Supporting Information

Palladium (II)-Catalyzed Asymmetric Hydrophosphination of Enones: Efficient Access to Chiral Tertiary Phosphines

Yinhua Huang, Sumod A. Pullarkat, Yongxin Li, and Pak-Hing Leung*

Division of Chemistry & Biological Chemistry, School of Physical & Mathematical

Sciences, Nanyang Technological University, Singapore 637371, Singapore

Email: pakhing@ntu.edu.sg

Table of Contents

General information	S 3
Experimental sections	S4-S23
Mechanism studies	S24-S30
NMR spectra	\$31-\$53
X-Ray	S54-S57

General information:

All air-sensitive manipulations were performed under a positive pressure of nitrogen or argon using standard Schlenk line. Solvents were degassed prior to use when necessary. THF was used without being dried. Column chromatography was conducted on Silica gel 60 (Merck). NMR spectra were recorded on Bruker ACF 300, 400 and 500 spectrometers. Chemical shifts are reported in δ ppm referenced to an internal SiMe4 standard ($\delta = \tilde{0}$ ppm) for 1H NMR, chloroform-d ($\delta = 77.23$ ppm) for 13C NMR. Optical rotations were measured on the specified solution in a 0.1 dm cell at 20 °C with a Perkin-Elmer 341 polarimeter. Elemental analyses were performed by the Elemental Analysis Laboratory of the Division of Chemistry and Biological Chemistry at Nanyang Technological University. Melting points were measured using the SRS Optimelt Automated Melting Point System, SRS MPA100. Infrared spectra were recorded on a SHIMADZU IR Prestige-21 FT-IR Spectrometer.

The catalyst and (R)-{[Pd[Me₂NCH(Me)C₁₀H₆](μ -Cl)}₂¹ and enones² were prepared according to literatures. The enatiomeric excess of hydrophosphination products was determined by reaction with (R)-{[Pd[Me₂NCH(Me)C₁₀H₆](μ -Cl)}₂ (0.5 equiv.) using ³¹P{¹H} NMR spectroscopy.³

Experimental Sections

General Procedures and Compound Characterization

Table 2 (R)-1a-Catalyzed asymmetric hydrophosphination of various aromatic enones with

Entry	R ₁	R ₂	Temp	Time	Product	Yield ^b	ee ^c
			°C			(%)	(%)
1	Ph	Ph	-80	23 h	5a	65 (99)	98 (77)
2	Ph	2-Naph	-80	50 h	5b	53 (99)	94 (74)
3	2-Naph	Ph	-80	60 h	5c	(99)	(86)
4	2-Naph	1-Naph	-80	6 d	5d	48 (97)	96 (57)
5	4-ClPh	Ph	-80	40 h	5e	70 (99)	98 (77)
6	Ph	4-ClPh	-80^{d}	6 d	5f	(96)	(57)
7	4-BrPh	Ph	-80^{d}	7 d	5g	(92)	(51)
8	4-NO ₂ Ph	Ph	-80	6 d	5h	67 (99)	88 (70)
9	3-NO ₂ Ph	Ph	-80	4 d	5i	41 (99)	85 (55)
10	4-OHPh	Ph	-80	7 d	5j	40 (98)	99 (73)
11	4-MeOPh	Ph	20	40 h	5k	(97)	(33)

^{*a*} THF was used without being dried ^{*b*} Yields of isolated products after a recrystalization. In parentheses are yields of isolated products before recrystalization. ^{*c*} ee after a recrystalization determined from ${}^{31}P{}^{1}H$ NMR integration of the signals. In the parentheses are the ee's before recrystalization. ^{*d*} Temperature raised gradually to 0 °C for another day after indicated time.

Ph₂PH^{*a*}

To a solution of Ph₂PH 4 (65.2 mg, 0.35 mmol, 1.0 equiv) in THF (5 mL) is added Cat (0.0175 mmol, 5 mol %) and the solution was cooled to -80 °C. Subsequently, aromatic enones 3 (0.39 mmol, 1.1 equiv) was added. Et₃N (17.7 mg, 0.18 mmol, 0.5 equiv) in THF (0.5 mL) was added drop wise. The solution was subsequently stirred at -80 °C. The reaction was monitored by ${}^{31}P{}^{1}H{}$ NMR. After the reaction is completed, the mixture was warmed to room temperature and the solution was evaporated by vacuum pump to give crude 5 (air sensitive) as solids. Compound 5 was dissolved in 8 ml DCM, and filtered by a short silica gel column using a pipette fixed on a two-neck Schlenk flask protected by nitrogen or argon. The solvent was removed by vacuum pump to give $(\pm)5$ (enantio-rich). In order to check ee value, the obtained 5 was allowed to react with 0.5 equiv of enantiopure (2-naphthyl)ethylamine palladium chloride dimmer, (R)-{[Pd[Me₂NCH(Me)C₁₀H₆](µ-Cl)}₂ (6) to form two diastereomers 7 and 8. The enatiomeric excess (ee %) was determined by integration of the ${}^{31}P{}^{1}H$ NMR spectra of the resulting diastereomers 7 and 8 which corresponds to the ratio of enantiomers formed.

In some instances, nearly enantiopure **5** could be obtained by a single recrystalization of the crude product **5** from DCM/Aceotne.

