Primary amine-metal Lewis acid bifunctional catalysts based on a simple bidentate ligand: direct asymmetric aldol reaction

Philias Daka, Zhenghu Xu, Alex Alexandru and Hong Wang*

Miami University, Department of Chemistry and Biochemistry, Oxford, Ohio 45056

General	S2
Synthesis of ligands	S2
General procedure for enantioselective aldol reactions	S3
General procedure for enantioselective aldol reactions in water	S3
Metal screening Table 1	S3
Solvent screening Table 2	S4
NMR data for ligands and aldol adducts	S4-S12
NMR and MS spectra for ligands	S12-S29
HPLC spectra for aldol adducts	S30-S56
References	S57

General: All NMR spectra were recorded on Bruker-500 or 300 MHz spectrometer. *Ee* values were measured by chiral HPLC analysis using Gold Nouveau Chromatography system and the data was recorded on Shimadzu C-R6A Chromatopac integrator. Chiralpak AD-H and As-H columns were purchased from Daicel Chemical Industries. Routine monitoring of the reactions was performed by TLC using precoated silica gel plates. Cyclohexanone was ACS reagent pure and the rest of the solvents were purchased from either Acros or Aldrich and used directly without further purification.

Synthesis of Ligands

To a stirred solution of N-Boc-L-valine (2.17 g, 10 mmol) in CH₂Cl₂ (100 mL), 2-aminopyridine (10 mmol, 0.94 g), BOP (10 mmol, 4.42 g) and DIPEA (1.25 mL, 10 mmol) at 0 °C were added. This reaction mixture was stirred at room temperature for 24 hrs. The solution was washed with aqueous NaHCO₃. The organic phase was evaporated under reduced pressure and purified by column chromatography (silica gel, eluent hexane/ethylacetate, 5/1) to give the pure product **A** (2.1 g, 72%). ¹H NMR (300 MHz, CDCl₃) δ 0.95 (d, *J* = 6.9 Hz, 3H), 1.01 (d, *J* = 6.9 Hz, 3H), 1.47 (s, 9H), 2.22-2.28 (m, 1H), 4.10-4.17 (m, 1H), 4.35 (br, 2H), 5.12 (m, 1H), 6.27 (d, *J*=7.8 Hz, 1H), 7.28 (t, *J*=7.8 Hz, 1H), 7.57 (d, *J*=7.8 Hz, 1H), 8.12 (br, 1H).

The obtained N-Boc compound A (2.2 g) was dissolved into DCM (10 mL) and TFA (10 mL) and stirred at rt for 2 hrs. The reaction mixture was evaporated and dissolved in Ethyl Acetate. 1 N NaOH solution was used to tune pH to 8 and the mixture was extracted with Ethyl Acetate. The solvent was evaporated to dryness to get the pure product **1a** (1.20 g, 87%). Similar procedure was followed for other ligands.

General procedure of the enantioselective aldol reaction: A mixture of $CuCl_2$ (5.4 mg, 0.04 mmol, 20 mol%) AgSbF₆ (27.5 mg, 0.08 mmol, 40 mol%), and 0.04 mmol, 20 mol% of the appropriate ligand was stirred at room temperature for 4 hrs in 1mL cyclohexanone (*neat*). The appropriate aldehyde (0.2 mmol) was then added. The resulting mixture was stirred for 3-48 hrs. After the reaction was completed (monitored by TLC), the reaction mixture was treated with saturated ammonium chloride solution, and the mixture extracted with ethyl acetate. After removal of the solvent mixture, ¹HNMR was taken to determine diastereoselectivity. The residue was purified through column chromatography on silica gel (eluent: mixture of Hexane and ethyl acetate,) to give pure products. All aldol products are known compounds and their spectroscopic data are identical with those reported. The *ee* values were determined by chiral HPLC analysis. HPLC conditions and retention times are incorporated together with NMR data for each respective aldol adduct.

General procedure of the enantioselective aldol reaction in water: A mixture of $CuCl_2$ (5.4 mg, 0.04 mmol, 20 mol%) AgSbF₆ (27.5 mg, 0.08 mmol, 40 mol%), and 0.04 mmol, 20 mol% of ligand **1a** in the appropriate cyclohexanone: water ratio (total volume 1mL) was stirred at room temperature for 4 hrs. The aldehyde (0.2mmol) was then added and stirred until reaction was completed. The rest of the procedure is the same as described above under neat conditions.

