Supplementary Information

for

Water-soluble doubly N-confused hexaphyrin: A near-IR fluorescent Zn(II) ion sensor in water

Yoshiya Ikawa, Mari Takeda, Masaaki Suzuki, Atsuhiro Osuka and Hiroyuki Furuta*

Content:

Experimental details for synthesis and spectroscopic measurements of N₂CH-R8

Fig. S1. HPLC chromatograms of N₂CH-R8

Fig. S2. MALDI-TOF-MAS spectrum of N₂CH-R8.

Figs. S3–S5. ¹H NMR spectra of N_2 CH-R8 in DMF- d_7 .

Figs. S6–S14. Absorption and fluorescence spectra of N_2 CH-R8 under various conditions.

General

Commercially available reagents and solvents were used without further purification unless otherwise mentioned. Tetrahydrofuran (THF) was distilled over benzophenone and sodium under Ar atmosphere. Silica gel column chromatography was performed on KANTO Silica Gel 60 N (spherical, neutral, particle size 40–50 µm). Fmoc-Arg(Pbf)-OH, N,N-diisopropylethylamine (DIPEA), O-benzotriazole-N,N,N',N'tetramethyluronium hexafluorophosphate (HBTU), hydroxybenzotriazole (HOBt), benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP), piperidine were purchased from Watanabe Chemical (Hiroshima, Japan), and Fmoc-Sieber Amide resin was purchased from Novabiochem (Laufelfingen, Switzerland). ¹H NMR spectra were recorded on a JEOL JNM-AL300 spectrometer (operating at 300.40 MHz for ¹H). Chemical shifts were expressed in parts per million (ppm) from a residual portion of deuterated solvent, CHCl₃ (δ = 7.26). MALDI-TOF-mass spectra were recorded on a Bruker Daltonics Autoflex with linear positive ion mode. UV-vis-NIR spectra were recorded on a Shimadzu UV-3150PC spectrometer. Fluorescence spectra were recorded on a Horiba Fluorolog-3-NIR luminescence spectrophotometer. For absorption/emission measurements, spectroscopic grade DMF (purchased from Nacalai Tesque, Kyoto, Japan) and ultrapure water (prepared by Organo Puric-Z, Tokyo, Japan) were employed. High performance liquid chromatography (HPLC) was performed on a Shimadzu LC-20AB with an SPD-M10A photodiode array detector.

Synthesis

5,20-Bis(2',3',5',6'-tetrafluoro-4'-iodophenyl)-10,15,25,30-tetrakis(pentafluorophenyl) doubly N-confused dioxohexaphyrin (N₂CH, 1):

5,10-Bis(pentafluorophenyl) N-confused tripyrrane^[1] (100 mg, 0.18 mmol) and 2,3,5,6-tetrafluoro-4-iodo-benzaldehyde^[2] (55 mg, 0.18 mmol) in CH₂Cl₂ (30 mL) were stirred under N₂ for 15 min at room temperature. p-TsOH•H₂O (3.4 mg, 0.1 equiv) was added to the mixture. The solution was stirred for 4 h under dark conditions with an aluminum foil to avoid the light. The solution was opened to the air and DDQ (0.5 mmol, 125 mg, 3.0 equiv) was added. The resulting mixture was stirred for 12 h at room temperature. Then, the crude product was separated roughly by an alumina column with CH₂Cl₂ and a purple color fraction was collected. After the solvent was removed, the residue was dissolved in CH₂Cl₂ (60 mL) and Cu(OAc)₂·H₂O (100 mg) in methanol was added. After stirring for 5 h, the solvent was removed and the residue was purified by a silica gel column with $CH_2Cl_2/Hexane$ (v/v = 1/1). Green color fraction was collected and the solvent was removed. The residue was dissolved in CH₂Cl₂ (20 mL) and trifluoroacetic acid (TFA) (1 mL) was added. After 12 h, an aqueous NaOH (1 M) solution was added and the organic phase was separated, washed with water and brine, dried over Na₂SO₄, and evaporated. The product was recrystallized from CH₂Cl₂/hexane. Gold solid was obtained in 4.9% (7.5 mg, 4.4 µmol).