Synthesis of Ph₂PCH(Ph)CH₂COPh (5a)

Compound **3a** (81.2 mg, 0.39 mmol, 1.1 equiv) was reacted with **4** (65.2 mg, 0.35 mmol, 1.0 equiv) at -80 °C for 23 h according to the general procedure to provide (±)**5a** (136.7 mg, 99 % yield, 77 % ee). ³¹P{¹H} NMR(CDCl₃, 121 MHz): δ 0.1; ¹H NMR (CDCl₃, 300 MHz): δ 3.07 (ddd, 1H, *J* = 17.3 Hz, 8.3 Hz, 2.8 Hz, C*H*HCOPh),

3.58–3.69 (m, 1H, CH*H*COPh), 4.23–4.29 (m, 1H, PC*H*CH₂), 6.98–7.68 (m, 20H, Ar); ¹³C NMR (CDCl₃, 75 MHz): δ 40.0 (d, 1C, ¹*J*_{PC} = 11.4 Hz, PCH), 42.6 (d, 1C, ²*J*_{PC} = 22.1 Hz, *C*H₂COPh), 126.5–141.0 (m, 24C, Ar), 198.1 (d, 1C, ³*J*_{PC} = 12.8 Hz, *C*OPh).

Determination of ee: Compound **5a** was dissolve in DCM followed by addition of 0.5 equiv Pd dimmer complex **6**. After stirring for 20 min at RT, the solvent was evaporated and the ${}^{31}P{}^{1}H$ NMR (CDCl₃, 202 MHz) spectrum recorded ee = 77 % evaluated by integration of **7a** and **8a** signals.

7a and **8a** were isolated by silica gel column (EA/Hexane = 1/4) and crystallized from benzene/pentane system. Absolute configurations of **7a** (Fig 1) and **8a** (Fig 2) were confirmed by X-ray crystal diffraction analysis.

7a (major): $[\alpha]_D = -129.3$ (*c* 1.0, CH₂Cl₂). Mp: 180–182 °C. Anal. Calcd for C₄₁H₃₉ClNOPPd: C, 67.0; H, 5.4; N, 1.9. Found: C, 67.3: H, 5.3; N, 1.7. ³¹P{¹H} NMR(CDCl₃, 161 MHz): δ 49.1 Hz; ¹H NMR (CDCl₃, 400 MHz): δ 1.98 (d, 3H, ³*J*_{HH} = 6.2 Hz, CH*Me*), 2.66 (s, 3H, N*Me*Me), 3.05 (d, 3H, ⁴*J*_{PH} = 2.1 Hz, NMe*Me*), 3.83–

3.90 (m, 1H, CH*H*COPh), 4.26 – 4.29 (m, 1H, C*H*Me), 4.54 – 4.61 (m, 1H, C*H*HCOPh), 4.76–4.81 (m, 1H, PC*H*CH₂), 6.38–8.39 (m, 26H, Ar); ¹³C NMR (CDCl₃, 100 MHz): δ 23.0 (s, 1C, CH*Me*), 43.5 (d, 1C, ²*J*_{PC} = 6.7 Hz, *C*H₂COPh), 43.8 (d, 1C, ¹*J*_{PC} = 28.5 Hz, P*C*H), 48.0 (s, 1C, N*Me*Me), 50.6 (s, 1C, NMe*Me*), 72.9 (d, 1C, ³*J*_{PC} = 2.6 Hz, CHCH₃), 123.0–151.2 (m, 34C, Ar), 197.7 (d, 1C, ³*J*_{PC} = 13.5 Hz, COPh).

8a (minor): $[\alpha]_D = +181.6$ (*c* 1.0, CH₂Cl₂). Mp: 188–190 °C (dec). Anal. Calcd for C₄₁H₃₉ClNOPPd: C, 67.0; H, 5.4; N, 1.9. Found: C, 66.9; H, 5.0; N, 1.8. ³¹P{¹H} NMR(CDCl₃, 161 MHz): δ 44.9 Hz; ¹H NMR (CDCl₃, 400 MHz): δ 1.88 (d, 3H, ³*J*_{HH} = 6.3 Hz, CH*Me*), 2.60 (s, 3H, N*Me*Me), 3.00 (d, 3H, ⁴*J*_{PH} = 2.9 Hz, NMe*Me*), 3.54–3.60 (m, 1H, CH*H*COPh), 3.88–3.95 (m, 1H, C*H*HCOPh), 4.20–4.26 (m, 1H, C*H*Me), 5.60–5.65 (m, 1H, PC*H*CH₂), 6.02–7.91 (m, 26H, Ar); ¹³C NMR (CDCl₃, 100 MHz): δ 23.1 (s, 1C, CH*Me*), 38.0 (d, 1C, ¹*J*_{PC} = 24.6 Hz, PCH), 41.0 (s, 1C, CH₂COPh), 48.4 (s, 1C, N*Me*Me), 51.0 (s, 1C, NMe*Me*), 73.1 (d, 1C, ³*J*_{PC} = 2.9 Hz, CHCH₃), 123.1–151.5 (m, 34C, Ar), 197.2 (d, 1C, ³*J*_{PC} = 11.4 Hz, COPh).

Purification by recrystalization: The obtained (\pm)**5a** (136.7 mg) was dissolved in DCM/Aceotne (1:1) (heating needed), then cooled to 0 °C, precipitation occurred. The solution was transferred out and the precipitate was dried by vacuum pump to provide nearly optical pure (*S*)-**5a** (89.7 mg, 65 % yield, based on Ph₂PH, 98 % ee). [α]_D²⁰ = -141.1 (*c* 0.9, CH₂Cl₂), ³¹P{¹H}, ¹H, ¹³C NMR spectra were identical with those of (\pm)**5a**.

Synthesis of Ph₂PCH(Ph)CH₂CO(2-Naph) (5b)

Compound **3b** (100.7 mg, 0.39 mmol, 1.1 equiv) was reacted with **4** (65.2 mg, 0.35 mmol, 1.0 equiv) at -80 °C for 50 h according to the general procedure to provide (±)**5b** (154.1 mg, 99 % yield, 74 % ee). ³¹P{¹H} NMR(CDCl₃, 121 MHz): δ 0.1; ¹H NMR (CDCl₃, 300 MHz): δ 3.21 (ddd, 1H, *J* = 16.9 Hz, 8.2 Hz, 2.8 Hz, *CH*HCOPh), 3.70-3.81 (m, 1H, CH*H*COPh), 4.27-4.33 (m, 1H, PC*H*CH₂), 6.97-8.15 (m, 22H, Ar); ¹³C NMR (CDCl₃, 75 MHz): δ 40.3 (d, 1C, ¹*J*_{PC} = 11.4 Hz, P*C*H), 42.7 (d, 1C, ²*J*_{PC} = 22.2 Hz, *C*H₂COPh), 124.0-140.8 (m, 28C, Ar), 198.1 (d, 1C, ³*J*_{PC} = 13.2 Hz, *C*OPh).

