Supporting Information

Siloxy(trialkoxy)ethene Undergoes Regioselective [2+2] Cycloaddition to Ynones and Ynoates en route to Functionalized Cyclobutenediones

Shin Iwata, Toshiyuki Hamura,[≠] and Keisuke Suzuki^{*}

Department of Chemistry, Tokyo Institute of Technology, and SORST–JST, O-okayama, Meguro-ku, Tokyo 152-8551, Japan

[#]Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, and PRESTO, Japan Science and Technology Agency (JST)
2-1 Gakuen, Sanda, Hyogo 669-1337, Japan

<u>ksuzuki@chem.titech.ac.jp</u>

General Experimental Procedures

All experiments dealing with air- and moisture-sensitive compounds were conducted under an atmosphere of dry argon.

For thin-layer chromatography (TLC) analysis, Merck pre-coated plates (silica gel 60 F_{254} , Art 5715, 0.25 mm) were used. For flash column chromatography, silica gel 60 (Merck Art 7734, 70–230 mesh) was used. Silica gel preparative TLC (PTLC) was performed on Merck silica gel 60 PF_{254} (Art 7747).

Melting point (mp) determinations were performed by using a Yanako MP-S3 instrument and are uncorrected. ¹H NMR and ¹³C NMR were measured on a JEOL JNM lambda-400, a JEOL JNM ECA-400, and a Bruker AV400N spectrometer. Infrared (IR) spectra were recorded on a Jasco IR-Report-100, and a Horiba FT-710 spectrometer. Attenuated Total Reflectance Fourier Transformation Infrared (ATR-FTIR) spectra were recorded on a Perkin Elmer 1600 FTIR. Elementary analyses were performed by using Perkin Elmer series II 2004.

Synthesis of cyclobutene 3:

A mixture of 3-butyne-2-one (1) (131 mg, 1.92 mmol) and KSA 2 (627 mg, 2.52 mmol) was heated at 60 °C for 8 h. The crude product was purified by silica-gel flash column chromatography (hexane/EtOAc = 9/1) to give 3 (564 mg, 92.6%) as a colorless oil.

cyclobutene **3** ¹H NMR (acetone- d_6 , δ) 0.08 (s, 3H), 0.14 (s, 3H), 0.90 (s, 9H), 2.29 (s, 3H), 3.33 (s, 3H), 3.36 (s, 3H), 3.39 (s, 3H), 7.33 (s, 1H); ¹³C NMR (acetone- d_6 , δ) -3.4, -3.2, 19.1, 26.3, 27.5, 51.2, 51.3, 53.1, 107.0, 108.3, 145.8, 152.3, 194.9; IR (neat) 2937, 2856, 1689, 1606, 1463, 1361, 1276, 1251, 1195, 1095, 1014, 998, 898, 838, 781 cm⁻¹; Anal. Calcd for C₁₅H₂₈O₅Si: C, 56.93; H, 8.92. Found: C, 56.77; H, 9.01.

1,3-diene **4** ¹H NMR (acetone- d_6 , δ) 0.15 (s, 6H), 0.91 (s, 9H), 1.86 (s, 3H), 3.49 (s, 3H), 3.60 (s, 3H), 3.63 (s, 3H), 4.30 (s, 1H); ¹³C NMR (acetone- d_6 , δ) -3.7, 18.6, 20.0, 26.0, 51.1, 55.6, 56.1, 76.3, 111.8, 148.8, 159.7, 169.3; IR (neat) 2950, 2897, 2858, 1734, 1667, 1619, 1462, 1434, 1381, 1324, 1254, 1213, 1169, 1104, 1076, 1002, 939, 863, 838, 813, 780 cm⁻¹.

^{#1}The stereochemistry of **4** was determined on the basis of the observed NOE shown below.

H_a: 1.86 ppm, H_b: 4.30 ppm, H_c: 3.63 ppm

Scheme 1. Determination of the regiochemistry

Synthesis of alcohol *i*:

To a solution of cyclobutene **3** (33.5 mg, 0.106 mmol) in MeOH (0.3 mL) was added $CeCl_3 \cdot 7H_2O$ (43.5 mg, 0.117 mmol) and $NaBH_4$ (4.5 mg, 0.119 mmol) at 0 °C. After 1 h, the reaction was stopped by adding water. The products were extracted with Et_2O (X3), and the combined organic extracts were washed with brine, dried (Na_2SO_4), and concentrated in vacuo. The residue was purified by PTLC (hexane/CH₂Cl₂/Et₂O = 50/25/25) to give alcohol **i** (33.3 mg, 98.8%) as a mixturer of diasteromers.

Recrystallization from hexane gave ia as colorless prisms. Mp 72.0–73.5 °C.

alcohol **ia**

¹H NMR (acetone- d_6 , δ) 0.149 (s, 3H), 0.154 (s, 3H), 0.90 (s, 9H), 1.32 (d, 3H, J = 6.8 Hz), 3.27 (s, 3H), 3.30 (s, 3H), 3.41 (s, 3H), 3.89 (d, 1H, J = 5.3 Hz), 4.40–4.50 (m, 1H), 6.47 (d, 1H, J = 1.4 Hz); ¹³C NMR (acetone- d_6 , δ) –2.9, –2.7, 19.0, 22.8, 26.5, 50.87, 50.91, 53.2, 64.2, 107.7, 108.3, 131.4, 161.6; IR (ATR) 3501, 2938, 2893, 2857, 1467, 1436, 1387, 1359, 1333, 1277, 1243, 1193, 1165, 1080, 1058, 1009, 982, 905, 829, 780, 727 cm⁻¹; Anal. Calcd for C₁₅H₃₀O₅Si: C, 56.57; H, 9.49. Found: C, 56.65; H, 9.42.

