂₁NO₆Cr, 495.0774. found 495.0770; HPLC condition; Chiralpak AS; hexane/2-propanol = 80/1; flow rate 1.0 mL/min; column temperature 40 °C; UV detector 254 nm, retention time, 17.71 min for (+)-isomer, 15.78 min for (-)-isomer.

Complex 5j

mp. 92 °C; $[\alpha]_D^{22}$ –92.0 (*c* 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 3.82 (1H, s), 3.96 (2H, s), 4.05 (1H, s), 5.46 (2H, bs), 5.57 (1H, bs), 5.69 (1H, bs), 6.04 (1H, s), 6.99-7.06 (4H, m), 7.12-7.19 (4H, m); ¹³C NMR (100 MHz, CDCl₃) δ 65.9, 66.6, 89.1, 90.9, 91.3, 97.3, 100.0, 109.9, 120.2, 120.6, 124.6, 127.3, 127.4, 145.8, 231.4; IR (CHCl₃) 3585, 3059, 2362, 1979, 1913 cm⁻¹; MS (relative intensity) *m/z* 483 (M⁺, 10), 399 (100), 371 (95); HRMS calcd for $C_{24}H_{17}NO_5SCr$, 483.0233. found 483.0233.

Complex 6j

mp. 147 °C; $[\alpha]_D^{18}$ +175.0 (*c* 0.12, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 3.94-4.11 (4H, m), 4.56 (1H, bs), 4.99 (1H, t, *J* = 6.4 Hz), 5.17 (1H, t, *J* = 6.4 Hz), 5.49 (1H, d, *J* = 6.4 Hz), 5.93 (1H, s), 6.19 (1H, bs), 6.93-6.95 (2H, m), 7.01-7.04 (1H, m), 7.58-7.67 (3H, m), 7.84 (1H, d, *J* = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 65.6, 65.7, 82.1, 86.2, 92.5, 92.8, 100.2, 117.1, 122.6, 124.2, 127.0, 127.9, 129.6, 130.0, 131.3, 131.7, 142.0, 233.7; IR (CHCl₃) 3620, 2975, 2360, 1962, 1889 cm⁻¹; MS (relative intensity) *m/z* 483 (M⁺, 21), 399 (92), 371 (100); HRMS calcd for C₂₄H₁₇NO₅SCr, 483.0233. found 483.0233.; HPLC condition; Chiralcel OD; hexane/2-propanol = 9/1; flow rate 1.0 mL/min; column temperature 40 °C; UV detector 254 nm, retention time, 12.85 min for (–)-isomer, 23.06 min for (+)-isomer.

Stereoselective synthesis of complex 8 from complex 6a.

Complex **6a** (89 mg, 0.18mmol) and *N*, *N*, *N'*, *N'*-tetramethylethylenediamine (26 mg, 0.22 mmol) were dissolved in THF (2.0 mL) under nitrogen atmosphere. The resulting solution was cooled to -78 °C and *n*-BuLi (0.14 mL, 1.6 N in hexane, 0.22 mmol) was added to the solution. The reaction mixture was stirred for 30 min at -78 °C and then gradually warmed to -60 °C. MeI (38 mg, 0.27 mmol) was added at -60 °C to the reaction mixture and gradually warmed to 0 °C. The reaction mixture was quenched with H₂O and extracted with EtOAc. The organic layer was washed with brine and dried over anhydrous MgSO₄, and filtrate was concentrated under reduced pressure. The residue was purified by silica gel chromatography to give chromium complex **8** (75 mg, 0.15 mmol) in 85% yield as yellow amorphous.

Stereoselective synthesis of complex 8 by a nucleophilic substitution reaction.