Determination of ee: Compound **5b** was dissolved in DCM followed by addition of 0.5 equiv Pd dimmer complex **6**. After stirring for 20 min at RT, the solvent was evaporated and the ${}^{31}P{}^{1}H$ NMR (CDCl₃, 202 MHz) spectrum recorded ee = 77 % evaluated by intergration of **7b** and **8b** signals.

7b and **8b** were isolated by silica gel column (EA/Hexane = 1/4).

7b (major): $[\alpha]_D = -167.6$ (*c* 1.0, CH₂Cl₂). Mp: 200-202 °C (dec). Anal. Calcd for C₄₅H₄₁ClNOPPd: C, 68.9; H, 5.3; N, 1.8. Found: C, 69.2; H, 5.3; N, 2.0. ³¹P{¹H} NMR(CDCl₃, 161 MHz): δ 49.2 Hz; ¹H NMR (CDCl₃, 400 MHz): δ 2.00 (d, 3H, ³*J*_{HH} = 6.2 Hz, CH*Me*), 2.71 (s, 3H, N*Me*Me), 3.08 (d, 3H, ⁴*J*_{PH} = 2.5 Hz, NMe*Me*), 3.99-4.07 (m, 1H, CH*H*COPh), 4.29-4.36 (m, 1H, C*H*Me), 4.58-4.64 (m, 1H, C*H*HCOPh), 4.80-4.86 (m, 1H, PC*H*CH₂), 6.37-8.62 (m, 28H, Ar); ¹³C NMR (CDCl₃, 100 MHz): δ 23.2 (s, 1C, CH*Me*), 43.8 (d, 1C, ²*J*_{PC} = 6.8 Hz, CH₂COPh), 44.4 (d, 1C, ¹*J*_{PC} = 28.1 Hz, PCH), 48.3 (s, 1C, N*Me*Me), 50.8 (s, 1C, NMe*Me*), 73.2 (d, 1C, ³*J*_{PC} = 2.8 Hz, CHCH₃), 123.2-151.5 (m, 38C, Ar), 198.2 (d, 1C, ³*J*_{PC} = 13.8 Hz, COPh).

8b (minor): [α]_D = +201.0 (*c* 1.0, CH₂Cl₂). Mp: 187–189 °C (dec). Anal. Calcd for C₄₅H₄₁ClNOPPd: C, 68.9; H, 5.3; N, 1.8. Found: C, 68.9; H, 5.0; N, 1.7. ³¹P{¹H} NMR(CDCl₃, 161 MHz): δ 45.1 Hz; ¹H NMR (CDCl₃, 400 MHz): δ 1.89 (d, 3H, ³J_{HH}

S9

= 6.3 Hz, CH*Me*), 2.61 (s, 3H, N*Me*Me), 3.01 (d, 3H, ${}^{4}J_{PH}$ = 2.9 Hz, NMe*Me*), 3.69– 3.75 (m, 1H, CH*H*COPh), 3.99–4.07 (m, 1H, C*H*HCOPh), 4.20–4.26 (m, 1H, C*H*Me), 5.66–5.72 (m, 1H, PC*H*CH₂), 6.05–8.31 (m, 28H, Ar); ¹³C NMR (CDCl₃, 100 MHz): δ 23.2 (s, 1C, CH*Me*), 38.4 (d, 1C, ${}^{1}J_{PC}$ = 24.5 Hz, PCH), 41.2 (s, 1C, CH₂COPh), 48.4 (s, 1C, N*Me*Me), 51.1 (s, 1C, NMe*Me*), 73.2 (d, 1C, ${}^{3}J_{PC}$ = 3.1 Hz, CHCH₃), 123.2–151.6 (m, 38C, Ar), 197.3 (d, 1C, ${}^{3}J_{PC}$ = 11.3 Hz, COPh).

Purification by recrystalization: The obtained (\pm)**5b** (155.6 mg) was dissolved in DCM/Acetone (1:1) (heating needed), then cooled to 0 °C, precipitation occurred. The solution was transferred out and the precipitate was dried by vacuum pump to provide product (*S*)-**5b** (82.5 mg, 53 % yield, based on Ph₂PH, 94 % ee). [α]_D²⁰ = -147.8 (*c* 0.9, CH₂Cl₂), ³¹P{¹H}, ¹H, ¹³C NMR spectra were identical with those of (\pm)**5b**.

Synthesis of Ph₂PCH(2-Naph)CH₂CO(Ph) (5c)

Compound **3c** (100.7 mg, 0.39 mmol, 1.1 equiv) was reacted with **4** (65.2 mg, 0.35 mmol, 1.0 equiv) at -80 °C for 60 h according to the general procedure to provide

(±)**5**c (154.0 mg, 99 % yield, 86 % ee). ³¹P{¹H} NMR(CDCl₃, 161 MHz): δ -0.7; ¹H NMR (CDCl₃, 400 MHz): δ 3.15 (ddd, 1H, *J* = 17.4 Hz, 8.2 Hz, 2.7 Hz, C*H*HCOPh), 3.70-3.78 (m, 1H, CH*H*COPh), 4.42-4.47 (m, 1H, PC*H*CH₂), 6.99-7.68 (m, 22H, Ar); ¹³C NMR (CDCl₃, 75 MHz): δ 40.0 (d, 1C, ¹*J*_{PC} = 11.7 Hz, PCH), 42.6 (d, 1C, ²*J*_{PC} = 22.4 Hz, *C*H₂COPh), 125.5-138.7 (m, 28C, Ar), 197.9 (d, 1C, ³*J*_{PC} = 12.3 Hz, COPh).