^{#2} The stereochemistry of alcohol **ia** was determined by X-ray analysis shown below.^[1]

^[1] CCDC-662792 (**ia**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure 1. X-ray structure of ia

alcohol **ib** ¹H NMR (acetone- d_6 , δ) 0.14 (s, 3H), 0.14 (s, 3H), 0.89 (s, 9H), 1.29 (d, 3H, J = 6.6 Hz), 3.26 (s, 3H), 3.30 (s, 3H), 3.40 (s, 3H), 3.95 (d, 1H, J = 5.1 Hz), 4.40–4.50 (m, 1H), 6.44 (d, 1H, J = 1.4 Hz); ¹³C NMR (acetone- d_6 , δ) –3.2, –2.9, 19.1, 23.0, 26.3, 51.0, 51.2, 52.3, 63.9, 106.9, 109.0, 130.7, 161.7; IR (neat) 3454, 2952, 2935, 2856, 2832, 1473, 1463, 1438, 1373, 1361, 1276, 1253, 1193, 1164, 1089, 1058, 1018, 989, 921, 894, 836, 779, 730 cm⁻¹ Anal. Calcd for C₁₅H₃₀O₅Si: C, 56.57; H, 9.49. Found: C, 56.80; H, 9.62.

Synthesis of cyclobutene 6a:

 \sim

According to the general procedure for synthesis of cyclobutene **3**, ynone $5a^{[2]}$ (124 mg, 0.953 mmol) and KSA **2** (318 mg, 1.28 mmol) gave, after purification by silica-gel flash column chromatography (hexane/EtOAc = 9/1), **6a** (337 mg, 93.4%) as a yellow oil.

^[2] Y. Maeda, N. Kakiuchi, S. Matsumura, T. Nishimura, T. Kawamura, S. Uemura, J. Org. Chem. 2002, 67, 6718.

-3.2, -3.1, 19.0, 26.3, 51.3, 51.4, 53.4, 108.2, 108.9, 129.6, 129.8, 134.2, 137.9, 145.3, 151.3, 190.4; IR (neat) 3066, 2937, 2904, 2856, 2835, 1660, 1598, 1580, 1472, 1463, 1448, 1360, 1318, 1278, 1256, 1193, 1150, 1107, 1090, 1065, 1013, 1000, 941, 892, 874, 839, 801, 781, 721 cm⁻¹; Anal. Calcd for $C_{20}H_{30}O_5$ Si: C, 63.46; H, 7.99. Found: C, 63.34; H, 8.00.

Synthesis of cyclobutene **6b**:

According to the general procedure for synthesis of cyclobutene **3**, ynone $5b^{[2]}$ (78.3 mg, 0.501 mmol) and KSA **2** (178 mg, 0.717 mmol) gave, after purification by silica-gel flash column chromatography (hexane/EtOAc = 9/1), **6b** (180 mg, 88.8%). Recrystallization from hexane gave **6b** as yellow prisms. Mp. 68.0–69.2 °C.

cyclobutene **6b**

¹H NMR (acetone- d_6 , δ)

0.13 (s, 3H), 0.18 (s, 3H), 0.93 (s, 9H), 3.38 (s, 3H), 3.41 (s, 3H), 3.48 (s, 3H), 7.41 (d, 1H, J = 15.8 Hz), 7.45–7.50 (m, 3H), 7.54 (s, 1H), 7.71 (d, 1H, J = 15.8 Hz), 7.75–7.82 (m, 2H);

¹³C NMR (acetone- d_6 , δ)

-3.2, -3.1, 19.1, 26.4, 51.3, 51.4, 53.3, 107.2, 108.6, 124.0, 129.5, 129.8, 131.6, 135.6, 144.3, 145.3, 153.2, 186.2;

IR (ATR)

3062, 3026, 2937, 2903, 2856, 2834, 1666, 1636, 1597, 1576, 1495, 1471, 1462, 1450, 1408, 1388, 1339, 1277, 1180, 1093, 1066, 1010, 999, 912, 887, 838, 796, 781, 766, 727 cm⁻¹; Anal. Calcd for $C_{22}H_{32}O_5Si: C, 65.31; H, 7.97$. Found: C, 65.51; H, 8.14.

Synthesis of cyclobutene 6c:

According to the general procedure for synthesis of cyclobutene **3**, ynone $5c^{[3]}$ (53.5 mg, 0.399 mmol) and KSA **2** (141 mg, 0.568 mmol) gave, after purification by PTLC (hexane/EtOAc = 7/3), **6c** (115 mg, 75.4%) as a colorless oil.

^[3] E. Schroeder, M. Lehmann, I. Boettcher, *Eur. J. Med. Chem.* **1979**, *14*, 309.

IR (neat)

3068, 2935, 2857, 2834, 1647, 1637, 1472, 1460, 1449, 1437, 1422, 1388, 1378, 1360, 1343, 1306, 1278, 1248, 1192, 1139, 1099, 1064, 1013, 998, 971, 927, 889, 838, 799, 781, 749, 706 cm⁻¹; Anal. Calcd for $C_{20}H_{34}O_5Si: C, 62.79; H, 8.96$. Found: C, 63.02; H, 8.75.

Synthesis of cyclobutene 6d:

According to the general procedure for synthesis of cyclobutene **3**, ynone **5d**^[4] (148 mg, 0.960 mmol) and KSA **2** (323 mg, 1.30 mmol) gave, after purification by silica-gel flash column chromatography (hexane/EtOAc = 19/1), **6d** (377 mg, 97.6%) as a colorless oil.

cyclobutene 6d

¹H NMR (acetone- d_6 , δ)

0.13 (s, 3H), 0.17 (s, 3H), 0.91 (s, 9H), 3.38 (s, 3H), 3.41 (s, 3H), 3.45 (s, 3H), 7.45–7.65 (m, 3H), 7.69 (s, 1H), 7.72–7.80 (m, 2H);

¹³C NMR (acetone- d_6 , δ)

-3.4, -3.3, 19.1, 26.2, 51.3, 51.5, 53.4, 86.9, 92.8, 106.6, 108.1, 120.3, 129.8, 132.2, 134.1, 149.9, 152.8, 173.3;

IR (neat)

 $3065, 2938, 2856, 2836, 2200, 1644, 1597, 1490, 1471, 1463, 1443, 1318, 1273, 1190, 1093, 1009, 896, 838, 798, 781, 758, 688 \ \mathrm{cm^{-1}};$

Anal. Calcd for C₂₂H₃₀O₅Si: C, 65.64; H, 7.51. Found: C, 65.42; H, 7.72.