¹H NMR (CDCl₃, 300 MHz, ppm): $\delta = 10.75$ (s, 2H), 9.50 (d, J = 4.8 Hz, 2H), 9.47 (d, J = 4.8 Hz, 2H), 9.22 (s, 4H), -0.28 (s, 2H), -0.76 (s, 2H); MALDI-TOF-MS: calcd: 1708.62 for C₆₆H₁₄F₂₈I₂N₆O₂, found: 1710.02 ([M+H]⁺); UV/vis/NIR (CH₂Cl₂): λ_{max} [nm] = 1049, 908, 794, 721, 662, 568, 383.

Bis-Cu(II) complex of 5,20-bis{2',3',5',6'-tetrafluoro-4'-[(triisopropylsilyl)ethynyl]- phenyl}-10,15,25,30-tetrakis(pentafluorophenyl) doubly N-confused Dioxohexaphyrin:

5,20-Bis(2',3',5',6'-tetrafluoro-4'-iodophenyl)-10,15,25,30-tetrakis(pentafluorophenyl)doubly N-confused dioxohexaphyrin was treated with Cu(OAc)₂·H₂O, affording the corresponding bis-Cu(II) complex, quantitatively. To a dried Schlenk tube degassed by purging with Ar gas, bis-Cu(II) complex of 5,20-bis-(2',3',5',6'-tetrafluoro-4'-iodophenyl)-10, 15, 25, 30-tetrakis(pentafluorophenyl) doubly N-confused dioxohexaphyrin (40.4 mg, 22.1 µmol), Pd(PPh₃)₂Cl₂ (31.0 mg, 2.0 equiv), THF (3 mL) and (triisopropylsilyl)acetylene (49 µL, 10 equiv) were added and the solution was stirred for 5 min. Then, CuI (8.4 mg, 2.0 equiv) and triethylamine (1.5 mL) were added. Then, the reaction was conducted further for 24 h at room temperature. The reaction mixture was filtered and diluted with CH₂Cl₂. The reaction mixture was washed with an aqueous NH₄Cl solution. The organic phase was separated, dried over Na₂SO₄, and evaporated. The residue was purified by a silica gel column with CH₂Cl₂/Hexane (v/v = 1/1), and the product was recrystallized from CH₂Cl₂/hexane. Gold solid was obtained in 49% (20.8 mg, 10.7 µmol).

MALDI-TOF-MS: calcd: 1940.61 for $C_{88}H_{52}Cu_2F_{28}N_6O_2Si_2$, found: 1941.88 ([M+H]⁺); UV/vis/NIR (CH₂Cl₂): $\lambda_{max}[nm] = 1050, 912, 617, 465, 402.$

Freebase of 5,20-bis{2',3',5',6'-tetrafluoro-4'-[(triisopropylsilyl)ethynyl]phenyl}-10,15,25,30-tetrakis(pentafluorophenyl) doubly N-confused dioxohexaphyrin: ¹H NMR (CDCl₃, 300 MHz, ppm): δ = 10.74 (s, 2H), 9.49 (d, *J* = 4.8 Hz, 4H), 9.24 (d, *J* = 5.1 Hz, 2H), 9.20 (d, *J* = 4.8 Hz, 2H), 1.32 (m, 42H), -0.29 (s, 2H), -0.77 (s, 2H); MALDI-TOF-MS: calcd: 1817.55 for C₈₈H₅₆F₂₈N₆O₂Si₂, found: 1818.528 ([M+H]⁺); UV/vis/NIR (CH₂Cl₂): λ_{max} [nm] = 1047, 908, 794, 720, 569, 383, 334.