Determination of ee: Compound **5c** was dissolved in DCM followed by addition of 0.5 equiv Pd dimmer complex **6**. After stirring for 20 min at RT, the solvent was evaporated and the ${}^{31}P{}^{1}H$ NMR (CDCl₃, 202 MHz) spectrum recorded ee = 86 % evaluated by integration of **7c** and **8c** signals.

This compound can not be purified by the recrystalization mentioned above.

Synthesis of Ph₂PCH(2-Naph)CH₂CO(1-Naph) (5d)

Compound 3d (120.3 mg, 0.39 mmol, 1.1 equiv) reacted with 4 (65.2 mg, 0.35

mmol, 1.0 equiv) at -80 °C for 6 d according to the general procedure to provide (±)**5d** (167.9 mg, 97 % yield, 57 % ee). ³¹P{¹H} NMR(CDCl₃, 161 MHz): δ -0.6; ¹H NMR (CDCl₃, 400 MHz): δ 3.27 (ddd, 1H, J = 16.6 Hz, 7.5 Hz, 3.0 Hz, *CH*HCOPh), 3.61-3.69 (m, 1H, CH*H*COPh), 4.39-4.44 (m, 1H, PC*H*CH₂), 6.96-7.88 (m, 24H, Ar); ¹³C NMR (CDCl₃, 100 MHz): δ 41.0 (d, 1C, ¹*J*_{PC} = 12.8 Hz, PCH), 46.5 (d, 1C, ²*J*_{PC} = 20.9 Hz, *C*H₂COPh), 124.4-138.3 (m, 32C, Ar), 202.8 (d, 1C, ³*J*_{PC} = 12.7 Hz, *C*OPh).

Determination of ee: Compound **5d** was dissolved in DCM followed by addition of 0.5 equiv Pd dimmer complex **6**. After stirring for 20 min at RT, the solvent was evaporated and the ${}^{31}P{}^{1}H$ NMR (CDCl₃, 121 MHz) spectrum recorded ee = 57 % evaluated by integration of **7d** and **8d** signals.

Purification by recrystalization: The obtained (\pm) **5d** (167.9 mg) was dissolved in appropriate DCM/Acetone (1:1) (heating needed), then cooled to 0 °C, precipitation occurred. The solution was transferred out and the precipitate was dried by vacuum

pump to provide product (S)-5d (80.6 mg, 48 % yield, based on Ph₂PH, 96 % ee). $[\alpha]_D^{20} = -147.8 \ (c \ 0.9, \ CH_2Cl_2), \ ^{31}P\{^{1}H\}, \ ^{1}H, \ ^{13}C \ NMR \ spectra \ were \ identical \ with those \ of \ (\pm)5d.$

Synthesis of Ph₂PCH(4-Cl-Ph)CH₂CO(Ph) (5e)

Compound **3e** (94.6 mg, 0.39 mmol, 1.1 equiv) was reacted with **4** (65.2 mg, 0.35 mmol, 1.0 equiv) at -80 °C for 40 h according to the general procedure to provide (±)**5e** (148.6 mg, 99 % yield, 77 % ee). ³¹P{¹H} NMR(CDCl₃, 121 MHz): δ 0.0; ¹H NMR (CDCl₃, 300 MHz): δ 3.07 (ddd, 1H, J = 17.4 Hz, 7.9 Hz, 2.8 Hz, CHHCOPh), 3.52-3.63 (m, 1H, CHHCOPh), 4.20-4.27 (m, 1H, PCHCH₂), 7.02-7.68 (m, 19H, Ar); ¹³C NMR (CDCl₃, 75 MHz): δ 39.4 (d, 1C, ¹*J*_{PC} = 11.8 Hz, PCH), 42.4 (d, 1C, ²*J*_{PC} = 22.0 Hz, CH₂COPh), 128.1-139.6 (m, 24C, Ar), 197.8 (d, 1C, ³*J*_{PC} = 12.6 Hz, COPh).

Determination of ee: Compound **5e** was dissolved in DCM followed by addition of 0.5 equiv Pd dimmer complex **6**. After stirring for 20 min at RT, the solvent was evaporated and the ${}^{31}P{}^{1}H$ NMR (CDCl₃, 202 MHz) spectrum recorded ee = 77 % evaluated by integration of 7e and 8e signals.

Purification by recrystalization: The obtained (\pm)**5e** (148.6 mg) was dissolved in appropriate DCM/Acetone (1:1) (heating needed), then cooled to 0 °C, precipitation occurred. The solution was transferred out and the precipitate was dried by vacuum pump to provide product (*S*)-**5b** (105.0 mg, 70 % yield, based on Ph₂PH, 98 % ee). $[\alpha]_D^{20} = -162.7$ (*c* 1.1, CH₂Cl₂), ³¹P{¹H}, ¹H, ¹³C NMR spectra were identical with those of (\pm)**5e**.

