Supplementary Information

Self-Assembled Cage as an Endo-Template for Cyclophane Synthesis

Yoshihiro Yamauchi^a and Makoto Fujita*,^a

^aDepartment of Applied Chemistry, School of Engineering, The University of Tokyo and CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Contents

- Fig. S1. ¹H NMR (500 MHz, D_2O , 300 K) spectrum of $1\supset 3a$.
- Fig. S2a, b. 13 C NMR (125 MHz, D₂O, 300 K) spectrum of 1 \supset 3a.
- Fig. S3. ¹H DOSY (D₂O, 300 K) spectrum of 1⊃3a.
- **Fig. S4.** ${}^{1}\text{H}{}^{-1}\text{H} \text{ COSY (D}_{2}\text{O}, 300 \text{ K}) \text{ spectrum of } 1 \supset 3a.$
- Fig. S5a, b. ${}^{1}\text{H}{}^{-13}\text{C}$ HSQC (D₂O, 300 K) spectrum of 1 \supset 3a.
- Fig. S6. ${}^{1}\text{H}{}^{-13}\text{C}$ HMBC (D₂O, 300 K) spectrum of $1 \supset 3a$.
- Fig. S7. ${}^{1}\text{H}{}^{-1}\text{H}$ NOESY (D₂O, 300 K) spectrum of 1 \supset 3a.
- Fig. S8. ¹H NMR (500 MHz, D₂O, 300 K) spectrum of 1⊃3b.
- Fig. S9a, b. 13 C NMR (125 MHz, D₂O, 300 K) spectrum of $1 \supset 3b$.
- Fig. S10. ¹H DOSY (D₂O, 300 K) spectrum of 1⊃3b.
- Fig. S11. ${}^{1}\text{H}{}^{-1}\text{H} \text{ COSY (D}_{2}\text{O}, 300 \text{ K}) \text{ spectrum of } 1 \supset 3b.$
- Fig. S12a, b. ${}^{1}\text{H}{}^{-13}\text{C}$ HSQC (D₂O, 300 K) spectrum of 1 \supset 3b.
- Fig. S13a, b. ${}^{1}\text{H}{}^{-13}\text{C}$ HMBC (D₂O, 300 K) spectrum of 1 \supset 3b.
- Fig. S14. ${}^{1}\text{H}{}^{-1}\text{H}$ NOESY (500 MHz, D₂O, 300 K) spectrum of $1 \supset 3b$.
- Fig. S15. ²⁹Si NMR (60 MHz, D_2O , 300 K) spectrum of $1 \supset 3a$.
- Fig. S16. ${}^{1}\text{H}{}^{-29}\text{Si}$ HMBC (D₂O, 300 K) spectrum of 1 \supset 3a.
- Fig. S17. ²⁹Si NMR (60 MHz, D₂O, 300 K) spectrum of 1⊃3b.
- Fig. S18. ¹H-²⁹Si HMBC (300 MHz, D₂O, 300 K) spectrum of 1⊃3b.
- Fig. S19. LDI-MS spectra of (a) 3a and (b) 3b.
- Fig. S20. Optimized structures of (a) $1 \supset 3a$ and (b) $1 \supset 3b$.
- Fig. S21. Optimized structures of (a) 3a and (b) 3b.

Materials and methods:

¹H, ¹³C NMR, and 2D NMR spectra were recorded on a Bruker DRX-500 spectrometer equipped with a 5 mm BBO Z-gradient probe, a Bruker AV-500 spectrometer equipped ²⁹Si NMR and ¹H-²⁹Si HMBC spectra were with a 5 mm BBI Z-gradient probe. measured on a JEOL JNM-ECA 300. TMS (CDCl₃ solution) in a capillary served as external standard (δ 0 ppm). IR measurements (ATR) were carried out using a DIGILAB Scimitar FTS-2000 instrument. UV-visible spectral data were recorded on LDI-TOFMS spectra were measured with Voyager a SHIMADZU UV-3150. DE-STR without matrix. Melting points were determined with a Yanaco MF-500 V micro melting point apparatus. Elemental analyses were performed on a Yanaco MT-6 at the Elemental Analysis Center of School of Science of the University of Tokyo. Solvents and reagents were purchased from TCI Co., Ltd., WAKO Pure Chemical Industries Ltd., and Sigma-Aldrich Co. Deuterated H₂O was acquired from Cambridge Isotope Laboratories, Inc. and used as supplied for the complexation reactions and NMR measurements.

Preparation of 1⊃3a. A mixture of cage **1** (14.9 mg, 5 μmol), **2a** (6.6 mg, 15 μmol) in D₂O (0.5 mL) was stirred at 100 °C for 20 h to give clear red solution. ¹H NMR analysis of the solution revealed the formation of **1⊃3a**. After filtration of the resulted orange solution, the resulting solution was dried by a freeze-drying equipment. **1⊃3a** was isolated as an orange powder (15.4 mg, 84% yield). ¹H NMR (500 MHz, D₂O, 300 K): δ 8.65 (br, 12H), 8.44 (br, 12H), 8.20 (br, 12H), 8.12 (d, *J* = 7.5 Hz, 4H), 8.12 (d, *J* = 7.5 Hz, 4H), 3.73 (s, 18H), 3.73 (s, 18H), 3.73 (s, 36H), (br, 12H), (br, 12H); ¹³C NMR (125 MHz, D₂O, 300 K): δ 167.2 (*C*_q), 161.4 (*C*_q), 152.0 (*C*H), 146.3 (*C*_q), 143.5 (*C*_q), 132.4 (*C*_q), 131.1 (*C*H), 130.3 (*C*_q), 127.6 (*C*H), 127.2 (*C*H), 126.9 (*C*_q), 124.8