Entry	Metal	Yield [%] ^b	Anti/Syn [°]	ee [%] ^d
1	Cu(SbF ₆) ₂	80	25/1	98
2	Cu(OTf) ₂	94	12/1	90
3	Co(ClO ₄) ₂	90	2/1	65
4	Ni(ClO ₄) ₂	80	4/1	61
5	Yb(OTf) ₃	80	1/1	25
6	$Zn(OAc)_2$	70	1/1	70

Table 1 Metal screening using ligand 1a^a

^aThe reactions were carried out with 0.2 mmol of 4nitrobenzaldehyde and 1 mL cyclohexanone at room temperature between 3-48hrs. ^b Combined yield. ^c Determined by ¹H NMR. ^d Determined by chiral HPLC

Entry	Solvent ^b	Yield[%] ^c	Anti/Syn ^d	<i>ee</i> [%] ^e
1	DMSO	72	3/1	84
2	CH ₃ CN	84	4/1	84
3	Toluene	88	8/1	95
4	МеОН	66	9/1	97
5	DCM	90	8/1	96
6	THF	76	6/1	94
7	DMF	64	4/1	86

Table 2. Solvent Screening using ligand 1a^a

^aThe reactions were performed with 0.2 mmol of 4nitrobenzaldehyde at room temperature. ^b 0.3 mL cyclohexanone and 0.6 mL solvent. ^c Combined yield. ^d Determined by ¹H NMR. ^e Determined by chiral HPLC.

NMR data for ligands and aldol adducts

(*S*)-2- amino-3-methyl-*N*- (pyridin-2-yl) butanamide (1a): $[\alpha]_D^{25} = -21.5(c= 0.20, CHCl_3)$; ¹H NMR (300 MHz, CDCl₃) δ 0.86 (d, *J* = 6.9 Hz, 3H), 1.03 (d, *J* = 7.2 Hz, 3H), 1.53 (br, 2H), 2.37-2.42(m, 2H), 3.38 (d, *J* = 2.7Hz, 1H), 6.98-7.03(m, 3H), 7.64-7.71 (m, 1H), 8.24-8.28 (m, 2H), 9.94 (br, 1H). ¹³C NMR (75Hz, CDCl₃) δ 16. 4, 19.6, 31.3, 61.1, 113.8, 119.5, 138.0, 148.0, 151.5, 173.2. MS (ESI) 194.0 (M+H)⁺; HRMS exact mass calcd for (C₁₀H₁₅N₃O+Na) requires m/z 216.1113, found m/z 216.1119.

(*S*)-2-amino-*N*- (pyridin-2-yl) propanamide (1b): $[\alpha]_D^{25} = +5.9$ (c= 0.34, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 1.42 (d, *J* = 6.9 Hz, 3H), 1.65(br, 2H), 3.63 (dd, *J* = 6.9, 13.8 Hz, 1H), 6.99-7.04 (m, 1H), 7.65-7.71 (m, 1H), 8.20-8.32 (m, 2H), 9.85 (br, 1H). ¹³C NMR (75Hz, CDCl₃) δ 21.5, 51.4, 113.7,119.5, 138, 146.0, 151.5, 174.3. MS (ESI) 188.0 (M+Na); HRMS exact mass calcd for (C₈H₁₁N₃O+Na) requires m/z 188.0800, found m/z 188.0805.

(*S*)-2-amino-3-pheyl-*N*- (pyridin-2-yl) propanamide (1c): $[\alpha]_D^{25} = -117.1$ (c= 0.17, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 1.62 (br, 2H), 2.78 (dd, *J* = 3.6, 13.8Hz, 2H), 3.38 (dd, *J* = 3.9, 13.8Hz, 2H), 3.42 (d, *J* = 4.8Hz, 1H), 7.02-7.06 (m, 1H), 7.24-7.36 (m, 5H), 7.69-7.75 (m, 1H), 8.28-8.31(m, 1H), 10.00 (br, 1H). ¹³C NMR (75Hz, CDCl₃) δ 40.4, 56.6, 113.2, 119.0, 126.3, 128.2, 128.7, 137.2, 137.4, 147.4, 172.4. MS (ESI) 242.1 (M+H)⁺; HRMS exact mass calcd for (C₁₄H₁₅N₃O+Na) requires m/z 264.1113, found m/z 264.1104.

