Supporting Information

Construction of an interpenetrated structure of macrocycles

Yingjie Zhao, Yuliang Li,* Yongjun Li,* Haiyan Zheng, Xiaodong Yin and Huibiao Liu

Table of contents

- 1. Synthesis of 1, 2, 3, 4 and 5
- 2. ¹H NMR and ¹³C NMR
- 3. ¹H NMR Titration Studies
- 4. Binding Studies

1. Synthesis of 1, 2, 3, 4 and 5

Compound 4 was synthesized in accordance with literature procedures.¹

4-(2-(2-hydroxyethoxy)ethoxy)benzaldehyde, S6:

To a solution of 4-hydroxybenzaldehyde **S5** (2.44)20 mmol) and g, 2-(2-chloroethoxy)ethanol S1 (2.48 g, 20 mmol) in CH₃CN (150 mL), were added potassium carbonate (11.0 g, 80 mmol). The suspension was heated at 70°C for 3 d under an atmosphere of nitrogen. After cooling, the solution was concentrated under reduced pressure. The residue was taken up in CH_2Cl_2 (200 mL), washed with H_2O (150 mL \times 3), dried over anhydrous MgSO₄ and concentrated. The residue was purified by column chromatography to give **S6** (3.3 g, yield = 80%).¹H NMR (400 MHz, CDCl₃) δ 9.87 (s, J = 6.0, 1H), 7.82 (d, J = 9.3, 2H), 7.01 (d, J = 10.3, 2H), 4.21 (m, 2H), 3.88 (m, 2H), 3.76 (m, 2H), 3.68 (m, 2H). 13 C NMR (101 MHz, CDCl₃) δ 190.8, 162.8, 131.9, 129.3, 114.7, 72.6, 69.3, 67.6, 61.6. MS (EI) Calcd for C₁₁H₁₄O₄ (M) 210.09; Found 210.1 (M).

2-(2-(4-formylphenoxy)ethoxy)ethyl 4-methylbenzenesulfonate, S7:

A solution of **S6** (2.1 g, 10 mmol) and Et₃N (5.0 mL) in CH₂Cl₂ (50 mL) was cooled to 0°C. p-toluenesulfonyl chloride (2.17 g, 11.4 mmol) was added and the solution was stirred at R.T. for 18 h. The reaction was quenched with water (20 mL). The organic layer was separated, dried over MgSO₄, filtered, concentrated under reduced pressure and the resulting crude oil was purified by column chromatography (petroleum ether : CH₂Cl₂ 1:4 as eluent) to yield 2-(2-(4-formylphenoxy)ethoxy)ethyl 4-methylbenzenesulfonate **S7** (2.8 g, yield = 78%). ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 7.83 (d, *J* = 8.1 Hz, 2H), 7.79 (d, *J* = 7.8 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 7.00 (d, *J* = 8.2 Hz, 2H), 4.20 (t, *J* = 4.4 Hz, 2H), 4.17 – 4.10 (m, 2H), 3.86 – 3.80 (m, 2H), 3.80 – 3.71 (m, 2H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 163.8, 145.0, 132.9, 132.0, 130.1, 129.9, 128.0, 114.9, 69.6, 69.3, 68.9, 67.7, 21.6. HRMS (ESI) Calcd for C₁₈H₂₀O₆S (M+Na)⁺ 387.0878; Found 387.0915 (M+Na)⁺.

4,4'-(2,2'-(2,2'-(1,3-phenylenebis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))b is(oxy)dibenzaldehyde S8:

To a solution of resorcinol S4 (0.31 g, 2.8 mmol) in DMF (70 mL) was added K_2CO_3 (1.55 g, 11.2 mmol) and S7 (2.55 g, 7 mmol), then the solution was heat to 70 °C for 10 h. After cooling, the solution was concentrated under reduced pressure. The residue was taken up in

CH₂Cl₂ (100 mL), washed with H₂O (100 mL × 3), dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether: ethyl acetate : CH₂Cl₂1:1:1 as eluent) to yield **S8** (0.98 g, yield = 71%). ¹H NMR (400 MHz, CDCl₃) δ 9.88 (s, 2H), 7.82 (d, *J* = 7.7 Hz, 4 H), 7.15 (t, *J* = 8.1Hz, 1H), 7.02 (d, *J* = 7.9 Hz, 4H), 6.53 (s, 1H), 6.50 (d, *J* = 5.1 Hz, 2H), 4.23 (t, *J* = 4.2 Hz, 4H), 4.12 (t, *J* = 4.2 Hz, 4H), 3.95 (t, *J* = 4.2 Hz, 4H), 3.91 (t, *J* = 4.1 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 163.8, 159.9, 132.0, 130.1, 129.9, 114.9, 107.2, 101.9, 70.0, 69. 7, 67.8, 67.5. MALDI-TOF, Calcd for C₂₈H₃₀O₈Na (M+Na)⁺ 517.18; Found 517.2 (M+Na)⁺. Anal. Calcd for C₂₈H₃₀O₈: C, 68.00; H, 6.11; Found: C, 67.92; H, 6.13.