Synthesis of cyclobutene 6e:

According to the general procedure for synthesis of cyclobutene **3**, ynoate $5e^{[5]}$ (40.0 mg, 0.273 mmol) and KSA **2** (89.5 mg, 0.360 mmol) gave, after purification by PTLC (hexane/EtOAc = 9/1), **6e** (101 mg, 93.5%) as a colorless oil.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} O \\ PhO \\ \hline \\ OMe \\ OMe \\ OMe \\ OMe \\ OMe \\ \end{array} \\ \end{array} \\ \begin{array}{c} cyclobutene \ \pmb{6e} \\ ^{1}H \ NMR \ (acetone-d_{6}, \delta) \\ 0.17 \ (s, 3H), 0.19 \ (s, 3H), 0.93 \ (s, 9H), 3.38 \ (s, 3H), 3.41 \ (s, 3H), 3.51 \ (s, 3H), 7.17-7.21 \ (m, 2H), \\ 7.25-7.32 \ (m, 1H), 7.42-7.48 \ (m, 2H), 7.54 \ (s, 1H); \\ ^{13}C \ NMR \ (acetone-d_{6}, \delta) \\ -3.3, \ -3.1, \ 19.0, \ 26.2, \ 51.3, \ 51.4, \ 53.0, \ 106.9, \ 108.6, \ 122.4, \ 126.9, \ 130.4, \ 145.8, \ 149.1, \ 151.2, \\ 160.5; \\ IR \ (neat) \end{array}$$

^[4] D. H. Wadsworth, S. M. Geer, M. R. Detty, J. Org. Chem. **1987**, 52, 3662.

^[5] P. V. Ramachandran, M. T. Rudd, M. V. R. Reddy, *Tetrahedron Lett.* **2005**, *46*, 2547.

^[6] L. G. Beholz, P. Benovsky, D. L. Ward, N. S. Barta, J. R. Stille, J. Org. Chem. 1997, 62, 1033.

3075, 3044, 2938, 2897, 2857, 2836, 1744, 1619, 1591, 1492, 1472, 1463, 1409, 1389, 1360, 1275, 1239, 1192, 1162, 1094, 1071, 1052, 1012, 902, 868, 839, 798, 781, 756, 733 cm⁻¹; Anal. Calcd for $C_{20}H_{30}O_6Si: C, 60.89; H, 7.66$. Found: C, 60.65; H, 7.79.

Synthesis of cyclobutene 8a:

To a solution of ynoate $7a^{[5]}$ (80.1 mg, 0.488 mmol) in toluene (1.0 mL) was added Me₃Al (1.03 M in hexane, 0.48 mL, 0.49 mmol) and KSA 2 (141 mg, 0.567 mmol) in toluene (1.0 mL) at -78 °C. After warmed up to -20 °C and further stirred for further 69 h, the reaction was stopped by adding sat. aq. NaHCO₃. The products were extracted with EtOAc and combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by PTLC (hexane/CH₂Cl₂/Et₂O = 70/15/15) to give cyclobutene **8a** (89.4 mg, 44.4%) and adduct **9a** (57.5 mg, 28.6%).

cyclobutene **8a** (colorless oil) ¹H NMR (acetone- d_6 , δ) 0.10 (s, 3H), 0.14 (s, 3H), 0.91 (s, 9H), 1.55–1.67 (m, 4H), 2.14–2.43 (m, 4H), 3.40 (s, 3H), 3.41 (s, 3H), 3.42 (s, 3H), 3.73 (s, 3H), 6.58–6.61 (m, 1H); ¹³C NMR (acetone- d_6 , δ) –3.1, –3.0, 19.0, 22.2, 23.0, 26.3, 26.5, 26.9, 51.4, 52.4, 52.5, 52.6, 106.7, 109.2, 132.8, 133.5, 137.5, 156.8, 163.6; IR (neat) 2936, 2857, 1720, 1627, 1461, 1434, 1268, 1245, 1218, 1199, 1087, 1025, 998, 952, 890, 836, 802, 779, 728 cm⁻¹; Anal. Calcd for C₂₁H₃₆O₆Si: C, 61.13; H, 8.79. Found: C, 61.11; H, 8.95.

adduct **9a** (colorless oil) ¹H NMR (acetone- d_6 , δ) 0.205 (s, 3H), 0.211 (s, 3H), 0.90 (s, 9H), 1.56–1.67 (m, 4H), 2.10–2.12 (m, 4H), 3.381 (s, 3H), 3.383 (s, 3H), 3.40 (s, 3H), 3.65 (s, 3H), 6.10–6.18 (m, 1H); ¹³C NMR (acetone- d_6 , δ) –3.4, –2.6, 18.8, 22.0, 22.8, 26.08, 26.13, 29.3, 51.85, 51.92, 52.01, 52.02, 84.2, 90.1, 97.3, 104.3, 120.6, 136.5, 167.5; IR (neat) 2935, 2857, 2217, 1751, 1461, 1434, 1388, 1361, 1284, 1249, 1214, 1126, 1072, 1018, 960, 937, 879, 840, 782, 717 cm⁻¹; Anal. Calcd for C₂₁H₃₆O₆Si: C, 61.13; H, 8.79. Found: C, 61.23; H, 8.64. Synthesis of cyclobutene 8b:

According to the general procedure for synthesis of **8a**, ynoate **7b**^[5] (90.1 mg, 0.506 mmol), KSA **2** (147 mg, 0.592 mmol), and Me₃Al (1.03 M in hexane, 0.50 mL, 0.51 mmol) gave, after purification by PTLC (hexane/EtOAc = 9/1), cyclobutene **8b** (105 mg, 48.7%) and adduct **9b** (61.8 mg, 28.7%).