Supplementary Material (ESI) for Chemical Communications

Synthesis of Ph₂PCH(Ph)CH₂CO(4-Cl-Ph) (5f)

Compound **3f** (94.6 mg, 0.39 mmol, 1.1 equiv) was reacted with **4** (65.2 mg, 0.35 mmol, 1.0 equiv) at -80 °C for 6 d, then raise temperature to 0 °C gradually and stir at 0 °C for another day to provide (±)**5f** (144.1 mg, 96 % yield, 57 % ee). ³¹P{¹H} NMR(CDCl₃, 121 MHz): δ 0.0; ¹H NMR (CDCl₃, 300 MHz): δ 3.02 (ddd, 1H, *J* = 17.1 Hz, 8.6 Hz, 2.9 Hz, *CH*HCOPh), 3.50-3.61 (m, 1H, CH*H*COPh), 4.18-4.25 (m, 1H, PC*H*CH₂), 6.97-7.60 (m, 19H, Ar); ¹³C NMR (CDCl₃, 75 MHz): δ 40.1 (d, 1C, ¹*J*_{PC} = 11.7 Hz, PCH), 42.4 (d, 1C, ²*J*_{PC} = 22.3 Hz, *C*H₂COPh), 126.6-140.8 (m, 24C, Ar), 196.9 (d, 1C, ³*J*_{PC} = 12.7 Hz, COPh).

Determination of ee: Compound **5f** was dissolved in DCM followed by addition of 0.5 equiv Pd dimmer complex **6**. After stirring for 20 min at RT, the solvent was evaporated and the ${}^{31}P{}^{1}H$ NMR (CDCl₃, 121 MHz) spectrum recorded ee = 57 % evaluated by integration of **7f** and **8f** signals.

Synthesis of Ph₂PCH(4-Br-Ph)CH₂CO(Ph) (5g)

Compound **3g** (112.1 mg, 0.39 mmol, 1.1 equiv) was reacted with **4** (65.2 mg, 0.35 mmol, 1.0 equiv) at -80 °C for 7 d, then raise temperature to 0 °C gradually and stir at 0 °C for another day to provide (±)**5f** (152.4 mg, 92 % yield, 51 % ee). ³¹P{¹H} NMR(CDCl₃, 161 MHz): δ -0.7; ¹H NMR (CDCl₃, 400 MHz): δ 3.07 (ddd, 1H, *J* = 17.2 Hz, 7.6 Hz, 2.4 Hz, *CH*HCOPh), 3.53-3.61 (m, 1H, CH*H*COPh), 4.20-4.25 (m, 1H, PC*H*CH₂), 7.00-7.68 (m, 19H, Ar); ¹³C NMR (CDCl₃, 100 MHz): δ 39.4 (d, 1C, ¹*J*_{PC} = 11.8 Hz, PCH), 42.3 (d, 1C, ²*J*_{PC} = 21.2 Hz, *C*H₂COPh), 120.3-140.2 (m, 24C, Ar), 197.8 (d, 1C, ³*J*_{PC} = 12.6 Hz, *C*OPh).

Determination of ee: Compound **5g** was dissolved in DCM followed by addition of 0.5 equiv Pd dimmer complex **6**. After stirring for 20 min at RT, the solvent was evaporated and the ${}^{31}P{}^{1}H$ NMR (CDCl₃, 161 MHz) spectrum recorded ee = 51 % evaluated by integration of **7e** and **8e** signals.

Synthesis of Ph₂PCH(4-NO₂-Ph)CH₂CO(Ph) (5h)

Compound **3h** (98.8 mg, 0.39 mmol, 1.1 equiv) reacted with **4** (65.2 mg, 0.35 mmol, 1.0 equiv) at -80 °C for 6 d according to the general procedure to provide (±)**5h** (152.3 mg, 99 % yield, 70 % ee). ³¹P{¹H} NMR(CDCl₃, 121 MHz): δ 1.5; ¹H NMR (CDCl₃, 300 MHz): δ 3.19 (ddd, 1H, J = 17.8 Hz, 7.7 Hz, 2.8 Hz, CHHCOPh), 3.60–3.71 (m, 1H, CHHCOPh), 4.34–4.40 (m, 1H, PCHCH₂), 7.07–7.91 (m, 19H, Ar); ¹³C NMR (CDCl₃, 75 MHz): δ 39.4 (d, 1C, ¹ $J_{PC} = 11.8$ Hz, PCH), 42.4 (d, 1C, ² $J_{PC} = 22.0$ Hz, CH₂COPh), 123.6–149.4 (m, 24C, Ar), 197.3 (d, 1C, ³ $J_{PC} = 12.6$ Hz, COPh).

Determination of ee: Compound **5h** was dissolved in DCM followed by addition of 0.5 equiv Pd dimmer complex **6**. After stirring for 20 min at RT, the solvent was evaporated and the ${}^{31}P{}^{1}H$ NMR (CDCl₃, 121 MHz) spectrum recorded ee = 70 % evaluated by integration of **7h** and **8h** signals.

Purification by recrystalization: The obtained (\pm)**5h** (152.3 mg) was dissolved in appropriate DCM/Acetone (1:1) (heating needed), then cooled to 0 °C, precipitation occurred. The solution was transferred out and the precipitate was dried by vacuum pump to provide product (*S*)-**5h** (103.1 mg, 67 % yield, based on Ph₂PH, 88 % ee). $[\alpha]_D^{20} = -241.3$ (*c* 0.9, CH₂Cl₂), ³¹P{¹H}, ¹H, ¹³C NMR spectra were identical with those of (\pm)**5h**.

Synthesis of Ph₂PCH(3-NO₂-Ph)CH₂CO(Ph) (5i)

Compound **3i** (98.8 mg, 0.39 mmol, 1.1 equiv) was reacted with **4** (65.2 mg, 0.35 mmol, 1.0 equiv) at -80 °C for 4 d according to the general procedure to provide (±)**5i** (152.3 mg, 99 % yield, 55 % ee). ³¹P{¹H} NMR(CDCl₃, 161 MHz): δ 0.3; ¹H NMR (CDCl₃, 400 MHz): δ 3.20 (ddd, 1H, *J* = 17.8 Hz, 7.8 Hz, 2.7 Hz, C*H*HCOPh), 3.63-3.71 (m, 1H, CH*H*COPh), 4.35-4.39 (m, 1H, PC*H*CH₂), 7.07-7.97 (m, 19H, Ar); ¹³C NMR (CDCl₃, 125 MHz): δ 39.8 (d, 1C, ¹*J*_{PC} = 13.0 Hz, PCH), 41.9 (d, 1C, ²*J*_{PC} = 21.8 Hz, CH₂COPh), 121.6-148.2 (m, 24C, Ar), 197.3 (d, 1C, ³*J*_{PC} = 12.6 Hz, COPh).