(4,4'-(2,2'-(2,2'-(1,3-phenylenebis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl)) bis(oxy)bis(4,1-phenylene))dimethanol, S9:

To a solution of **S8** (0.9 g, 1.8 mmol) in CH₃OH (30 mL) and CH₂Cl₂ (10 mL) was added NaBH₄ (0.14 g, 3.6 mmol), then was stirred at R.T. for 2h, the solution was concentrated under reduced pressure. The residue was taken up in CH₂Cl₂ (100 mL), washed with HCl (5 %) (100 mL × 2), dried over anhydrous MgSO₄ and concentrated. The solution was concentrated under reduced pressure to yield **S9** (0.8 g, yield = 90%). ¹H NMR (400 MHz, CDCl3) δ 7.26 (d, *J* = 6.8 Hz, 4H), 7.15 (t, *J* = 8.2 Hz, 1H), 6.90 (d, *J* = 7.6 Hz, 2H), 6.52 (s, 1H), 6.49 (d, *J* = 7.5 Hz, 2H), 4.60 (s, 4H), 4.18 – 4.05 (m, 8H), 3.95 – 3.84 (m, 8H), 1.68 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 158.4, 133.5, 129.9, 128.6, 114.8, 107.2, 101.9, 70.0, 67.6, 67.5, 65.0. MALDI-TOF, Calcd for C₂₈H₃₄O₈Na (M+Na)⁺ 521.22; Found 521.2 (M+Na)⁺. Anal. Calcd for C₂₈H₃₄O₈: C, 67.45; H, 6.87; Found: C, 67.21; H, 6.82

1,3-bis(2-(2-(4-(azidomethyl)phenoxy)ethoxy)ethoxy)benzene, 5:

To a solution of **S9** (0.8 g, 1.6 mmol) in PhMe (30 mL) was added hydrogen bromide 33% acetic acid solution (3.9 g, 16 mmol), then was heated to 40 °C for 2 h under an atmosphere of nitrogen. After cooling, the solution was concentrated under reduced pressure. The residue was taken up in CH₂Cl₂ (50 mL), washed with H₂O (50 mL \times 3), dried over anhydrous MgSO₄ and concentrated. Without further purification, the product was dissolved in DMF (20 mL) containing NaN₃ (0.5 g, 7.7 mmol). The solution was heated to 70 °C for 10 h. After concentration, the residue was taken up in CH₂Cl₂ (50 mL \times 3),

dried over anhydrous MgSO₄ and concentrated, the residue was purified by column chromatography (ethyl acetate : petroleum ether 1:3 as eluent) to yield **7**. Two steps yield 0.3 g (35%). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.6 Hz, 4H), 7.19 – 7.10 (m, 1H), 6.93 (d, *J* = 8.6 Hz, 4H), 6.53 (s, 1H), 6.52 (d, *J* = 2.8 Hz, 2H), 4.26 (s, 4H), 4.19 – 4.04 (m, 8H), 3.98 – 3.84 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 158.9, 129.8, 127.7, 115.0, 107.2, 101.9, 70.0, 69.9, 67.6, 67.5, 54.4. MALDI-TOF, Calcd for C₂₈H₃₂N₆O₆Na (M+Na)⁺ 571.23; Found 571.2 (M+Na)⁺. Anal. Calcd for C₂₈H₃₂N₆O₆: C, 61.30; H, 5.88; N, 15.32; Found: C, 61.15; H, 6.01; N, 15.38