cyclobutene **8b** (color less oil) ¹H NMR (acetone- d_6 , δ) 0.12 (s, 3H), 0.15 (s, 3H), 0.91 (s, 9H), 1.28 (t, 3H, J = 7.0 Hz), 1.55–1.70 (m, 4H), 2.14–2.24 (m, 2H), 2.24–2.42 (m, 2H), 3.400 (s, 3H), 3.403 (s, 3H), 3.43 (s, 3H), 4.17 (qd, 1H, J₁ = 7.0, J₂ = 11.1 Hz), 4.24 (qd, 1H, J₁ = 7.0, J₂ = 11.1 Hz), 6.55–6.61 (m, 1H); ¹³C NMR (acetone- d_6 , δ) –3.0, –2.9, 14.5, 19.0, 22.2, 23.0, 26.3, 26.5, 27.0, 52.2, 52.6, 52.8, 60.9, 106.8, 109.1, 132.0, 134.1, 137.1, 156.4, 163.4; IR (neat) 2935, 2857, 2834, 1716, 1627, 1461, 1446, 1388, 1365, 1307, 1268, 1245, 1218, 1191, 1091, 1029, 998, 952, 894, 836, 802, 779, 725 cm⁻¹; Anal. Calcd for C₂₂H₃₈O₆Si: C, 61.94; H, 8.98. Found: C, 61.71; H, 9.16.

adduct **9b** (colorless oil) ¹H NMR (acetone- d_6 , δ) 0.18 (s, 3H), 0.20 (s, 3H), 0.90 (s, 9H), 1.11 (t, 3H, J = 7.0 Hz), 1.55–1.70 (m, 4H), 2.08–2.14 (m, 4H), 3.38 (s, 3H), 3.41 (s, 3H), 3.66 (s, 3H), 3.75 (q, 1H, J = 7.0 Hz), 3.75 (q, 1H, J = 7.0 Hz), 6.08–6.16 (m, 1H); ¹³C NMR (acetone- d_6 , δ) –3.4, –2.5, 15.6, 18.7, 22.0, 22.8, 26.07, 26.11, 29.3, 51.85, 51.88, 61.1, 84.8, 89.9, 96.9, 104.6, 120.8, 136.3, 167.7; IR (neat) 2931, 2857, 2217, 1751, 1461, 1434, 1388, 1361, 1284, 1249, 1211, 1137, 1106, 1068, 1018, 937, 890, 840, 779, 721 cm⁻¹; Anal. Calcd for C₂₂H₃₈O₆Si: C, 61.94; H, 8.98. Found: C, 61.70; H, 9.16.

Synthesis of cyclobutene 8c:

According to the general procedure for synthesis of cyclobutene **8a**, ynoate **7c** (47.0 mg, 0.244 mmol), KSA **2** (72.0 mg, 0.290 mmol), and Me₃Al (1.02 M in hexane, 0.24 mL, 0.24 mmol) gave, after purification by PTLC (hexane/EtOAc = 9/1), cyclobutene **8c** (63.9 mg, 59.3%) and adduct **9c** (10.8 mg, 10.0%).

cyclobutene **8c** (colorless oil) ¹H NMR (acetone- d_6 , δ) 0.14 (s, 3H), 0.16 (s, 3H), 0.91 (s, 9H), 1.27 (d, 3H, J = 6.4 Hz), 1.28 (d, 3H, J = 6.4 Hz), 1.54–1.70 (m, 4H), 2.15–2.22 (m, 2H), 2.28–2.37 (m, 2H), 3.397 (s, 3H), 3.401 (s, 3H), 3.43 (s, 3H), 5.08 (sept, 1H, J = 6.4 Hz), 6.54–6.57 (m, 1H); ¹³C NMR (acetone- d_6 , δ) –2.9, –2.8, 19.0, 21.9, 22.0, 22.2, 23.0, 26.4, 26.4, 27.1 52.1 52.6, 52.9, 68.7, 106.9, 109.0, 131.9, 134.5, 136.7, 155.9, 163.0; IR (neat) 2935, 2857, 2838, 1712, 1627, 1465, 1384, 1357, 1307, 1268, 1249, 1222, 1195, 1091, 1022, 998, 952, 921, 890, 836, 806, 779, 725 cm⁻¹; Anal. Calcd for C₂₃H₄₀O₆Si: C, 62.69; H, 9.15. Found: C, 62.68; H, 9.08.

adduct **9c** (colorless oil) ¹H NMR (acetone- d_6 , δ) 0.23 (s, 3H), 0.24 (s, 3H), 0.90 (s, 9H), 1.16 (d, 6H, J = 6.4 Hz), 1.54–1.70 (m, 4H), 2.06–2.15 (m, 4H), 3.407 (s, 3H), 3.410 (s, 3H), 3.65 (s, 3H), 4.28 (sept, 1H, J = 6.4 Hz), 6.10–6.17 (m, 1H); ¹³C NMR (acetone- d_6 , δ) –3.1, –2.4, 18.8, 22.0, 22.7, 23.5, 24.7, 26.0, 26.2, 51.7 51.9, 52.3, 68.1, 85.6, 88.7, 96.6, 104.1, 120.7, 136.2, 167.8; IR (neat) 2935, 2857, 2217, 1751, 1627, 1465, 1434, 1380, 1361, 1284, 1249, 1214, 1114, 1064, 1041, 956, 917, 887, 836, 802, 779, 717 cm⁻¹; Anal. Calcd for C₂₃H₄₀O₆Si: C, 62.69; H, 9.15. Found: C, 62.86; H, 9.40.

Synthesis of cyclobutene 8d:

According to the general procedure for synthesis of cyclobutene **8a**, alkyne **7d** (118 mg, 0.521 mmol), KSA **2** (167 mg, 0.672 mmol), and Me₃Al (1.03 M in hexane, 0.50 mL, 0.51 mmol) gave, after purification by PTLC (hexane/EtOAc = 8/2), **8d** (182 mg, 73.5%) as a colorless oil.