Complex **9** (100 mg, 0.31 mmol), 9-methylacridane (73 mg, 0.37 mmol) and 18-crown-6 (122 mg, 0.46 mmol) were dissolved in toluene (2.0 mL) under nitrogen atmosphere. The solution was degassed by three freeze/vacuum/thaw cycles and heated to 85 °C. The suspension of NaH (18 mg, 0.46 mmol) and toluene (1.0 mL) was added to the solution, the resulting mixture was stirred at 85 °C for 1 h. The mixture was cooled to rt, and quenched with H_2O and extracted with EtOAc. The organic layer was washed with brine and dried over anhydrous MgSO₄, and filtrate was concentrated under reduced pressure. The residue was purified by silica gel chromatography to give chromium complex **8** in 30 % yield as yellow amorphous.

Complex 8

[α]_D¹⁸ +371.8 (*c* 0.41, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 1.16 (3H, d, J = 7.2 Hz), 1.71 (3H, s), 3.42 (1H, q, J = 7.2 Hz), 3.54-4.00 (4H, m), 4.17 (1H, t, J = 6.0 Hz), 4.49 (1H, t, J = 6.0 Hz), 4.58 (1H, d, J = 7.0 Hz), 4.70 (1H, d, J = 6.0 Hz), 6.02 (1H, s), 6.46 (1H, J = 5.0 Hz), 6.80 (2H, t, J = 4.0 Hz), 6.88 (1H, t, J = 4.0 Hz), 7.01 (1H, d, J = 4.0Hz), 7.18 (1H, m), 7.89 (1H, d, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 18.1, 30.5, 36.2, 65.7, 81.7, 86.8, 92.4, 94.3, 99.5, 115.1, 123.2, 125.4, 126.9, 127.7, 128.7, 129.9, 134.0, 234.1; IR (CHCl₃) 2967, 2892, 1954, 1869 cm⁻¹; MS (relative intensity) *m/z* 493 (M⁺, 13), 409 (83), 312 (100); HRMS calcd for C₂₇H₂₃NO₅Cr, 493.0981. found 493.0977.

X-ray Crystallography

A crystal was mounted on a grass capillary with Paratone-N hydrocarbon oil and transferred to a Rigaku RAXIS Rapid diffractometer equipped with an imaging plate detector. The frame data were processed using the Rigaku PROCESS-AUTO program,⁴ and the reflection data were corrected for absorption with an ABSCOR program.⁵ The structures were solved by a direct method (SHELXS 97) and refinement on F^2 by full-matrix least-squares method by using SHELX97.⁶

Complex 7 + 0.5(C₇H₈)

Crystallographic data: $C_{27.5}H_{23}CrNO_4$, M = 483.48, triclinic, space group *P-1*, a = 10.867(4), b = 14.490(7), c = 14.911(4), $V = 2293.2(1)^3$, Z = 4, Dc = 1.4000 g cm⁻³ μ (Mo K α) = 0.71075 mm⁻¹, F(000) = 1004.00, T = 296 K, 22335 reflections were corrected, 10174 unique ($R_{int} = 0.024$), $R_1 = 0.047$ ($I > 3\sigma(I)$), $wR_2 = 0.145$ ($I > 3\sigma(I)$), S = 1.03

Special Remarks

- 1. Two crystallographycally independent molecules are included in an asymmetric unit. These two molecules take almost same conformation.
- Toluene is included as a crystal solvent. One toluene molecule exists in an asymmetric unit.
- 3. In an ortep diagram, the molecule looks like *p*-xylene is actually a toluene molecule partially overlapping two different orientations as shown below. This X-ray structure was analyzed on the basis of the assumption that a methyl group occupancy was 0.5 each.

4. Level A alert appeared when our CIF file was checked by checkCIF, however it is due to the disorder of solvent molecules.

Comparison of the rotational barrier for complex 6g and *N*-aryl indole P7

The relative energies for rotational barrier of *ortho*-trisubstituted chromium complexes **6g** and **P7** were carried out B3LYP/6-31(d, p) level calculations by using Gaussian 03 program.⁷ Compared with the relative energies of these two complexes, it was revealed that **6g** have a higher rotational barrier than *N*-aryl indole complex **P7** with axial chiral N-C bond.