Bis-Cu(II) complex of 5, 20-bis(2',3',5',6'-tetrafluoro-4'-[(ethynyl)phenyl]-10,15,25,30-tetrakis(pentafluorophenyl) doubly N-confused dioxohexaphyrin (3):

To a dried Schlenk tube degassed by purging with Ar gas, the THF solution of bis-Cu(II) complex of 5,20-bis{2',3',5',6'-tetrafluoro-4'-[(triisopropylsilyl)ethynyl]-phenyl}-10,15,25,30-tetrakis(pentafluorophenyl) doubly N-confused dioxohexaphyrin (13.0 mg, 6.7 μ mol) was added. Then, tetra-*n*-butylammonium fluoride (TBAF) (20 μ L of 1.0 M THF solution, 3.0 equiv) and acetic acid (20 μ L of 1.0 M THF solution, 3.0 equiv) and acetic acid (20 μ L of 1.0 M THF solution, 3.0 equiv) were added. The solution was stirred for 8 h at room temperature under Ar. Then the reaction was quenched by an excess amount of acetic acid and the solvent was removed. The product was washed with water and the organic phase was separated, dried over Na₂SO₄ and the solvent was removed. Residue was used for the next reaction without further purification.

Synthesis of side-chain-protected octa-arginine peptide having an azide moiety (5). Fmoc-Sieber Amide Resin (156 mg, 0.1 mmol of Fmoc-protected amino group) was washed with CH_2Cl_2 and then *N*,*N*-dimethylformamide (DMF) three times. To remove Fmoc groups, the resin was treated with 20% piperidine in DMF (2 mL) for 20 min and then washed with DMF five times. A DMF solution containing Fmoc-Arg(Pbf)-OH (210 mg, 0.3 mmol), HOBt (46 mg, 0.3 mmol) and HBTU (114 mg, 0.3 mmol) and then DIPEA (104 μ L, 0.6 mmol) were added to the resin. The resin mixture was shaken

gently for 20 min. The resin was washed with DMF five times. These procedures were repeated eight times. Additionally, the resin was treated with 20% piperidine in DMF for 20 min and then washed with DMF five times. Then DMF solution containing N₃CH₂CO₂H (10 equiv, 1.0 mmol), HOBt (5 equiv, 76 mg, 0.5 mmol) and PyBOP (260 mg, 0.5 mmol) and DIPEA (20 equiv, 2.0 mmol) were added. The resin mixture was shaken gently for 2 h. The resin was washed with DMF five times. After each coupling reaction, a little portion of the resin was transferred to a sample tube and subjected to Kaiser test. The coupling reaction was repeated until the test showed no blue color change. The resin was washed with CH₂Cl₂ five times. To cleave the side-chain-protected peptide from the resin, 1% TFA in CH₂Cl₂ was added to the resin and the mixture was shaken for 2 min and then filtrated. The filtrated solution was dropped into the 10% pyridine in methanol. The resin was washed with CH₂Cl₂ and methanol three times, alternately. Solvents were removed by evaporation. The residue was diluted with CH_2Cl_2 , washed with an aqueous NaHCO₃ solution, then dried over Na₂SO₄, and the solvent was evaporated to afford pale yellow color solid 5. MALDI-TOF-MS: calcd: 3368.20 for $C_{154}H_{228}N_{36}O_{33}S_8$, found: 3366.278 ([M]⁺).

Synthesis of N₂CH-R8 by the click reaction between 3 and azido peptide 5.

To a 50 mL round flask, compound **3** (ca. 6.7 µmol), protected azido peptide **5** (20 µmol, 3.0 equiv), CuI (2.6 mg, 13.4 µmol, 2 equiv), tris[(1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl]amine (TBTA) (1 mg, 1.88 µmol, 0.3 equiv), and CH₂Cl₂ (20 mL) were added and the solution was stirred for 12 h at ambient temperature under N₂ atmosphere. The reaction mixture was washed with aqueous NaHCO₃ and the organic phase was separated, dried over Na₂SO₄ and the solvent was removed by evaporation. The residue was transferred into a plastic tube and a cocktail of TFA/ thioanisole/*m*-cresol (v/v/v = 85/7.5/7.5) was added. The mixture was shaken for 5 h at ambient temperature. Diethyl ether (10 mL) was added to the solution and a precipitated crude target compound was collected by centrifugation. The residue was dissolved into a ultra-pure water and purified by HPLC with YMC R-ODS-5 column (4.6×250 mm) using a mixed solvent CH₃CN/H₂O (v/v = 40/60) containing 0.1% TFA. Flow rate was 1 mL/min and the absorptions at 210 nm and 566 nm were employed for detection of peptide and N₂CH**-R8** as TFA salts in 46% yield (13 mg, 3.1 µmol).