(2S,3S)-2-amino-3-methyl-*N*- (pyridin-2-yl) pentanamide (1d): $[\alpha]_D^{25} = -4.07(c = 8.2, CHCl_3);$ ¹H NMR (500 MHz, CDCl₃) δ 0.90 (m, 3H), 1.02 (d, *J* = 7.0 Hz, 3H), 1.39-1.44 (m, 1H), 1.57 (br 1H), 2.11-2.13 (m, 1H), 3.43(d, *J* = 3Hz, 1H), 7.00-7.02 (m, 1H), 7.68-7.70 (m, 1H), 8.25-8.29 (m, 2H), 10.01 (br, 1H). ¹³C NMR (125Hz, CDCl₃) δ 11.9, 16.3, 23.8, 38.0, 60.3, 113.7, 119.6,

138.2, 147.9, 151.2, 173.5. MS (ESI) 208.1 $(M+H)^+$; HRMS exact mass calcd for $(C_{11}H_{17}N_3O+Na)$ requires m/z 230.1269, found m/z 230.1261.

(2*S*,*RS*)-2-amino-3-(benzyloxy)-*N*- (pyridin-2-yl) butanamide (1e): $[\alpha]_D^{25}$ = -8.13 (c= 3.42, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 1.32 (d, *J* = 6.5 Hz, 3H),1.89 (br, 2H), 3.38 (m, 1H), 4.36 (m, 1H), 4.49 (*d*, *J* = 11.5 Hz, 1H), 4.60 (*d*, *J* = 11.5 Hz, 1H), 7.04-7.06 (m, 1H), 7.28 (s, 5H), 7.72 (m, 1H), 8.28-8.34 (m, 2H) 10.22 (br, 1H). ¹³C NMR (125Hz, CDCl₃) δ 17.2, 59.9, 71.5, 74.8, 113.7, 119.7, 127.7, 128.3, 138.2, 138.3, 148.1, 151.3, 172.6. MS (ESI) 286.1 (M+H)⁺; HRMS exact mass calcd for (C₁₆H₁₉N₃O₂+Na) requires m/z 308.1375, found m/z 308.13.1352.

(*S*)-2-amino-3-(1-H-indol-2-yl)-*N*-(pyridin-2-yl) propanamide (1f): $[\alpha]_D^{25}$ = -9.40 (c= 3.52, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 1.62 (br, 2H), 2.92-2.97 (m, 1H), 3.44 (d, *J* = 12 Hz, 1H), 3.79 (d, *J* = 6 Hz, 1H), 6.97-7.16, (m, 4H), 7.31 (*d*, *J* = 8 Hz, 1H), 7.610-7.68 (m, 2H), 8.27 - 8.34 (m, 2H), 9.04 (s, 1H), 10.07 (br, 1H). ¹³C NMR (125Hz, CDCl₃) δ 30.6, 56.1, 111.0, 111.5, 113.9, 118.8, 119.6, 119.9, 122.2, 123.5, 127.4, 136.6, 138.5, 148.0, 151.2, 174.2. MS (ESI) 281.1 (M+H)⁺

(*S*)-2- amino-3,3-dimethyl-*N*- (pyridin-2-yl) butanamide (1g): $[\alpha]_D^{25}$ = -20.0 (c= 0.1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 1.03 (s, 9H), 1.67 (br, 2H), 3.25 (s, 1H), 6.98-7.00 (m, 1H), 7.647.68 (m, 1H), 8.21-8.26 (m, 2H), 9.45 (br, 1H). ¹³C NMR (75Hz, CDCl₃) δ 26.8, 34.6, 65.0, 113.8, 119.6, 138.2, 147.9, 151.1, 172.6. MS (ESI) 208.1 (M+H)⁺

(*S*)-*N*-(pyridine-2-yl)pyrrolidine-2-carboxamide (2): $[\alpha]_D^{25}$ = -117.1 (c= 0.17, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 1.32 (d, *J* = 6.5 Hz, 3H),1.89 (br, 2H), 3.38 (m, 1H), 4.36 (m, 1H), 4.49 (*d*, 11.5 Hz, 1H), 4.60 (*d*, 11.5 Hz, 1H), 7.04-7.06 (m, 1H), 7.28 (s, 5H), 7.72 (m, 1H), 8.28-8.34 (m, 2H) 10.22 (br, 1H). ¹³C NMR (125 Hz, CDCl₃) δ 17.2, 59.9, 71.5, 74.8, 113.7, 119.7, 127.7, 128.3, 138.2, 138.3, 148.1, 151.3, 172.6. MS (ESI) 286.1 (M+H)⁺