¹H NMR (acetone- d_6 , δ) 0.16 (s, 3H), 0.19 (s, 3H), 0.92 (s, 9H), 1.56–1.72 (m, 4H), 2.16–2.26 (m, 2H), 2.38–2.46 (m, 2H), 3.455 (s, 3H), 3.459 (s, 3H), 3.53 (s, 3H), 6.68–6.72 (m, 1H), 7.14–7.32 (m, 3H), 7.42–7.48 (m, 2H); ¹³C NMR (acetone- d_6 , δ) –3.0, –2.8, 19.0, 22.1, 23.0, 26.3, 26.6, 27.2, 52.3, 52.7, 53.0, 106.9, 109.2, 122.5, 126.8, 130.3, 132.1 132.7, 138.6, 151.3, 159.0, 161.6; IR (KBr) 3062, 2935, 2857, 1731, 1619, 1592, 1492, 1249, 1191, 1164, 1087, 1018, 998, 952, 890, 836, 802, 779 cm⁻¹; Anal. Calcd for C₂₆H₃₈O₆Si: C, 65.79; H, 8.07. Found: C, 65.58; H, 8.32.

Synthesis of cyclobutene 11a:

According to the general procedure for synthesis of cyclobutene **8a**, ynoate **10a** (103 mg, 0.509 mmol), KSA **2** (153 mg, 0.616 mmol), and Me₃Al (1.03 M in hexane, 0.50 mL, 0.51 mmol) gave, after purification by PTLC (hexane/CH₂Cl₂/Et₂O = 70/15/15), **11a** (210 mg, 91.5%) as a colorless oil.

cyclobutene 11a

¹H NMR (acetone- d_6 , δ)

0.17 (s, 3H), 0.19 (s, 3H), 0.91 (t, 3H, J = 7.3 Hz), 0.93 (s, 9H), 1.36–1.48 (m, 2H), 1.65–1.76 (m, 2H), 2.68 (t, 2H, J = 7.0 Hz), 3.45 (s, 3H), 3.47 (s, 3H), 3.50 (s, 3H), 7.15–7.32 (m, 3H), 7.40–7.50 (m, 2H);

¹³C NMR (acetone- d_6 , δ)

-3.2, -3.0, 13.9, 19.0, 23.4, 26.3, 28.3, 30.2, 51.5, 51.7, 52.9, 106.3, 108.6, 122.4, 126.7, 130.3, 137.3, 151.1, 161.2, 167.5;

IR (neat)

3064, 2958, 2937, 2857, 1737, 1656, 1592, 1492, 1463, 1288, 1247, 1191, 1074, 1024, 937, 838, 781, 736 cm⁻¹;

Anal. Calcd for C₂₄H₃₈O₆Si: C, 63.97; H, 8.50. Found: C, 63.73; H, 8.35.

Key HMBC correlations

position	δH (ppm)	carbon no. (ppm)
5	2.68	C-2 (108.6)
9	3.50	C-1 (106.3)
10	3.45	C-2 (108.6)
11	3.47	C-2 (108.6)

Synthesis of cyclobutene 11b:

According to the general procedure for synthesis of cyclobutene **8a**, ynoate **10b** (1.09 g, 4.90 mmol), KSA **2** (1.48 g, 5.96 mmol), and Me₃Al (1.05 M in hexane, 4.6 mL, 4.8 mmol) gave, after purification by silica-gel flash column chromatography (hexane/EtOAc = 9/1), cyclobutene **11b** (1.88 g, 81.4%) as a colorless oil.

cyclobutene 11b

¹H NMR (acetone- d_6 , δ) 0.19 (s, 3H), 0.24 (s, 3H), 0.96 (s, 9H), 3.43 (s, 3H), 3.44 (s, 3H), 3.61 (s, 3H), 7.18–7.33 (m, 3H), 7.21–7.51 (m, 5H), 8.04–8.16 (m, 2H); ¹³C NMR (acetone- d_6 , δ) –2.9, –2.7, 19.0, 26.3, 52.4, 52.6, 53.2, 107.0, 109.4, 122.5, 126.9, 129.1, 130.4, 130.6, 131.6, 132.0, 135.2, 151.1, 158.7, 161.4; IR (neat) 3068, 2938, 2856, 1731, 1631, 1590, 1490, 1276, 1193, 1087, 1022, 995, 894, 836, 781cm⁻¹; Anal. Calcd for C₂₆H₃₄O₆Si: C, 66.35; H, 7.28. Found: C, 66.12; H, 7.47.

Synthesis of cyclobutene 11c:

According to the general procedure for synthesis of cyclobutene **8a**, ynoate **10c** (127 mg, 0.475 mmol), KSA **2** (151 mg, 0.608 mmol), and Me₃Al (1.03 M in hexane, 0.50 mL, 0.52 mmol) gave, after purification by PTLC (hexane/EtOAc = 7/3), cyclobutene **11c** (209 mg, 85.3%) as a colorless oil.

cyclobutene **11c** ¹H NMR (acetone- d_6 , δ) 0.16 (s, 3H), 0.19 (s, 3H), 0.92 (s, 9H), 2.18–2.30 (m, 2H), 2.80–2.92 (m, 2H), 3.37 (t, 2H, J = 7.0 Hz), 3.46 (s, 3H), 3.48 (s, 3H), 3.49 (s, 3H), 7.18–7.24 (m, 2H), 7.26–7.34 (m, 1H), 7.42–7.50 (m, 2H); ¹³C NMR (acetone- d_6 , δ) –3.2, –3.0, 6.9, 19.0, 26.3, 29.7, 32.0, 51.7, 51.9, 52.9, 106.3, 108.7, 122.5, 126.8, 130.3, 138.5,

151.1, 161.1, 165.2;

IR (neat)

2937, 2903, 2856, 2835, 1738, 1657, 1592, 1492, 1472, 1462, 1388, 1359, 1283, 1247, 1192, 1162, 1109, 1078, 1041, 1024, 943, 9142 838, 780, 755, 739 cm⁻¹;

Anal. Calcd for C₂₃H₃₅O₆BrSi: C, 53.59; H, 6.84. Found: C, 53.35; H, 6.60.