Synthesis of 1, 2 and **3**: 1, 8-Diaza [5.4.0] bicycloundec-7-ene (DBU) (4.0 mmol, 0.7 mL) was added to toluene (400 mL), degassed (argon) for 30 minutes and heated to 70 °C while flushing with argon. At 70 °C, CuI (0.05 mmol, 9.5 mg) and tetrabutyl ammonium chloride (0.5 mmol, 139 mg) was added to the mixture. A solution of the **4** (208 mg, 0.5 mmol) and **5** (274 mg, 0.5 mmol) in THF (5 mL) and toluene (50 mL) was added to the solution slowly over 12 h and stirred for another 18 h under argon. The reaction was quenched with water and washed with H₂O (100 mL × 3), dried over anhydrous MgSO₄ and concentrated under reduced pressure. The mixture was concentrated in vacuo. The product was purified via chromatography (SiO₂, CH₂Cl₂ : methanol 30 : 1) to afford **2** (310 mg, 65% yield) as a yellow solid, **3** (10 mg, <5% yeild), **3** (67 mg, 15% yield).

Compound 1: ¹H NMR (400 MHz, CD₂Cl₂) δ 11.33 (s, 4H), 8.51 (s, 4H), 8.20 (s, 4H), 8.00 (s, 4H), 7.82 (s, 4H), 6.99 (t, *J* = 8.1, 2H), 6.77 (d, *J* = 7.6, 8H), 6.40 (s, 2H), 6.33 (d, *J* = 8.5, 4H), 6.29 (d, *J* = 7.5, 8H), 5.20 (s, 8H), 4.02 (s, 8H), 3.83 – 3.76 (m, 16H), 3.75 (s, 4H), 1.47 (s, 36H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 159.8, 158.6, 147.3, 142.4, 134.6, 129.7, 128.8, 127.5, 126.6, 125.24, 121.2, 120.6, 119.9, 116.2, 114.6, 113.2, 111.8, 106.6, 101.7, 69.6, 69.6, 67.3, 67.16, 54.1, 34.8, 31.9. MALDI-TOF (M), Calcd for C₁₁₆H₁₂₀N₁₆O₁₂ (M) 1928.9; Found 1929.1.

Compound 2: ¹H NMR (400 MHz, CDCl₃) δ 10.71 (s, 2H), 8.16 (s, 2H), 8.08 (s, 2H), 7.99 (s, 2H), 7.65 (s, 2H), 7.29 (d, J = 8.6 Hz, 4H), 7.11 (t, J = 8.2 Hz, 1H), 6.91 (d, J = 8.7 Hz, 4H), 6.51 (s, 1H), 6.47 (d, J = 8.2, 2H), 5.60 (s, 4H), 4.17 – 4.03 (m, 8H), 3.86 (m, 8H), 1.50 (s, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 159.0, 148.2, 142.3, 134.9, 129.8, 129.1,

127.6, 126.4, 125.3, 121.3, 119.5, 119.1, 116.3, 115.2, 112.7, 112.0, 107.0, 102.2, 69.8, 69.7, 67.6, 67.5, 53.9, 34.8, 32.1. MALDI-TOF (M), Calcd for $C_{58}H_{60}N_8O_6$ (M) 964.46; Found 964.8. HRMS (ESI) Calcd for $C_{58}H_{61}N_8O_6$ (M+H)⁺ 965.47141; Found 965.46902 (M+H)⁺ **Compound 3**: ¹H NMR (400 MHz, CD₂Cl₂) δ 11.11 (s, 4H), 8.21 (s, 4H), 8.19 (s, 4H), 8.00 (s, 4H), 7.72 (s, 4H), 7.06 (d, *J* = 7.5, 8H), 7.02 (t, *J* = 8.3, 2H), 6.64 (d, *J* = 8.0, 8H), 6.38 (d, *J* = 8.4, 4H), 6.34 (s, 2H), 5.37 (s, 8H), 3.97 (s, 8H), 3.90 (s, 8H), 3.72 (d, *J* = 3.5, 16H), 1.48 (s, 36H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 160.0, 159.0, 147.1, 142.6, 134.6, 129.9, 129.6, 127.0, 126.5, 125.3, 121.3, 120.4, 119.9, 116.5, 115.0, 112.5, 112.0, 106.9, 101.8, 69.8, 69.8, 67.6, 67.6, 54.0, 34.8, 31.9. MALDI-TOF (M), Calcd for C₁₁₆H₁₂₀N₁₆O₁₂ (M) 1928.9; Found 1929.1.