(*S*)-2-((*R*)-hydroxy(4-nitrophenyl)methyl)cyclohexanone(3a)¹: Using ligand 1a: yield 80% ; dr 25/1; *ee* 98% ; $[\alpha]_D^{25}$ = +11.0 (c= 0.22, CHCl₃), Ligand 1g: yield 90%; dr 9/1; *ee* >99%; HPLC analysis chiralpak AD-H (*i*-PrOH/hexanes = 20:80, 1mL/min, 254nm, t_R = 14.1min and t_R = 18.2min. ¹H NMR (500 MHz, CDCl₃) δ 1.34-1.82 (m, 5H), 2.07 (m, 1H), 2.33-2.35 (m, 1H), 2.45-2.46 (m, 1H), 2.48-2.56 (m, 1H), 4.04 (s, 1H), 4.87 (dd, *J* = 3 Hz, 8.5 Hz, 1H), 7.48 (d, *J* = 8.5 Hz, 2H), 8.18 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (125Hz, CDCl₃) δ 24.70, 27.63, 30.76, 42.68, 57.20, 74.02, 123.57, 127.87, 147.59, 148.37, 214.70.

(S)-2-((R)-hydroxy(3-nitrophenyl)methyl)cyclohexanone (3b)¹: Using ligand 1a: yield 86%; dr 17/1; ee 96%; $[\alpha]_D^{25}$ +28.2 (c= 0.14, CHCl₃), Ligand 1g: yield 90%; dr 3/1; ee >99%; HPLC analysis chiralpak AD-H (*i*-PrOH/hexanes = 20:80, 1mL/min, 254nm) t_R = 11.4 min and t_R = 13.9 min. ¹H NMR (500 MHz, CDCl₃) δ 1.35-1.39 (m, 1H), 1.54-1.67 (m, 4H), 2.08-2.09 (m, 1H), 2.35-2.38 (m, 1H), 2.46-2.49 (m, 1H), 2.61(m, 1H), 4.14 (br, 1H), 4.88 (d, *J* = 8.5 Hz, 1H), 7.49 (t, *J* = 8.0 Hz, 1H), 8.18 (d, *J* = 7.5 Hz, 2H), 8.12-8.19 (m, 1H), 8.20 (s, 1H). ¹³C NMR (125Hz, CDCl₃) δ 24.61, 27.59, 30.69, 42.61, 57.08, 73.96, 121.97, 122.81, 129.26, 133.17, 143.26, 148.25, 214.79.

(*S*)-2-((*R*)-hydroxy(2-nitrophenyl)methyl)cyclohexanone (3c)¹: Using ligand 1a: yield 84%; dr 30/1; *ee* 95%; $[\alpha]_D^{25}$ = +23.9 (c= 0.41, CHCl₃), Using ligand 1g: yield 90%; dr 4/1; *ee* >99%; HPLC analysis chiralpak AD-H (*i*-PrOH/hexanes = 20:80, 1mL/min, 254nm) t_R = 25.4 min and t_R = 27.6 min. ¹H NMR (500 MHz, CDCl₃) δ 1.55-1.84 (m, 5H), 2.05-2.06 (m, 1H), 2.31-2.33 (m, 1H), 2.41-2.44 (m, 1H), 2.72-2.74 (m, 1H), 4.15 (br, 1H), 5.42 (d, *J* = 7.0 Hz, 1H), 7.40-7.42 (m, 1H), 7.61 (m, 1H), 7.81 (m, 1H). 7.83 (m, 1H) ¹³C NMR (125Hz, CDCl₃) δ 24.96, 27.73, 31.09, 42.80, 57.28, 69.76, 124.06, 128.37, 128.98, 133.04, 136.60, 148.72, 214.91