Spectroscopic measurements

Effects of metal cations on absorption and fluorescence spectra of N₂CH-R_{8.}

To an aqueous solution of N_2CH-R_8 , an acetate salt of metal cation of interest was added to prepare the solution containing 0.53 μ M of N_2CH-R_8 and 530 μ M (1000 equiv) of metal cation. The mixture was stirred at ambient temperature for 1 h and the absorption and fluorescence spectra were recorded.

Effects of second metal ions on fluorescence spectra of N_2CH-R_8 in the presence of Zn^{2+} .

To an aqueous solution of N_2CH-R_8 , $Zn(OAc)_2 \cdot 2H_2O$ and water were added to prepare the solution containing N_2CH-R_8 and 1000-fold excess Zn^{2+} . After stirring at ambient temperature for 1 h, an aqueous solution of acetate or chloride salt of metal cation of interest was added. Four sets of solutions containing 0.53 μ M of N_2CH-R_8 , 530 μ M (1000 equiv) of Zn^{2+} , and different concentration of metal cation of interest, 0.53 μ M (1.0 equiv), 1.06 μ M (2.0 equiv), 10.6 μ M (20 equiv), or 530 μ M (1000 equiv), respectively, were prepared. After additional stirring for 1 h (or different times in the experiment for Figure S13) at ambient temperature, fluorescence spectra were recorded.

References

[1] A. Srinivasan, T. Ishizuka, A. Osuka and H. Furuta, J. Am. Chem. Soc., 2003, 125, 878.

[2] J. Leroy, B. Schoellhorn, J.-L. Syssa-Magale, K. Boubekeur and P. Palvadeau, *J. Fluorine Chem.* 2004, **125**, 1379.

Fig. S1. HPLC chromatograms of N_2 CH-R8. Absorption at 210 nm (top) or 566 nm (middle) was employed for detection of the peptide or N_2 CH moiety, respectively. Absorption was monitored at two wavelengths, simultaneously, by using a photodiode array detector.

Fig. S2. MALDI-TOF-MS spectrum of N_2 CH-R8. MALDI-TOF-MS: calcd: 4204.00 for $C_{170}H_{216}F_{28}N_{78}O_{20}$, found: 4205.372 ([M+1]⁺).

Fig. S3. Expanded ¹H NMR spectrum of N_2CH-R8 in DMF- d_7 . In the structure of N_2CH-R8 , protons observed in this region are indicated in red.

Fig. S4. Expanded ¹H NMR spectrum of N_2CH-R8 in DMF- d_7 . In the structure of N_2CH-R8 , protons observed in this region are indicated in red (two octa-arginine peptide units), green (two methylene units between the peptide and triazole units), or blue (two triazole units). Signals of octa-arginine units are closely similar with those of octa-arginine amide prepared separately. Signals of triazole units and two methylenes are also similar to those of an N₂CH derivative prepared by a click reaction between compound **3** and ethyl azidoacetate. *: solvent, **: impurity.

S9

Fig. S5. Expanded ¹H NMR spectrum of N_2 CH-R8 in DMF- d_7 . In the structure of N_2 CH-R8, protons observed in this region are indicated in red.

Fig. S6. Effects of Zn^{2+} on the absorption and fluorescence spectra of N₂CH in CH₂Cl₂. (a) Absorption spectra of freebase N₂CH (1), bis-Zn²⁺ complex of N₂CH (2), and 1 treated *in situ* with 480 equiv of Zn(OAc)₂. [1] = [2] = 0.27 μ M. (b) Absorption spectra of 1 (0.27 μ M) treated with different amount of Zn(OAc)₂. (c) Time dependent Zn²⁺ coordination of 1 (4.0 μ M). (d) Fluorescence spectra of freebase N₂CH (1, $\lambda_{ex} = 566$ nm), bis-Zn²⁺ complex of N₂CH (2, $\lambda_{ex} = 600$ nm), and 1 treated *in situ* with 480 equiv of Zn(OAc)₂ ($\lambda_{ex} = 600$ nm). [1] = [2] = 0.53 μ M.