(CH), 122.7 (CH), 122.0 (CH), 120.1 (C_q), 47.5 (CH₂), 46.4 (CH₂), 26.1 (CH₃); DOSY (m²/s): log*D* = -9.83; IR (KBr, cm⁻¹): 2427, 2353, 2337, 1615, 1520, 1385, 1213, 1058, 859, 808, 674; m.p.: ~230 °C (decomposed); E.A. Calcd. for C₁₂₂H₁₄₄N₄₂O₄₆Pd₆Si₄• 23(H₂O): C, 35.74; H, 4.67; N, 14.35. Found: C, 35.89; H, 4.42; N, 14.07.

Fig. S1. ¹H NMR (500 MHz, D₂O, 300 K) spectrum of $1 \supset 3a$.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

Fig. S2b. ¹³C NMR (125 MHz, D₂O, 300 K) spectrum of $1 \supset 3a$.

Fig. S4. ${}^{1}\text{H}{}^{-1}\text{H} \text{ COSY }(D_2O, 300 \text{ K}) \text{ spectrum of } 1 \supset 3a.$

Fig. S5a. ¹H-¹³C HSQC (D₂O, 300 K) spectrum of $1 \supset 3a$.

¹H-¹³C HSQC (D₂O, 300 K) spectrum of $1 \supset 3a$. Fig. S5b.

Fig. S7. ¹H-¹H NOESY (D₂O, 300 K) spectrum of $1\supset$ 3a.

Preparation of 1⊃3b. A mixture of cage **1** (14.9 mg, 5 μmol), **2b** (6.6 mg, 15 μmol) in D₂O (0.5 mL) was stirred at 100 °C for 20 h to give clear orange solution. ¹H NMR analysis of the solution revealed the formation of **1⊃3b**. After filtration of the resulted orange solution, the resulting solution was dried by a freeze-drying equipment. **1⊃3b** was isolated as an orange powder (15.3 mg, 83% yield). ¹H NMR (500 MHz, D₂O, 300 K): δ 8.65 (br, 12H), 8.44 (br, 12H), 8.20 (br, 12H), 8.12 (d, *J* = 7.5 Hz, 4H), 8.12 (d, *J* = 7.5 Hz, 4H), 3.73 (s, 18H), 3.73 (s, 18H), 3.73 (s, 36H), (br, 12H), (br, 12H); ¹³C NMR (125 MHz, D₂O, 300 K): δ 167.1 (*C*_q), 161.6 (*C*_q), 161.1 (*C*_q), 152.1 (*C*H), 147.5 (*C*_q), 144.3 (*C*_q), 133.2 (*C*_q), 132.3 (*C*H), 129.5 (*C*_q), 127.6 (*C*_q), 127.2 (*C*H), 125.4 (*C*H), 125.0 (*C*H), 122.4 (*C*H), 122.2 (*C*H), 120.4 (*C*_q), 47.6 (*C*H₂), 46.5 (*C*H₂), 26.1 (*C*H₃); DOSY (m²/s): log*D* = −9.81; IR (KBr, cm⁻¹): 3403, 3086, 1607, 1575, 1550, 1521, 1384, 1100, 1087, 1059, 808, 523, 434; m.p.: ~230 °C(decomposed).

Fig. S9a. ¹³C NMR (125 MHz, D₂O, 300 K) spectrum of $1 \supset 3b$.

Fig. S9b. ¹³C NMR (125 MHz, D_2O , 300 K) spectrum of $1 \supset 3b$.

Fig. S10. ¹H DOSY (D₂O, 300 K) spectrum of $1 \supset 3b$.

Fig. S12a. ${}^{1}\text{H}{}^{-13}\text{C}$ HSQC (D₂O, 300 K) spectrum of $1\supset 3b$.

Fig. S12b. ${}^{1}\text{H}{}^{-13}\text{C}$ HSQC (D₂O, 300 K) spectrum of $1\supset 3b$.

Fig. S13a. ¹H-¹³C HMBC (D₂O, 300 K) spectrum of **1⊃3b**.

Fig. S14. 1 H- 1 H NOESY (D₂O, 300 K) spectrum of **1** \supset **3b**.

Fig. S15. ²⁹Si NMR (60 MHz, D₂O, 300 K) spectrum of 1⊃3a.

Fig. S16. ¹H-²⁹Si HMBC (D₂O, 300 K) spectrum of 1⊃**3a**.

Fig. S17. ²⁹Si NMR (60 MHz, D₂O, 300 K) spectrum of 1⊃3b.

Fig. S18. ¹H-²⁹Si HMBC (D₂O, 300 K) spectrum of 1⊃**3**b.

Fig. S20. Optimized structures (MM) of (a) $1 \supset 3a$ and (b) $1 \supset 3b$.

Fig. S21. Optimized structures (MM) focusing on (a) **3a** and (b) **3b** within the cavity of **1**. Hydrogen atoms of **3a** and **3b** were omitted for clarity.