Synthesis of cyclobutene 11d:

According to the general procedure for synthesis of cyclobutene 8a, ynoate 10d (100 mg, 0.322

mmol), KSA **2** (101 mg, 0.407 mmol), and Me₃Al (1.03 M in hexane, 0.35 mL, 0.36 mmol) gave, after purification by PTLC (hexane/EtOAc = 8/2), cyclobutene **11d** (156 mg, 86.6%) as a colorless oil.

PMBO cyclobutene **11d**

¹H NMR (acetone- d_6 , δ)

0.15 (s, 3H), 0.18 (s, 3H), 0.92 (s, 9H), 2.95 (td, 1H, $J_1 = 7.3$, $J_2 = 14.6$ Hz), 2.98 (td, 1H, $J_1 = 7.3$, $J_2 = 14.6$ Hz), 3.44 (s, 3H), 3.46 (s, 3H), 3.48 (s, 3H), 3.76 (s, 3H), 3.76 (t, 2H, J = 7.3 Hz), 4.45 (s, 2H), 6.87 (d, 2H, J = 8.7 Hz), 7.08–7.14 (m, 2H), 7.24–7.30 (m, 3H), 7.40–7.46 (m, 2H); ¹³C NMR (acetone- d_6 , δ) –3.1, –3.0, 19.0, 26.3, 29.4, 51.6, 51.7, 53.0, 55.4, 67.6, 72.8, 106.4, 108.4, 114.3, 122.5, 126.7,

129.9, 130.2, 131.4, 138.9, 151.1, 160.0, 161.1, 163.7;

IR (neat)

3066, 2935, 2900, 2857, 1739, 1658, 1612, 1592, 1511, 1492, 1461, 1361, 1284, 1249, 1191, 1083, 1037, 914, 836, 782, 752 cm⁻¹;

Anal. Calcd for C₃₀H₄₂O₈Si: C, 64.49; H, 7.58. Found: C, 64.30; H, 7.79.

Synthesis of cyclobutene 11e:

According to the general procedure for synthesis of cyclobutene **8a**, alkyne **10e** (151 mg, 0.466 mmol), KSA **2** (147 mg, 0.592 mmol), and Me₃Al (1.03 M in hexane, 0.50 mL, 0.52 mmol) gave, after purification by PTLC (hexane/EtOAc = 8/2), cyclobutene **11e** (245 mg, 91.9%) as a colorless oil.

cyclobutene 11e

¹H NMR (acetone- d_6 , δ)

0.16 (s, 3H), 0.18 (s, 3H), 0.92 (s, 9H), 1.94–2.04 (m, 2H), 2.75–2.82 (m, 2H), 3.44 (s, 3H), 3.46 (s, 3H), 3.48 (s, 3H), 3.51 (t, 2H, J = 6.4 Hz), 3.76 (s, 3H), 4.40 (s, 2H), 6.84 (d, 2H, J = 8.7 Hz), 7.14–7.18 (m, 2H), 7.22 (d, 2H, J = 8.7 Hz), 7.25–7.30 (m, 1H), 7.40–7.46 (m, 2H); ¹³C NMR (acetone- d_6 , δ)

-3.2, -3.0, 19.0, 25.6, 26.3, 28.5, 51.6, 51.8, 52.9, 55.4, 70.0, 72.9, 106.4, 108.6, 114.3, 122.5, 126.7, 129.8, 130.3, 131.8, 137.6, 151.2, 160.0, 161.2, 167.0;

IR (neat)

2936, 2855, 1736, 1655, 1612, 1591, 1513, 1492, 1463, 1388, 1360, 1287, 1247, 1190, 1078, 1024, 937, 838, 780, 755 cm⁻¹;

Anal. Calcd for C₃₁H₄₄O₈Si: C, 65.01; H, 7.74. Found: C, 64.79; H, 7.77.

Scheme 2. Preparation of ynoate 10d.

Synthesis of alkyne 10d:

To a mixture of alkyne **ii** (2.45 g, 12.9 mmol) in THF (60 mL) was added *n*-BuLi (1.60 M in hexane, 8.5 mL, 14 mmol) at -78 °C. After 1 h, ClCO₂Ph (2.00 g, 12.8 mmol) in THF (5 mL) was added to the mixture, and the reaction was stirred for further 1 h. The reaction was stopped by adding sat. NH₄Cl. The products were extracted with EtOAc and combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by silica-gel flash column chromatography (hexane/EtOAc = 9/1) to give ynoate **10d** (3.50 g, 87.6%) as a colorless oil.

PMBO alkyne **10d** ¹H NMR (CDCl₃, δ) 2.69 (t, 2H, J = 7.3 Hz), 3.65 (t, 2H, J = 7.3 Hz), 3.80 (s, 3H), 4.51 (s, 2H), 6.86–6.94 (m, 2H), 7.10–7.16 (m, 2H), 7.23–7.34 (m, 3H), 7.35–7.44 (m, 2H); ¹³C NMR (CDCl₃, δ) 20.4, 55.3, 66.5, 72.8, 73.5, 88.8, 113.9, 121.4, 126.3, 129.4, 129.5, 129.7, 150.1, 151.8, 159.4; IR (neat) 3064, 3041, 3002, 2955, 2935, 2913, 2838, 2865, 2236, 1728, 1612, 1589, 1513, 1491, 1457, 1421, 1362, 1328, 1302, 1234, 1190, 1161, 1097, 1043, 1004, 949, 913, 822, 745 cm⁻¹; Anal. Calcd for C₁₉H₁₈O₄: C, 73.53; H, 5.85. Found: C, 73.29; H, 6.15.

Scheme 3. Preparation of ynoate 10c and 10e.