4-((*R***)-hydroxy((***S***)-2-oxocyclohexyl)methyl)benzonitrile (3d)¹: Using ligand 1a: yield 83%; dr 16/1 ; ee 97% ; [\alpha]_D^{25}= +22.2 (c= 0.31, CHCl₃), HPLC analysis chiralpak AD-H (***i***-PrOH/hexanes = 20:80, 0.9 mL/min, 254nm) t_R = 16.6 min and t_R = 24.0 min; Using ligand 1g: yield 85%, dr 3/1,** *ee* **>99%, HPLC analysis chiralpak AD-H (***i***-PrOH/hexanes = 20:80, 0.9 mL/min, 254nm) t_R = 19.6 min and t_R = 23.9 min. ¹H NMR (500 MHz, CDCl₃) \delta 1.34-1.85 (m, 5H), 2.10-2.14 (m, 1H), 2.36-2.39 (m, 1H), 2.49 (m, 1H), 2.51-2.58 (m, 1H), 4.07 (s, 1H), 4.85 (dd,** *J* **= 3 Hz, 8.5 Hz, 1H), 7.45 (d,** *J* **= 8.0 Hz, 2H), 7.65 (d,** *J* **= 8.0 Hz, 2H). ¹³C NMR (125Hz, CDCl₃) \delta 24.68, 27.64, 30.73, 42.66, 57.14, 74.20, 111.69, 119.80, 127.78, 132.17, 146.41, 214.76.**

(*S*)-2-((*R*)-(2,6-dichlorophenyl)(hydroxy)methyl)cyclohexanone (3e)¹: Using ligand 1a: yield 86% ; dr 14/1 ; *ee* >99% ; $[\alpha]_D^{25}$ = -38.5 (c= 0.41, CHCl₃); HPLC analysis chiralpak AS-H (*i*-PrOH/hexanes = 10:90, 1mL/min, 220 nm) t_R = 15.8 min and t_R = 19.6 min. Using ligand 1g: yield 89%, dr 4/1, *ee* >99%; HPLC analysis chiralpak AS-H (*i*-PrOH/hexanes = 10:90, 0.7 mL/min, 220 nm) t_R = 17.1 min and t_R = 21.5 min. ¹H NMR (500 MHz, CDCl₃) δ 1.36-1.40 (m, 1H), 1.52-1.85 (m, 4H), 2.08-2.10 (m, 1H), 2.41-2.54 (m, 2H), 3.49-3.52 (m, 1H), 3.70 (br, 1H), 5.85 (d, *J* = 10.0 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 7.32-7.33 (m, 2H). ¹³C NMR (125Hz, CDCl₃) δ 24.69, 27.63, 29.86, 42.44, 53.65, 70.57, 129.34, 129.75, 134.73, 135.69, 214.39.

methyl 4-((*R*)-hydroxy((*S*)-2-oxocyclohexyl)methyl)benzoate (3f)¹: Using ligand 1a: yield 94% ; dr 12/1 ; *ee* 97% ; $[\alpha]_D^{25}$ = +11.6 (c= 0.45, CHCl₃); Using ligand 1g: yield 90%, dr 3/1, *ee* >99%; HPLC analysis chiralpak AS-H (*i*-PrOH/hexanes = 20:80, 1mL/min, 254 nm), t_R = 16.7 min and t_R = 24.1 min. ¹H NMR (500 MHz, CDCl₃) δ 1.29-1.33 (m, 1H), 1.51-1.79 (m, 4H, 2.06-2.09 (m, 1H), 2.33-2.37 (m, 1H), 2.45-2.46 (m, 1H), 2.48-2.58 (m, 1H), 3.90 (s, 3H), 4.04 (s, 1H), 4.83 (d, *J* = 8.5 Hz, 1H), 7.38 (d, *J* = 8.5 Hz, 2H), 8.00 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (125Hz, CDCl₃) δ 24.64, 27.66, 30.71, 42.62, 52.04, 57.24, 74.32, 126.97, 129.62, 129.66, 146.05, 166.81, 215.04.

(*S*)-2-((*R*)-(4-bromophenyl)(hydroxy)methyl)cyclohexanone (3g)¹: Using ligand 1a: yield 70% ; dr 12/1; *ee* 94%; $[\alpha]_D^{25}$ = +20.2 (c= 0.30, CHCl₃); HPLC analysis chiralpak AS-H (*i*-PrOH/hexanes = 2.5:97.5, 0.5mL/min, 220 nm) t_R = 41.3 min and t_R = 45.8min. ¹H NMR (500 MHz, CDCl₃) δ 1.27-1.30 (m, 1H), 1.52-1.78 (m, 4H), 2.33-2.35 (m, 1H), 2.07-2.08 (m, 1H), 2.33-2.35 (m, 1H), 2.45-2.54 (m, 2H), 3.98 (s, 1H), 4.74 (d, *J* = 9 Hz, 1H), 7.18 (dd, *J* = 1.5, 6.5 Hz, 2H), 7.46 (dd, *J* = 2.0, 6.5 Hz, 2H). ¹³C NMR (125Hz, CDCl₃) δ 24.68, 27.69, 30.72, 42.63, 57.33, 74.17, 121.68, 128.71, 131.45, 140.00, 215.21.