Cartesian coordinate for 6g

С	-1.549808388582	-0.875453666030	0.879805131071
С	-2.649256765651	-1.293530001744	0.089612204753
С	-3.530049440086	-2.267977138683	0.591663981007
С	-3.328137219872	-2.804572603647	1.875351975537
С	-2.235987233936	-2.383032577238	2.651032757828
С	-1.322301388274	-1.420021766515	2.166796991829
С	-2.839705098262	-0.723644211499	-1.312367753652
0	-3.127898080318	0.720433881719	-1.308163883048
0	-3.974542204635	-1.365967255986	-1.975121328293
С	-4.906006399219	-0.314320585682	-2.429836138811
С	-4.581301353244	0.863341910165	-1.496563158650
N	-0.646924794212	0.130041863555	0.337788997749
С	0.403856348379	-0.273577641617	-0.490534678149
С	1.170399761097	0.704156363151	-1.228281287296
С	2.150085428573	0.264593214852	-2.153021842860
С	2.432905566256	-1.122408301740	-2.352500631409
С	1.748258395038	-2.068424490468	-1.555751744305
С	0.753766200728	-1.650292028989	-0.619796880814
С	-0.814984037487	1.507856622543	0.703633295950
С	-1.726707181623	1.869919926993	1.718343604542
С	-0.056471925336	2.510561026962	0.056187733051
С	-1.864551334439	3.211445952383	2.105010893570
С	-0.195145521569	3.846574904518	0.469421870823
С	0.821875285781	2.174579661440	-1.134496965752
С	-1.088807506731	4.211177146205	1.490157311935
С	-0.126879246782	-1.013896341427	3.006350661085
Η	-4.350099085445	-2.600941620202	-0.034401357869
Η	-4.012672507275	-3.554518844772	2.263976036930
Η	-2.076644173315	-2.807323613661	3.639569370023
Н	-1.940787456513	-0.844377826173	-1.926097306731

Н	-4.699459520552	-0.071289001828	-3.479433837893
Н	-5.920601024367	-0.706708138894	-2.322726385073
Η	-5.102223463746	0.779933454337	-0.533648567812
Н	-4.753331987939	1.847053825592	-1.937683638139
Η	2.688891009384	1.009128934621	-2.729617771435
Η	3.182076354819	-1.433953302606	-3.069593174232
Η	1.975852487326	-3.124522269754	-1.644419477936
Η	0.232871308144	-2.395157613208	-0.033492246514
Η	-2.332411467598	1.110968413780	2.200565314288
Η	-2.570364999227	3.470605635464	2.890333935106
Η	0.401036488986	4.611603788155	-0.025203644453
Η	0.284165014614	2.457798271832	-2.055029835287
Η	1.738872788874	2.776519428378	-1.113694380561
Η	-1.180230377858	5.249628308925	1.796323050150
Η	-0.010518209822	0.073168163428	3.064981882437
Η	0.805496309317	-1.407542065857	2.582544535948
Η	-0.218903198108	-1.403945338317	4.025460528114
С	4.493394808225	0.054169489278	-0.447950588696
0	5.584155714968	0.477139241894	-0.672003777210
С	3.521268093721	-1.989077846526	0.779491283786
0	3.967884205589	-2.924398304954	1.364362046657
С	2.755787425740	0.405908278001	1.391729497244
0	2.729728560579	1.054805326867	2.389693819978
Cr	2.812908035885	-0.579694637025	-0.144939428510