Synthesis of alkyne 10e:

According to the general procedure for synthesis of alkyne 10d, alkyne iii (1.31 g, 6.41 mmol),

 $ClCO_2Ph$ (1.12 g, 7.15 mmol), and *n*-BuLi (1.60 M in hexane, 4.1 mL, 6.6 mmol) gave, after purification by silica-gel flash column chromatography (hexane/EtOAc = 9/1), alkyne **10e** (1.83 g, 88.0%) as a colorless oil.

PMBO²

alkyne **10e** ¹H NMR (CDCl₃, δ) 1.89 (tt, 2H, J₁ = 6.1, J₂ = 7.0 Hz), 2.52 (t, 2H, J = 7.0 Hz), 3.55 (t, 2H, J = 6.1 Hz), 3.79 (s, 3H),

4.45 (s, 2H), 6.86–6.92 (m, 2H), 7.10–7.15 (m, 2H), 7.22–7.30 (m, 3H), 7.36–7.44 (m, 2H); ¹³C NMR (CDCl₃, δ)

15.8, 27.7, 55.3, 67.9, 72.7, 72.9, 91.6, 113.8, 121.4, 126.3, 129.3, 129.5, 130.3, 150.1, 152.0, 159.2;

IR (neat)

3063, 3041, 3001, 2954, 2934, 2858, 2230, 1728, 1612, 1590, 1513, 1490, 1457, 1442, 1363, 1301, 1232, 1190, 1162, 1102, 1063, 1038, 1001, 915, 820, 741 cm⁻¹;

Anal. Calcd for C₂₀H₂₀O₄: C, 74.06; H, 6.21. Found: C, 74.27; H, 6.32.

Synthesis of alkyne iv:

To a solution of ester **10e** (1.12 g, 3.45 mmol) in CH_2Cl_2 (2 mL) and H_2O (1 mL) was added DDQ (812 mg, 3.57 mmol) at 0 °C. After warmed to room temperature, and stirred for further 2 h, the reaction was stopped by adding sat. aq. NaHCO₃. The products were extracted with EtOAc and combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by silica-gel flash column chromatography (hexane/EtOAc = 7/3) to give alcohol **iv** (547 mg, 77.6%) as a colorless oil.

alcohol **iv** ¹H NMR (CDCl₃, δ) 1.88 (quint, 2H, J = 7.0 Hz), 2.55 (t, 2H, J = 7.0 Hz), 3.55 (t, 1H, J = 6.0 Hz), 3.78 (dt, 2H, J₁ = 6.0, J₂ = 7.0 Hz), 7.10–7.17 (m, 2H), 7.23–7.28 (m, 1H), 7.36–7.43 (m, 2H); ¹³C NMR (CDCl₃, δ) 15.2, 30.0, 60.8, 72.8, 91.6, 121.3, 126.3, 129.5, 149.9, 152.0; IR (neat) 3495, 2954, 2881, 2232, 1728, 1590, 1490, 1457, 1425, 1326, 1235, 1190, 1161, 1047, 1001, 915, 838, 742 cm⁻¹; Anal. Calcd for C₁₂H₁₂O₃: C, 70.57; H, 5.92. Found: C, 70.42; H, 5.98.

Synthesis of mesylate v

To a mixture of alcohol **iv** (143 mg, 0.700 mmol) and Et_3N (121 mg, 1.20 mmol) in CH_2Cl_2 (3 mL) was added MsCl (91 mg, 0.794 mmol) in CH_2Cl_2 (1 mL) at 0 °C. After 15 min, the reaction was stopped by adding water. The products were extracted with EtOAc and combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by silica-gel flash column chromatography (hexane/EtOAc = 5/5) to give mesylate **v** (157 mg, 79.4%) as a colorless oil.

MsO

mesylate **v** ¹H NMR (CDCl₃, δ) 1.89 (quint, 2H, J = 6.3 Hz), 2.60 (t, 2H, J = 6.3 Hz), 3.06 (s, 3H), 4.36 (t, 2H, J = 6.3 Hz), 7.10–7.17 (m, 2H), 7.23–7.30 (m, 1H), 7.37–7.44 (m, 2H); ¹³C NMR (CDCl₃, δ) 15.3, 27.0, 37.4, 67.7, 73.8, 89.3, 121.4, 126.4, 129.6, 150.0, 151.7; IR (neat) 3029, 2940, 2235, 1727, 1590, 1489, 1355, 1236, 1190, 1175, 972, 929, 832, 748 cm⁻¹; Anal. Calcd for C₁₃H₁₄O₅S: C, 55.31; H, 5.00. Found: C, 55.15; H, 5.21.

Synthesis of alkyne 10c

To a solution of mesylate v (99.2 mg, 0.351 mmol) in acetone (20 mL) was added LiBr (152 mg, 1.75 mmol) at 0 °C. The mixture was heated under reflux conditions for 1 h. The reaction was stopped by adding water, and the products were extracted with EtOAc and combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by silica-gel flash column chromatography (hexane/EtOAc = 7/3) to give bromide **10c** (89.1 mg, 94.9%) as a colorless oil.

ynoate **10c** ¹H NMR (CDCl₃, δ) 2.15 (quint, 2H, J = 6.5 Hz), 2.62 (t, 2H, J = 6.5 Hz), 3.52 (t, 2H, J = 6.5 Hz), 7.10–7.16 (m, 2H), 7.23–7.30 (m, 1H), 7.36–7.44 (m, 2H); ¹³C NMR (CDCl₃, δ) 17.5, 30.2, 31.6, 73.5, 89.8, 121.4, 126.4, 129.6, 150.1, 151.8; IR (neat) 3064, 2965, 2232, 1728, 1590, 1489, 1456, 1435, 1233, 1190, 1161, 1071, 1038, 1002, 740 cm⁻¹; Anal. Calcd for C₁₂H₁₁BrO₂: C, 53.96; H, 4.15. Found: C, 54.06; H, 4.38.