Determination of ee: Compound **5i** was dissolved in DCM followed by addition of 0.5 equiv Pd dimmer complex **6**. After stirring for 20 min at RT, the solvent was evaporated and the ${}^{31}P{}^{1}H{}$ NMR (CDCl₃, 202 MHz) spectrum recorded ee = 55 % evaluated by integration of **7i** and **8i** signals.

Purification by recrystalization: The obtained $(\pm)5i$ (152.3 mg) was dissolved in

appropriate DCM/Acetone (1:1) (heating needed), then cooled to 0 °C, precipitation occurred. The solution was transferred out and the precipitate was dried by vacuum pump to provide product (S)-**5i** (63.1 mg, 41 % yield, based on Ph₂PH, 85 % ee). $[\alpha]_D^{20} = -241.3 \ (c \ 0.9, CH_2Cl_2), {}^{31}P{}^{1}H{}^{1}H{}^{13}C$ NMR spectra were identical with those of (±)**5i**.

Synthesis of Ph₂PCH(4-OH-Ph)CH₂CO(Ph) (5j)

Compound **3j** (87.5 mg, 0.39 mmol, 1.1 equiv) was reacted with **4** (65.2 mg, 0.35 mmol, 1.0 equiv) at -80 °C for 7 d according to the general procedure to provide (±)**5i** (140.8 mg, 98 % yield, 73 % ee). ³¹P{¹H} NMR(DMSO-*d*₆, 161 MHz): δ -2.9; ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.73 (ddd, 1H, *J* = 20.0 Hz, 8.1 Hz, 2.5 Hz, C*H*HCOPh), 3.67-3.76 (m, 1H, CH*H*COPh), 4.20-4.26 (m, 1H, PC*H*CH₂), 6.51-7.75 (m, 19H, Ar), 9.14 (s, 1H, O*H*); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 38.4 (d, 1C, ¹*J*_{PC} = 10.4 Hz, PCH), 41.8 (d, 1C, ²*J*_{PC} = 23.2 Hz, CH₂COPh), 114.8-155.5 (m, 24C,

Ar), 197.8 (d, 1C, ${}^{3}J_{PC} = 13.4$ Hz, COPh).

Determination of ee: Compound **5j** was dissolved in DCM (with small mount of THF, due to its poor solubility) followed by addition of 0.5 equiv Pd dimmer complex **6**. After stirring for 20 min at RT, the solvent was evaporated and the ${}^{31}P{H}$ NMR (CDCl₃, 202 MHz) spectrum recorded ee = 73 % evaluated by integration of **7j** and **8j** signals.

Purification by recrystalization: The obtained (±)**5j** (140.8 mg) was dissolved in appropriate DCM/Acetone (1:1) (heating needed), then cooled to 0 °C, precipitation occurred. The solution was transferred out and the precipitate was dried by vacuum pump to provide product (*S*)-**5j** (57.5 mg, 40 % yield, based on Ph₂PH, 99 % ee). $[\alpha]_{D}^{20} = -102.0 (c \ 1.0, \ acetone), \ {}^{31}P\{{}^{1}H\}, \ {}^{1}H, \ {}^{13}C \ NMR \ spectra \ were \ identical \ with$ those of (±)**5j**.

Synthesis of Ph₂PCH(4-MeO-Ph)CH₂CO(Ph) (5k)

3k (92.9 mg, 0.39 mmol, 1.1 equiv) was added to **4** (65.2 mg, 0.35 mmol, 1.0 equiv) at 0 °C, followed by Et₃N (17.7 mg, 0.17 mmol), then warm to 20 °C gradually and stirr for 40 h to provide (\pm)**5k** (144.1 mg, 97 % yield, 73 % ee). ³¹P{¹H} NMR(CDCl₃, 161 MHz): δ -1.4; ¹H NMR (CDCl₃, 400 MHz): δ 3.03 (ddd, 1H, *J* = 17.1 Hz, 7.9 Hz, 2.6 Hz, C*H*HCOPh), 3.53-3.62 (m, 1H, CH*H*COPh), 3,63 (s, 3H, C*H*₃O), 4.18-4.23 (m, 1H, PC*H*CH₂), 6.60-7.68 (m, 19H, Ar); ¹³C NMR (CDCl₃, 100 MHz): δ 39.1 (d, 1C, ¹*J*_{PC} = 11.0 Hz, P*C*H), 42.7 (d, 1C, ²*J*_{PC} = 22.4 Hz, CH₂COPh), 55.3 (s, 1C, CH₃O), 113.9-158.2 (m, 24C, Ar), 198.3 (d, 1C, ³*J*_{PC} = 13.0 Hz, COPh).

Determination of ee: Compound **5**k was dissolved in DCM followed by addition of 0.5 equiv Pd dimmer complex **6**. After stirring for 20 min at RT, the solvent was evaporated and the ${}^{31}P{}^{1}H$ NMR (CDCl₃, 202 MHz) spectrum recorded ee = 33 % evaluated by integration of **7**k and **8**k signals.

Mechanism Studies

Scheme 1 Proposed catalytic cycle

Regarding the addition of nucleophiles to enones catalyzed by palladium, the mechanism involving C=C bond coordination with palladium leading to formation of

C-bound palladium enolate in equilibrium with O-enolate or oxa- π -ally species has

been proposed.⁴ However, in our case, we propose that the carbonyl oxygen coordinates to palladium rather than the C=C moiety leading to formation of O-enolate intermediate followed by proton transfer to generate the product (Scheme 1) We propose it based on the following experimental observations.