Cartesian coordinate for P7

С	-1.544150453372	-0.798754556204	1.061765863745
С	-2.690692115695	-1.220851703039	0.342377626919
С	-3.616083369476	-2.079052165263	0.957686300767
С	-3.410356822090	-2.494846878083	2.285450210852
С	-2.288380167938	-2.046751125487	2.998391359674
С	-1.332300373272	-1.190699917616	2.404350580947
С	-2.934869110793	-0.704243324346	-1.060641612091
0	-3.509085818411	0.674395208687	-1.022548639684
0	-3.914037568282	-1.525073429355	-1.747412039031
С	-4.697192256389	-0.620486382983	-2.604489402650
С	-4.797848537222	0.650648392995	-1.742493632489
Ν	-0.580202044522	0.055186971712	0.402313304192
С	0.453687417475	-0.390948137070	-0.426151568502
С	1.172785979334	0.767688305734	-0.886427912031
С	2.268953466774	0.590902295192	-1.792835062076
С	2.530632567737	-0.703447351217	-2.308740431788
С	1.785221858055	-1.847069801445	-1.862256518015
С	0.786184256924	-1.705967357804	-0.863287646485
С	-0.522853840132	1.462091250487	0.477376806461
С	-1.530015441783	2.239635475495	1.266386533527
С	0.544032111041	1.913176233309	-0.285593044077
С	-0.139777268433	-0.724824019241	3.218157225776
Н	-4.474970682317	-2.417572964048	0.388935371702
Η	-4.123217041146	-3.163851731325	2.760912502759
Η	-2.136784649640	-2.364973863138	4.027618419329
Η	-2.015598946049	-0.629200351220	-1.653465243668
Η	-4.161019613916	-0.434088657107	-3.544888346212
Η	-5.652993489141	-1.109526022026	-2.802484229670
Η	-5.621602347122	0.589945566936	-1.020729035448
Η	-4.872368263069	1.572580732136	-2.325699295994
Н	2.850396852888	1.442139205745	-2.126877649589

Η	3.328643884488	-0.841559090781	-3.029074103949
Н	2.022286343651	-2.830109133401	-2.250908723248
Η	0.246308667857	-2.569948725071	-0.493716529428
Η	-1.309781853473	3.308970300755	1.198731823719
Η	-1.523869581309	1.955681248023	2.326753356181
Η	-2.538886491349	2.062697004769	0.873622704885
Η	0.835964625355	2.945653273681	-0.406822107662
Η	0.534868611162	-0.085323025959	2.644739202742
Η	0.447025206113	-1.580199469112	3.572837601663
Н	-0.474867466424	-0.164924498232	4.101741236927
С	3.549410091177	0.416670671650	0.999007613722
0	4.012439754496	1.288652961202	1.664129457616
С	4.452724093101	-1.615207790241	-0.323301062560
0	5.526122698307	-2.084911985728	-0.539566798163
С	2.628470591898	-1.971976477253	1.414867616172
0	2.507330621321	-2.700771507902	2.352332025915
С	2.808643913611	-0.892964656809	-0.039242111678

Molecular structure of 6g

Molecular structure of P7

S41

References

- Davis, S. G.; Good Fellow, C. L. J. Chem. Soc., Perkin Trans. 1 1989, 192; 1990, 393.
- (2) Davies, S. G.; Good Fellow, C. L. Synlett, 1989, 59.
- (3) (a) Kamikawa, K.; Kinoshita, S.; Furusyo, M.; Takemoto, S.; Matsuzaka, H.; Uemura, M. J. Org. Chem. 2007, 72, 3394. (b) Kamikawa, K.; Kinoshita, S.; Matsuzaka, H.; Uemura, M. Org. Lett. 2006, 8, 1097.
- (4) PROCESS AUTO, Automatic Data Acquisition and Processing Package for Imaging Plate Diffractometer; Rigaku Corporation: Tokyo, Japan, 1995.
- (5) T. Higashi, ABSCOR, Empirical Absorption Correction Based on Fourier Series Approximation; Rigaku Corporation: Tokyo, Japan, 1995.
- (6) Sheldrick, G. M., SHELX97, Program for Crystal Structure Determination; University of Göttingen, Germany, 1997.
- (7) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; *Gaussian 03, Revision E.01*, Gaussian, Inc., Wallingford CT, 2004.