2. ¹H NMR and ¹³C NMR

 ^{13}C NMR spectrum (100 MHz, 298 K, CDCl₃) of S7

 ^{13}C NMR spectrum (100 MHz, 298 K, CDCl₃) of S8

¹³C NMR spectrum (100 MHz, 298 K, CDCl₃) of **S9**

10 / 22

¹³C NMR spectrum (100 MHz, 298 K, CDCl₃) of **5**

 1 H NMR spectrum (400 MHz, 298 K, CDCl₃) of **2**

¹³C NMR spectrum (100 MHz, 298 K, CDCl₃) of **2**

12 / 22

 1 H NMR spectrum (400 MHz, 298 K, CD₂Cl₂) of **3**

3. ¹H NMR Titration Studies

Macrocycle-Cl [.]		
20.0 eq	l	
10.0 eq		
5.0 eq		
3.0 eq		
2.5 eq		
2.0 eq		<u></u>
1.8 eq		
1.6 eq		
1.4 eq		
1.2 eq		
1.0 eq		
0.8 eq		
0.6 eq		
0.4 eq		
0.2 eq		
0.0 eq		un a ll

Macrocycle-Br				
20.0 eq				
10.0 eq	 ىلىپ			
5.0 eq	 _1_1_	Ļ		1.1
3.0 eq	 _µ_			44
2.0 eq	 	L_l_		- <u> -</u> -
1.6 eq/		باسيا		
1.4 eq	 _lıl_	المدا		
1.2 eq	 lıl	بلسا		
1.0 eq	 lıl	بلسل		_
0.8 eq	 _4_	L		
0.6 eq	 U	1.1	11	
0.4 eq	 	1.1		___
0.2 eq		بالمار	_A	_44
0.0 eq				

Macrocycle-I [*]	
100.0 eq	
50.0 eq	
20.0 eq	
10.0 eq	
5.0 eq	
3.0 eq	- the second second
2.0 eq	- the tal a file
1.5 eq	
1.2 eq	lu_lallu_
1.0 eq	lu_lallu_
0.8 eq	lu_lallu_
0.6 eq	lutal_alul
0.4 eq	lutal_sh
0.2 eq	
0.0 eq	

Macrocycle-CN[.]

Acrocy	/cle-CN ⁻					
50.0 eq						
20.0 eq					.Lu	_lul
10.0 eq					.l.u_	_h_
5.0 eq .					.Lu	_
3.0 eq _					J.u.	_
2.0 eq _					J_u_	
1.5 eq _					J_u_	
1.0 eq -					J_u_	
0.8 eq -					.l.u	_44
0.6 eq -					.l.v.	_
0.4 eq -				L	J.	
0.2 eg -				سللسا	d.	
0.0 eq					L.	
-	11.5	10.5	9.5 9.0 P	8.5 8.0 7.5 pm	7.0 6.5 6.	0 5.5 5.0

M

Macrocycle-OAc [.]			. I
20.0 eq	l	_lll_lr_	
10.0 eq			_l_l_
5.0 eq	l	_lll_l_u_	
3.0 eql		_llL_l_u_	-h-h-
2.0 eq/			_
1.5 eq			_
1.0 eg		llilu	
0.8 eq		_ll_l_l_u_	
0.6 eq			h
0.4 eg			
0.2 eq		allelala	
0.0 eq			
12.5 11.5 10.5	9.5 9.0 8 ppm	3.5 8.0 7.5 7.0 6.5 6.0	5.5 5.0

Macrocycle-OH⁻

_	11.5 10.5	9.5 9.0	8.5 8.0 7.5 7.0	6.5	6.0 5.5 5.0
0.0 eq			المالياليا		
0.2 eq			لما بالب	A	
0.4 eq			الماليال	_A_	
0.6 eq			سالاسا	M	
0.8 eq			- ll la		
1.0 eq			-the tal		h
1.2 eq —					_hh
1.5 eq					
2.0 eq —			Ul		_lulu
3.0 eq				U.	
5.0 eq			lll		_hh
10.0 eq —					l
20.0 eq		l			_hh
50.0 eq					_lulu

Macrocycle-H₂PO₄-

50.0 eq .											J.	~	
20.0 eq _							L				J	~	
10.0 eq _												1	
5.0 eq -									l		J		
3.0 eq _												1	
2.0 eq _		~								JLL		1	
1.5 eq										L	_/_	1	
1.0 eq -										_u_		-l	
0.8 eq -									~	L.	_/_	J.	
0.6 eq -									~	_L_n_		1	
0.4 eg -										LU		J_	
0.2 eq										ιLι		1	
0.0 eq -										LU		J.	
-	12.5	12.0	11.5	11.0	10.5	10.0	9.5 ppm	9.0	8.5	8.0	7.5	7.0	6.5