(1) Stoichiometric model:

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Complex (R)-1a (48.6 mg, 0.1 mmol, 0.5 eqiv) was treated with PPh₂H (37.2 mg, 0.2

mmol, 1 eqiv) in dichloromethane (10 mL) for 10 min at 0 °C to form the

bisdiphenylphosphine complex B (³¹P{¹H} NMR (CDCl₃, 202 MHz): δ -9.4 (d, *J* = 39.0 Hz), 10.8 (d, *J* = 39.0 Hz)) followed by addition of another 0.5 eqiv of complex (*R*)-1a (48.6 mg, 0.1 mmol) to give complex **C** which indicates that the HPPh₂ *trans* to carbon is more labile and could dissociate easily. Alternatively, complex **C** could be obtained directly by treatment of equal amount (mol) of complex (*R*)-1a and PPh₂H. The ¹³C NMR of complex **C** showed a small coupling of the Pd-C carbon with ³¹P (*J*_{CP} = 2.04 Hz) which indicates the *cis* coordination of diphenylphosphine. Complex C: ³¹P{¹H} NMR (CDCl₃, 161 MHz): δ 12.7; ¹H NMR (CDCl₃, 300 MHz): δ 1.97 (d, 3H, ⁴*J*_{HP} = 6.4 Hz, CHCH₃), 2.84 (d, 3H, ⁴*J*_{HP} = 1.0 Hz, NCH₃CH₃), 2.97 (d, 3H, ⁴*J*_{HP}) = 3.8 Hz, NCH₃CH₃), 4.40 (m, 1H, CHCH₃), 6.42 (d, 1H, ¹*J*_{HP} = 383.7 Hz, Ph₂PH), 6.89-7.85 (m, 16H, Ar); ¹³C NMR (CDCl₃, 100 MHz): 24.4 (s, 1C, CHCH₃), 48.7 (s, 1C, NCH₃CH₃), 52.3 (d, 1C, ³*J*_{CP} = 2.7 Hz, NCH₃CH₃), 72.8 (d, 1C, ³*J*_{CP} = 3.4 Hz, CHCH₃), 123.7-142.4 (m, 21C, Ar), 150.9 (d, 1C, ²*J*_{CP} = 2.04 Hz, C-Pd)).

The phosphido intermediate D ($^{31}P\{^1H\}$ NMR (CDCl_3, 121 MHz): $\delta{-}69.7$) can be

detected immediately by treatment of complex C with Et₃N. However, it is difficult to isolate due to its ready dimerization. Treatment of stoichiometric amount of complex **C** and *trans* chalcone under the same conditions described in the manuscript lead to the phosphido intermediate **D** and its dimerization compound instead of the expected addition product. However, if more free phosphine such as PPh₃ was added, the phosphido intermediate **D** disappeared and the expected addition product can be detected from ${}^{31}P{}^{1}H$ NMR which indicates that the free phosphines play an important role in driving the catalytic cycle.

(2) Coordination experiment:

We did the following experiment using PPh_3 as the equivalent of $HPPh_2$ to check whether coordination occurs between palladium and ketone oxygen or C=C bonds.

The dimeric complex **E** (68.0 mg, 0.1 mmol, 0.5 equiv) was treated with PPh₃ (52.5 mg, 0.2 mmol, 1.0 equiv) in dichloromethane (15 mL) for 20 min at RT to form complex F (${}^{31}P{}^{1}H{}$ NMR (CDCl₃, 202 MHz): δ 40.3). Subsequently AgClO₄ (62.1 mg, 0.3 mmol, 1.5 equiv) was added and after stirring for 30 min, the mixture was filtered through celite and dried by MgSO₄. Subsequently, *trans*-chalcone (41.7 mg, 0.2 mmol, 1.0 equiv) was added and after stirring for 20 min in CH₂Cl₂, the solvent was evaporated by vacuum pump to obtain the species as solids. ${}^{31}P{}^{1}H{}$ NMR (CDCl₃, 161 MHz): δ 38.6; ¹H NMR (CDCl₃, 400 MHz): δ 1.95 (d, 3H, ${}^{4}J_{PH}$ = 6.4 Hz, CHCH₃), 2.63 (d, 3H, ${}^{4}J_{PH}$ = 2.4 Hz, NCH₃CH₃), 2.69 (s, 3H, NCH₃CH₃), 4.27 (m,

1H, CHCH₃), 6.40–7.83 (m, 33H, CH=CH, Ar); ¹³C NMR (CDCl₃, 100 MHz): 23.76 (s, 1C, CHCH₃), 46.90 (s, 1C, NCH₃CH₃), 51.31 (s, 1C, NCH₃CH₃), 71.65 (d, 1C, ${}^{3}J_{CP}$ = 2.6 Hz, CHCH₃), 121.94 (s, 1C, PhCH=CH), 123.39–145.59 (m, 39C, Ar),

149.47 (d, 1C, ${}^{2}J_{CP}$ = 1.30 Hz, C-Pd)), 191.55 (s, 1C, C=O). IR (KBr, v(C=O)/cm⁻¹,

1660.7; ν(C=C)/cm⁻¹, 1602.8).

trans-chalcone: ¹H NMR (CDCl₃, 400 MHz): δ 7.24–8.03 (m, 12H, C*H*=C*H*, Ar), ¹³C NMR (CDCl₃, 100 MHz): 122.25 (s, 1C, PhCH=CH), 128.62–138.37 (m, 12C,

Ar), 144.99 (s, 1C, Ph*C*H=CH), 190.68 (s, 1C, *C*=O). IR (KBr, v(C=O)/cm⁻¹, 1664.6;

$$v(C=C)/cm^{-1}$$
, 1606.7)