(*S*)-2-((*R*)-(4-chlorophenyl)(hydroxy)methyl)cyclohexanone (3h)¹: Using ligand 1a: yield 84%; dr 7/1 ; *ee* 97%; $[\alpha]_D^{25}$ = +19.2 (c= 0.25, CHCl₃); HPLC analysis chiralpak AS-H (*i*-PrOH/hexanes = 2.5:97.5, 0.5mL/min, 220 nm) t_R = 39.7 min and t_R = 43.5min. ¹H NMR (500 MHz, CDCl₃) δ 1.29-1.33 (m, 1H), 1.55-1.81 (m, 4H), 2.09-2.58 (m, 3H), 4.04 (s, 1H), 4.78 (d, *J* = 8.0 Hz, 1H), 7.28 (d, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (125Hz, CDCl₃) δ 24.72, 27.72, 30.76, 42.68, 57.38, 74.14, 128.39, 128.54, 138.59, 139.50, 215.29.

(S)-2-((R)-hydroxy(phenyl)methyl)cyclohexanone (3i)¹: Using ligand 1a: yield 75%; dr 10/1; ee 83%; $[\alpha]_D^{25}$ = +18.9 (c= 0.56, CHCl₃); Using ligand 1g: yield 83%, dr 4/1, ee 89%; HPLC analysis chiralpak AS-H (*i*-PrOH/hexanes = 5:95, 0.6 mL/min, 220 nm) t_R = 35.6 min and t_R = 40.5 min. ¹H NMR (500

MHz, CDCl₃) δ 1.28-1.31 (m, 1H), 1.52-1.77 (m, 4H), 2.35-2.36 (m, 1H), 2.06 (m, 1H), 2.35-2.36 (m, 1H), 2.46-2.47 (m, 1H), 2.49-2.62 (m, 1H), 3.94 (s, 1H), 4.78 (d, *J* = 8.5 Hz, 1H), 7.2-7.34 (m, 5H). ¹³C NMR (125Hz, CDCl₃) δ 24.68, 27.77, 30.81, 42.63, 57.40, 74.71, 126.99, 127.85, 128.33, 140.92, 215.48.

(*S*)-2-((*R*)-hydroxy(naphthalen-2-yl)methyl)cyclohexanone (3j)²: Using ligand 1a: yield 70% ; dr 8/1 ; *ee* 92% ; $[\alpha]_D^{25}$ = +5.3 (c= 0.50, CHCl₃); HPLC analysis chiralpak AS-H (*i*-PrOH/hexanes = 10:90, 0.7mL/min, 220 nm) t_R = 20.3 min and t_R = 23.2 min. ¹H NMR (500 MHz, CDCl₃) δ 1.32-1.35 (m, 1H), 1.50-1.76 (m, 4H), 2.06 (m, 1H), 2.36-2.38 (m, 1H), 2.48 (m, 1H), 2.72 (m, 1H), 2.49-2.62 (m, 1H), 4.08 (br, 1H), 4.96 (d, *J* = 9.0 Hz, 1H), 7.46-7.49 (m, 3H), 7.76 (s, 1H), 7.82-7.85 (m, 3H). ¹³C NMR (125Hz, CDCl₃) δ 24.71, 27.80, 30.92, 42.71, 57.41, 74.92, 124.68, 125.95, 126.15, 126.26, 127.70, 127.99, 128.28, 133.17, 133.21, 138.38, 215.49.

(*S*)-2-(*R*)- hydroxy (*p*-tolyl) methy) cyclohexanone (3k)³: Using ligand 1a:yield 70%, dr 5/1; *ee* 82%; $[\alpha]_D^{25}$ = +5.3 (c = 0.50, CHCl₃); HPLC analysis chiralpak AS-H (*i*-PrOH/hexanes = 10:90, 0.7mL/min, 220 nm) t_R = 12.9 min and t_R = 15.4 min. ¹H NMR (500 MHz, CDCl₃) δ 1.23-1.28 (m, 1H), 1.51-2.04 (m, 4H), 2.04-2.07 (m, 1H), 2.32-2.58 (m 4H), 3.81-3.95 (br, 1H), 4.74 (d, *J* = 8.5 Hz, 1H), 2.48 (m, 1H), 7.12-7.14 (m, 2H), 7.16-7.24 (m, 1H),. ¹³C NMR (75Hz, CDCl₃) δ 21.04, 24.88, 26.11, 27.81, 40.66, 67.45, 70.54.68, 125.70, 126.90, 128.83, 129.04, 215.52.