Synthesis of cyclobutenone 12:

To a solution of cyclobutene **11b** (456 mg, 0.970 mmol) in CH_2Cl_2 (7.0 mL) and H_2O (0.5 mL) was added $BF_3 \cdot OEt_2$ (451 mg, 3.19 mmol) in CH_2Cl_2 (3.0 mL) at -78 °C. After the mixture was warmed to -10 °C and stirred for further 0.5 h, the reaction was quenched by adding sat. aq. NaHCO₃. The products were extracted with EtOAc (×3), and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by silica-gel flash column chromatography (hexane/EtOAc = 20/1) to give cyclobutenone **12** (266 mg, 84.7%). Recrystallization from Et₂O gave **12** as colorless prisms.

cyclobutenone 12

¹H NMR (acetone- d_6 , δ)

3.55 (s, 6H), 7.29–7.35 (m, 3H), 7.45–7.52 (m, 2H), 7.60–7.66 (m, 2H), 7.70–7.76 (m, 1H), 8.38–8.44 (m, 2H);

¹³C NMR (acetone- d_6 , δ)

54.2, 118.0, 122.5, 127.1, 129.2, 129.9, 130.3, 132.5, 135.7, 138.1, 151.2, 158.9, 183.1, 188.8; IR (ATR)

3066, 3000, 2942, 2838, 1774, 1735, 1585, 1488, 1450, 1346, 1303, 1253, 1195, 1141, 1103, 1056, 995, 921, 898, 840, 798, 771, 725 cm⁻¹;

Anal. Calcd for C₁₉H₁₆O₅: C, 70.36; H, 4.97. Found: C, 70.16; H, 4.98.

Figure 2. X-ray structure of 12^[7]

^[7] CCDC-709482 (**12**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Synthesis of cyclobutene 13:

To a solution of cyclobutene **11b** (150 mg, 0.319 mmol) in THF (5.0 mL) was added LiAlH₄ (20 mg, 0.52 mmol) at 0 °C. After 15 min, the reaction was quenched by adding sat. aq. NaHCO₃. The products were extracted with EtOAc (×3), and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by PTLC (hexane/EtOAc = 7/3) to give cyclobutene **13** (106 mg, 87.4%) as a colorless oil.

cyclobutene 15

¹H NMR (acetone- d_6 , δ)

0.17 (s, 6H), 0.92 (s, 9H), 3.35 (s, 3H), 3.47 (s, 6H), 4.05–4.08 (m, 1H), 4.37–4.78 (m, 2H), 7.28–7.40 (m, 3H), 7,72–7.78 (m, 2H);

¹³C NMR (acetone- d_6 , δ)

-2.90, -2.89, 19.0, 26.3, 52.2, 52.7, 55.7, 107.4, 109.8, 128.9, 129.0, 129.4, 133.9, 145.8, 148.4; IR (neat)

3448, 3056, 2937, 2856, 2834, 1656, 1573, 1494, 1463, 1274, 1253, 1211, 1178, 1139, 1085, 1002, 993, 921, 892, 869, 836, 779 cm⁻¹;

Anal. Calcd for C₂₀H₃₂O₅Si: C, 63.12; H, 8.48. Found: C, 62.90; H, 8.70.

Synthesis of cyclobutenone 14:

To a solution of cyclobutene **13** (88.0 mg, 0.231 mmol) in CH₃CN (3.0 mL) was added sat. aq. KF (0.1 mL) and *n*-Bu₄NCl (4.8 mg, 0.0173 mmol) at room temperature. After 24 h, the reaction was stopped by adding water. The products were extracted with EtOAc (×3), and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by PTLC (hexane/EtOAc = 5/5) to give cyclobutenone **14** (47.2 mg, 87.2%) as a pale yellow oil.

cyclobutenone **14** ¹H NMR (acetone- d_6 , δ) 3.44 (s, 6H), 4.44–4.52 (m, 3H), 7.50–7.60 (m, 3H), 7.97–8.02 (m, 2H); ¹³C NMR (acetone- d_6 , δ) 53.7, 118.1, 129.6, 130.4, 130.5, 132.6, 152.8, 174.8, 193.9; IR (neat) 3472, 3064, 2998, 2944, 2837, 1754, 1613, 1573, 1494, 1448, 1346, 1337, 1317, 1302, 1254, 1205, 1171, 1096, 1060, 1026, 1000, 928, 888, 771, 741 cm⁻¹; Anal. Calcd for C₁₃H₁₄O₄: C, 66.66; H, 6.02. Found: C, 66.42; H, 5.88.

Synthesis of cyclobutenedione 15:

To a solution of cyclobutene **14** (37.3 mg, 0.159 mmol) in CH_2Cl_2 (1.5 mL) and H_2O (0.05 mL) was added $BF_3 \cdot OEt_2$ (0.05 mL, 0.40 mmol) at 0 °C. After 0.5 h, the reaction was quenched by adding

sat. aq. NaHCO₃. The products were extracted with EtOAc (×3), and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by silica-gel flash column chromatography (hexane/EtOAc = 5/5) to give cyclobutenedione **15** (23.7 mg, 79.1%). Recrystallization from hexane/Et₂O gave **15** as yellow needles. Mp. 101.9–102.6 °C.

cyclobutenedione **15** ¹H NMR (acetone- d_6 , δ) 4.91 (br s, 1H), 5.10 (s, 2H), 7.58–7.70 (m, 3H), 8.23–8.28 (m, 2H); ¹³C NMR (acetone- d_6 , δ) 57.3, 129.1, 130.0, 130.8, 134.2, 190.5, 196.6, 196.7, 197.8; IR (ATR) 3472, 3065, 2894, 1780, 1761, 1597, 1581, 1568, 1491, 1448, 1388, 1334, 1312, 1294, 1214, 1184, 1154, 1105, 1085, 1056, 999, 941, 873, 814, 764 cm⁻¹; Anal. Calcd for C₁₁H₈O₃: C, 70.21; H, 4.29. Found: C, 69.99; H, 4.03.

S30