Fig. S7. Comparison of absorption and fluorescence spectra of N₂CH (1) and N₂CH-R8. (a) Absorption (left) and fluorescence (right, $\lambda_{ex} = 566$ nm) spectra of 1 in DMF (absorption $\lambda_{max} = 566$ nm) and N₂CH-R8 in DMF (absorption $\lambda_{max} = 566$ nm). (b) Absorption (left) and fluorescence (right, $\lambda_{ex} = 566$ nm) spectra of 1 in CH₂Cl₂ (absorption $\lambda_{max} = 566$ nm) and N₂CH-R8 in H₂O (absorption $\lambda_{max} = 566$ nm). (c) Absorption (left) and fluorescence (right, $\lambda_{ex} = 600$ nm) spectra of bis-Zn²⁺ complex of 1 (2) in CH₂Cl₂ (absorption $\lambda_{max} = 600$ nm) and N₂CH-R8 with 1000 equiv of Zn(OAc)₂ in H₂O (absorption $\lambda_{max} = 600$ nm).

Fig. S8. Absorption (top) and fluorescence (bottom) spectra of N₂CH-R8 in H₂O in the presence of metal ions that cause no significant spectral change. Absorption and fluorescence ($\lambda_{ex} = 600 \text{ nm}$) spectra were measured in the presence of 0.27 µM and 0.53 µM of N₂CH-R8 with 1000 equiv of cations of interest, respectively.

Fig. S9. Effects of metal ions that cause spectral changes on absorption and fluorescence of N_2 CH-R8 in H₂O. Absorption and fluorescence ($\lambda_{ex} = 600$ nm) spectra were measured in the presence of 0.27 μ M and 0.53 μ M of N_2 CH-R8, respectively, with 1000 equiv of cations of interest.

Fig. S10. Absorption (top) and fluorescence (bottom) spectra of bis-Zn²⁺ complex N₂CH-R8 in H₂O in the presence of metal ions that cause no significant spectral change. Absorption and fluorescence ($\lambda_{ex} = 600$ nm) spectra were measured in the presence of 0.27 µM and 0.53 µM of N₂CH-R8 with 1000 equiv of Zn²⁺ and 1000 equiv of cations of interest, respectively.

Fig. S11. Effects of metal ions that cause spectral changes on absorption and fluorescence of bis-Zn²⁺ complex of N₂CH-R8 in H₂O. Absorption and fluorescence ($\lambda_{ex} = 600 \text{ nm}$) spectra were measured in the presence of 0.27 µM and 0.53 µM of N₂CH-R8, respectively, with 1000 equiv of Zn²⁺ and 1000 equiv of cations of interest.

Fig. S12. Effects of different amount of metal ions that cause spectral changes on fluorescence of bis-Zn²⁺ complex of N₂CH-R8 in H₂O. Fluorescence spectra ($\lambda_{ex} = 600$ nm) were measured in the presence of 0.53 µM of N₂CH-R8 with 1000 equiv of Zn²⁺ and different molar equivalent of cations of interest.

Fig. S13. The time dependence of fluorescence quenching of bis-Zn²⁺ complex N₂CH-R8 by equivalent amount of Cu²⁺ in H₂O. Fluorescence spectra ($\lambda_{ex} = 600 \text{ nm}$) were measured in the presence of 0.53 µM of N₂CH-R8, 530 µM of Zn(OAc)₂, and 0.27 µM of Cu(OAc)₂.

Fig. S14. Effects of monovalent salt on absorption (top) and fluorescence (bottom) spectra of bis-Zn²⁺ complex of N₂CH-R8 in H₂O. Absorption and fluorescence ($\lambda_{ex} = 600 \text{ nm}$) spectra were measured in the presence of 0.27 µM and 0.53 µM of N₂CH-R8, respectively, with 1000 equiv of Zn(OAc)₂ and 1000 equiv of salts of interest.