(*R*)-4-hydroxy-4-(4-nitrophenyl)butan-2-one (l)⁴ Using ligand 1g: yield 65%; *ee* 81 %; $[\alpha]_D^{25}=35.2$ (c= 0.2, CHCl₃). HPLC analysis chiralpak AD-H (*i*-PrOH/hexanes = 30:70, 0.9mL/min, 220 nm) t_R = 20.0 min and t_R = 26.5 min. ¹H NMR (500 MHz, CDCl₃) δ 2.18 (s, 3H), 2.82 (m, 2H), 3.65 (s, 1H), 5.23 (t, *J* = 6 Hz, 1H), 7.50 (d, *J* = 8.5 Hz, 2H), 8.15 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (125Hz, CDCl₃) δ 30.70, 51.52, 68.91, 123.75, 126.43, 147.10, 150.06, 208.44

NMR SPECTRA FOR LIGANDS

н H₂Ń **1**a

Chemical Formula: C₁₀H₁₅N₃O Exact Mass: 193.12 Molecular Weight: 193.25 m/z: 193.12 (100.0%), 194.12 (11.9%) Elemental Analysis: C, 62.15; H, 7.82; N, 21.74; O, 8.28

HRMS = $216.1119 (M+Na)^+$

Chemical Formula: C₈H₁₁N₃O Exact Mass: 165.09 Molecular Weight: 165.19 m/z: 165.09 (100.0%), 166.09 (9.8%) Elemental Analysis: C, 58.17; H, 6.71; N, 25.44; O, 9.69

HRMS = $188.0805 (M+Na)^+$

NH 02 H₂Ń 1c

Chemical Formula: C₁₄H₁₅N₃O Exact Mass: 241.12 Molecular Weight: 241.29 m/z: 241.12 (100.0%), 242.12 (16.3%), 243.13 (1.3%) Elemental Analysis: C, 69.69; H, 6.27; N, 17.41; O, 6.63

HRMS = $264.1104 (M+Na)^+$

Ο ĥ NH₂ 1d

Chemical Formula: C₁₁H₁₇N₃O Exact Mass: 207.14 Molecular Weight: 207.27 m/z: 207.14 (100.0%), 208.14 (12.1%), 208.13 (1.1%) Elemental Analysis: C, 63.74; H, 8.27; N, 20.27; O, 7.72

HRMS = $230.1261 (M+Na)^+$

Chemical Formula: C₁₆H₁₉N₃O₂ Exact Mass: 285.15 Molecular Weight: 285.34 m/z: 285.15 (100.0%), 286.15 (17.6%), 287.15 (2.0%), 286.14 (1.1%) Elemental Analysis: C, 67.35; H, 6.71; N, 14.73; O, 11.21

HRMS = $308.1352 (M+Na)^+$

Chemical Formula: C₁₆H₁₆N₄O Exact Mass: 280.13 Molecular Weight: 280.32 m/z: 280.13 (100.0%), 281.14 (17.5%), 282.14 (1.7%), 281.13 (1.5%) Elemental Analysis: C, 68.55; H, 5.75; N, 19.99; O, 5.71

$MS(ESI) = 281.1 (M+H)^+$

Chemical Formula: C₁₁H₁₇N₃O Exact Mass: 207.14 Molecular Weight: 207.27 m/z: 207.14 (100.0%), 208.14 (12.1%), 208.13 (1.1%) Elemental Analysis: C, 63.74; H, 8.27; N, 20.27; O, 7.72

MS (ESI) = $230.1 (M+Na)^+$

Display Report

N H HN 2

Chemical Formula: C₁₀H₁₃N₃O Exact Mass: 191.11 Molecular Weight: 191.23 m/z: 191.11 (100.0%), 192.11 (11.0%), 192.10 (1.1%) Elemental Analysis: C, 62.81; H, 6.85; N, 21.97; O, 8.37

$MS (ESI) = 214.1 (M+Na)^+$

HPLC DATA FOR ALDOL ADDUCTS

SAMPLE REPORT	NO 938	REA			FILE METHOD	9	41
PKNO	TIME	<u> AREA</u>	ΜK	IDNO	CONC		NAME
1 2 3	9.595 10.463 11.632	22829 28254 125847	ų ų		4.876) 4.3265 90.7969	5	
	TOTAL	469130			100		