If coordination occurs through oxygen of the ketone meoity, then complex **G** could be expected, alternatively if coordination occurs through C=C bonds, then complex **H** could be expected. We then analysed the product by ¹³C NMR (100 MHz, CDCl₃) and compared it with *trans* chalcone to find that the carbonyl C shifted $\Delta\delta$ = 0.87 ppm (toward low field); α -C: $\Delta\delta$ = -0.31 ppm (toward high field) and β -C: $\Delta\delta$ = 0.60 ppm (toward low field). This indicates that complex **G** is most likely formed since when C=O oxygen is coordinated to Pd, carbonyl C becomes more electron deficient, so it

shifts toward low field as seen in our experiments. Due to the electron inducing effect, α -C becomes more electron rich and β -C becomes electron deficient and their resonances shift towards high field and low field respectively. However, if the C=C double bonds are coordinated to Pd as in complex **H**, then α -C and β -C should both become significantly electron deficient, and consequently both should shift towards the low field region. We also compared the ¹³C NMR spectrum of *trans* chalcone with the mixture of equal mount (mol) of [Pd](NCMe)(HPPh₂) and *trans* chalcone. No chemical shift can be detected in this instance which indicates that the enone itself can not replace NCMe and coordinate to Pd.

IR analysis was also conducted by comparing *trans* chalcone (KBr, ν (C=O)/cm⁻¹,

1664.6; ν (C=C)/cm⁻¹, 1606.7) with the species [Pd](enone)(PPh₃) (KBr,

 ν (C=O)/cm⁻¹, 1660.7; ν (C=C)/cm⁻¹, 1602.8). The IR shifts are also consistent with

the formation of complex G though the shifts are quite small in magnitude.

Therefore, we believe that it most likely to undergo ketone complexation followed by

1,4-addition to generate O-enolate (as shown in the proposed catalytic cycle).

Reference

- (1) S. Y. M. Chooi, P.-H. Leung, L. C. Chin, K. F. Mok, G. H. Quek, K. Y. Sim, M.
- K. Tan, Tetrahedron: Asymmetry, 1992, 3, 529.
- (2) T. P. Robinson,; R. B. Hubbard Iv, T. J. Ehlers, J. L. Arbiser, D. J. Goldsmith, J.

P. Bowen, Bioorg. Med. Chem. 2005, 13, 4007.

- (3) A. D. Sadow, I. Haller, L. Fadini, A. Togni, J. Am. Chem. Soc., 2004, 126, 14704.
- (4) For recent selected examples, see: (a) T. Nishikata, Y. Yamamoto, I. D. Gridnev,

N. Miyaura, Organometallics, 2005, 24, 5025. (b) T. Nishikata, Y. Yamamoto, N.

Miyaura, Organometallics, 2004, 23, 4317.

ppm (t1)

pin (tr)

Т

 \neg

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Fig. 1 Molecular structure and absolute stereochemistry of complex 7a with 50%

probability thermal ellipsoids shown

Table 1.	Crystal data	and structure	refinement fo	or leung466s.
	2			<u> </u>

Identification code	leung466s	
Empirical formula	C47 H45 Cl N O P Pd	
Formula weight	812.66	
Temperature	103(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)	
Unit cell dimensions	a = 11.9358(3) Å	<i>α</i> = 90°.
	b = 10.0903(3) Å	β=105.1340(10)°.
	c = 17.0594(4) Å	$\gamma = 90^{\circ}$.
Volume	1983.31(9) Å ³	
Z	2	
Density (calculated)	1.361 Mg/m ³	
Absorption coefficient	0.612 mm ⁻¹	
F(000)	840	
Crystal size	0.40 x 0.08 x 0.02 mm ³	
Theta range for data collection	1.77 to 33.07°.	
Index ranges	-17<=h<=17, -8<=k<=15, -25<=l<=25	
Reflections collected	34075	

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Independent reflections 12613 [R(int) = 0.0393] Completeness to theta = 33.07° 98.1 % Absorption correction Semi-empirical from equivalents 0.9879 and 0.7919 Max. and min. transmission Refinement method Full-matrix least-squares on F² 12613 / 1 / 472 Data / restraints / parameters Goodness-of-fit on F² 1.083 R1 = 0.0331, wR2 = 0.0722Final R indices [I>2sigma(I)] R indices (all data) R1 = 0.0446, wR2 = 0.0882Absolute structure parameter -0.023(16) Largest diff. peak and hole 0.796 and -1.073 e.Å-3

probability thermal ellipsoids shown

Table 1. Crystal data and structure ref	finement for leung478s.	
Identification code	leung478s	
Empirical formula	C41 H39 Cl N O P Pd	
Formula weight	734.55	
Temperature	103(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 15.6428(8) Å	α= 90°.
	b = 17.0104(11) Å	β=90°.
	c = 25.5760(16) Å	$\gamma = 90^{\circ}$.
Volume	6805.5(7) Å ³	
Z	8	
Density (calculated)	1.434 Mg/m ³	
Absorption coefficient	0.705 mm ⁻¹	
F(000)	3024	
Crystal size	$0.34 \ x \ 0.14 \ x \ 0.02 \ mm^3$	
Theta range for data collection	1.59 to 31.05°.	

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Index ranges	-18<=h<=22, -22<=k<=24, -37<=l<=33
Reflections collected	63762
Independent reflections	21013 [R(int) = 0.0455]
Completeness to theta = 31.05°	98.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9860 and 0.7956
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	21013 / 0 / 835
Goodness-of-fit on F ²	1.093
Final R indices [I>2sigma(I)]	R1 = 0.0362, wR2 = 0.0781
R indices (all data)	R1 = 0.0522, wR2 = 0.0962
Absolute structure parameter	-0.008(14)
Largest diff. peak and hole	1.839 and -0.844 e.Å ⁻³