Catenane-CN⁻

Catenane	-CN				1
50.0 eq —			, L		
20.0 eq —					
10.0 eq					
5.0 eq —			U		
3.0 eq	~		lul	A	
2.0 eq			W	l	
1.5 eq			~U		
1.2 eq			U	n. n	
1.0 eq			U		
0.8 eq —			l	M	
0.6 eq			Uh	n n	
0.4 eg			ll		
0.2 eq				U	
0.0 eq				A	
_	11.5 11.0 10	.5 10.0 9.5 9.	0 8.5 8.0 7.5 ppm	7.0 6.5 6.0	5.5 5.

Catenane-OAc

100.0 eq	 	 				
50.0 eq	 					
20.0 eq		 	U		_M	
10.0 eq		 	lu		M	
5.0 eq		 	W		M	
3.0 eq		 				
2.0 eq —	 	 				
1.0 eq	 				n	
0.8 eq —	 _	 			L.	
0.6 eq	 	 				
0.4 eq —	 	 			LL_	
0.2 eq	 	 	- Ul			_
				• ^	٨	

	Catenane-Ol	H-						1
~	50.0 eq					U		
	20.0 eq							
-A-	10.0 eq							
~	5.0 eq							
	3.0 eq					l.l	m	
~	2.0 eq					lul		
~	1.5 eq					_1.1		
~	1.2 eq					_U		
~	1.0 eq						A	
~	0.8 eq						M	
~	0.6 eq					ll		
~	0.4 eq					UL_		
~	0.2 eq					ll_	M	
~	0.0 eq					JU		ال
5.0	12.5	11.5	10.5	9.5	9.0 8.5 ppm	8.0 7.5	7.0 6.5 6.0	5.5 5.

Catenane-H₂PO₄· 50.0 eg

50.0 eq -	 		 	 ~	 rll		A.	~	X.
20.0 eq -	 		 	 ~	 ul		r.		٨.
10.0 eq	 		 	 	 -l-l-			_^	~
5.0 eq -	 		 	 	 		~	_	_
3.0 eq -	 		 	 	 _hl_		~~	_	C
2.0 eq -	 		 	 	 		~	_	Λ,
1.5 eq -	 		 	 	 L	~~~~~~			A,
1.0 eq -		~	 	 	 Lh				h
0.8 eq -	 	~	 	 	 _UL		A	_	V
0.6 eq -	 	·	 	 	 _U		A		U
0.4 eq -	 		 	 	 JL				U
0.2 eq .	 	·	 		 JLL				N
					 LL				A

Figure S1 ¹H NMR spectra (aromatic region) of **1** and **2** in CD_2Cl_2 at 298 K upon titrational addition of TBA salts of Cl⁻, Br⁻, I⁻, CN⁻, OAc⁻, OH⁻ and H₂PO₄⁻ in CD₂Cl₂ solution

Figure S2. NOESY spectrum of 1 in CD₂Cl₂ at 258 K

4. Binding Studies

Job's plots³: Stock solutions of **1**, **2** (1.0×10^{-4} M for **1** and 2.0×10^{-4} M for **2**) and an anion (1.0×10^{-4} M or 2.0×10^{-4} M) were separately prepared in CH₂Cl₂. The UV/Vis spectra was taken for each of 10 different solutions containing a total of 2.0 mL of the **1**, **2**, TBAX in the following ratios: 1:0, 0.9:0.1, 0.8:0.2, 0.7:0.3, 0.6:0.4, 0.5:0.5, 0.4:0.6, 0.3:0.7, 0.2:0.8, and 0.1:0.9. Job's plots were constructed by plotting A_{obs}–A_M–A_x against the γ -coordinate.

Figure S3. Job's Plot for complexation of the macrocycle, catenane and anion by UV spectroscopy.

Figure S4. Change in the chemical shift of N-H_a or H_b (Catenane-H₂PO₄²⁻) on addition of anions to a solution of **2** (macrocycle) and **1** (catenane) in CD₂Cl₂ at 298 K. Square symbols represent experimental data points; continuous lines represent calculated curves. All anions were added as their TBA salts.

- [1] K. J. Chang, D. Moon, M. S. Lah, K. S. Jeong, Angew. Chem. Int. Ed. 2005, 44, 7926-7929.
- [2] C. Schalley, Analytical Methods in Supramolecular Chemistry, WILEY-VCH Verlag, Weinheim 2007.