4.828618 5.8266 5.8266 5.8278 11.18148 11.18148 11.18148 11.18148 11.18148 11.18148 11.18148					0	OH CI CI rac	
						17.	37
		19.8/5		21.5	20	the second s	
	61	88.962					
CHROMA	TOPAC C-	860			ETLE		
SAMPLE	NO 0				METUAN	5 	
REPORT	NO 1861				nethop	71	
PKNO	TIME	AREA	MK	IDNO	CONC	NAME	
1	1.648	53759	Ŷ		2.72	5	
2	6.41	13239	Ŷ		0.676		
3	13.7	18148			0.919	37	
1	11.187	19242	Ŷ		0.974	1	
5	17.137	937885			47.439	2	
6	21.538	933927	εv		47.279	21	
	_			-			
	TOTAL	1975391			199		

	CPEE 10 10 20 CTOP	B(8)-2 955 172 988 172 988 .047 24.11	-16 28	.708	O OH Fac	COO	lMe
CHROMATO Sample M Report M	0PAC C-9 10 9 10 315	60			FILE METHOD	9	41
PKNO	TIME	AREA	MK	IDNO	CONC		NAME
1 2 3 4	5.138 12.222 16.798 24.128	6095 6723 394817 411360	Ŷ	-	0.744: 0.8209 48.2079 58.2279		
	TOTAL	818994			100		

	L		000				
		<u>1.78</u> 34. 5.885	5.75	3			
	ł						
	{	15.287					
	l	18.497					
		22.995					
		32.165			O OH		
		39.677			rac		
	1	13.19					
	Ś	STOP					
PUDEMA	70040 0						
CARCAN	NO O	-RGA			FILE	9	
REPORT	NO 152				METHOD	11	
PKNO	TIME	AREA	MK	IDNO	CONC	NAME	
1	1.342	5844	Ŷ		0.117	5	
20	1.987	14381	Ŷ		9.289	2	
54	2.357	10/38	Ŷ		0.215	9	
ť	2.18	7888	ý.		0.187	2	
é.	2.697	13383	Y		0.269	1	
7	3.003	16745	Ŷ		9.336	7	
8	3.363	14543	Ŷ		0.292	5	
9	3.602	83112	Y		1.679		
10	4.073	98017	2.2		1,971	?	
10	4.78 5.750	72433	Y		i.456	6	
12	6.90	147020	e.		1.001	<i>2</i>	
14	7.593	100000	0		3.809	1	
15	8.615	119592	v.		2.170	·	
16	9.565	98919	4		1.999	2	
17	10.2	153612	÷4		3.089	1	
10	11.28	99119	¥.		1,993	2	
żé	12.633	120000	Y .		1.702	5	
21	13.413	36797	ý.		2.593	9 9	
22	13.797	24314	ý		0.738. 0.700	5	
23	13.915	29199	ų		6.56A	9	
24	15.287	233168	Ŷ		1.688	9	
25	18.407	336587	Ŷ		6.768	5	
26	22.995	613917	Ŷ		12.315	5	
27	32.165	577975	Ŷ		11.622:	3	
28	57.8// 10 10	929466	Ŷ		18.691:	l.	
2.7	13.19	685957	X		18.794:	3	
	TAIAL	1972764			100	- 6	

	SPI	22.377	.02	O OH	d la		
CHROMAT Sample Report	0PAC C- NO 9 NO 167	REA			FILE METHOD	9	41
FKNO	TIME	AREA	ΜK	IDNO	CONC		NAME
1 2 3	3.662 19.682 22.377 10TAL	11344 159335 7014 177693	ο Υ	-	6.38 89.66 3.94 100	41 20 71	

^a The reaction was performed with 0.2mmol aldehyde at rt for 45hrs in 1mL acetone (*neat*), with ligand 1g

1 N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka, C. F. Barbas III, *J. Am. Chem. Soc.*, **2006**, *128*, 734

2 H. Yang, R. G. Carter, Org. Lett., 2008, 10, 4649

3 Y. Wu, Y. Zhang, M. Yu, G. Zhao, S. Wang, Org. Lett., 2006, 8, 4417

4 Z. Tang, Z. Yang, X. Chen, L. Cun, A. Mi and L. Gong, J. Am. Chem. Soc., 2005, 127, 9285.