Supplementary Information

Highly efficient and switchable electron-transfer system realised by peptide-assisted *J*-type assembly of porphyrin

Hirokuni Jintoku,^a Takashi Sagawa,^b Koji Miyamoto,^a Makoto Takafuji,^a and Hirotaka Ihara^{a, *}

^a Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto-shi, Kumamoto 860-8555, Japan ^b Institute of Advanced Energy, Kyoto University, Uji Kyoto 611-0011, Japan

1. Materials and General

5-(4-Methoxycarbonylphenyl)-10,15,20-triphenyl-21H,23H-porphine and fullerene (C₆₀) were purchased from Tokyo Chemical Industry. Reagent grade solvents and Measurement grade solvent were purchased from Nacalai tesque. N^l , N^5 -didodecyl-L-glutamide¹ and zinc porphyrin-derivatives (**gTP**)² and pyridine-substituted pyrroridinofullerene (**pyC**₆₀)³ were synthesised by the previously reported procedure with slight modification. UV-visible, CD and fluorescence spectra were measured with V-560 (JASCO), J725 (JASCO) and FP-6500 (JASCO), respectively. TEM images were observed with JEM-2000X (JEOL). The solution was cast in a carbon-coated copper grid and dried by a vacuum pump under reduced pressure. The accelerating voltage of the TEM was 80 kV and the beam current was 40 A.

Zinc porphyrin lipid (gTP): Yield: 72%; mp 230.5-232.5 °C; Found: C, 74.56; H, 7.28; N, 8.21. $C_{74}H_{85}N_7O_3Zn$ requires C, 74.95; H, 7.22; N, 8.27%; $v_{max}(KBr)/cm^{-1}$ 3395, 3310, 2925, 2852, 1647 and 1523. δ_H (400 MHz, CDCl₃; Me₄Si) 0.79-0.86 (6H, t, CH₃), 1.16-1.25 (40H, br, (CH₂)₁₀), 1.54 (2H, br, CH₂CO), 1.75-1.91 (2H, br, CH₂), 2.67-2.81 (4H, m, NHCH₂), 3.46 (1H, q, C*H), 5.56 (1H, br, NH), 6.28 (1H, br, NH), 7.45-7.51 (1H, br, NH), 7.74-7.76 (9H, m, ArH), 8.13-8.22 (10H, m, ArH) and 8.80-8.94 (8H, m, ArH); MALDI TOF MS (2,5-dihydroxybenzoic acid): calcd for $C_{74}H_{85}N_7O_3Zn$ 1183.60, m/z = 1184.45 ([M+H]⁺).

Pyridine-substituted pyrroridinofullerene (*py*C₆₀): Fullerene C₆₀ (300 mg, 0.42 mmol) was dissolved in 30 mL of 1,2-dichlorobenzene and stirred in N₂ for 1 hr. A solution of 1.2 equivalents (0.51 mmol) of the 1 : 1 mixture of 4-picolylamine and benzaldehyde in 5 mL of 1,2-dichlorobenzene was added in one portion to the fullerene solution, and the resulting reagent mixture was heated at reflux under N₂ for 2 hr. The course of the reaction was monitored by TLC (toluene/ethanol = 9:1, R_f = 0.34). At the end of the synthesis, heating source was removed and the reaction mixture was cooled to room temperature. The solution was poured onto the top of a silica gel column (75–150 µm). Unreacted fullerene was washed out from the column by toluene; elution with toluene/ethanol (9 : 1) mixture resulted in solution of mono-addition products. The solution was concentrated in vacuo and then *n*-hexane was added to precipitate the product. Pyridine-substituted pyrrolidinofullerene (*py*C₆₀) was obtained *py*C₆₀ (173 mg, 45%) as a dark-brown powder by filtrated (Found: C, 93.86; H, 2.28; N, 3.03. C₉₅H₁₂N₂ requires C, 95.62; H, 1.32; N, 3.06%); $\delta_{\rm H}$ (400 MHz, CDCl₃; Me₄Si) 3.25 (1H, s, -N*H*-), 5.97-6.02 (2H, dd, *J* = 2.8, 11.2 Hz, pyrroridine-*H*)), 7.34-8.66 (7H, m, pyridine-*H*).

- 1 H. Ihara, M. Yoshitake, M. Takafuji, T. Yamada, T. Sagawa, C. Hirayama and H. Hachisako, *Liq. Cryst.*, 1999, **26**, 1021–1027.
- 2 H. Jintoku, T. Sagawa, T. Sawada, M. Takafuji and H. Ihara, Org. Biomol. Chem., 2010, 8, 1344-1350.
- 3 P. A. Troshin, A. S. Peregudov, D. Muhlbacher and R. N. Lyubovskaya, *Eur. J. Org. Chem.*, 2005, 3046–3074.

2. Sample Preparation for Measurements

The measurement samples were prepared by following method. (1) Donor compounds was dissolved in cyclohexane (2×10^{-5} M) at 80 °C and allowed to stand 20 °C for 30 min. (2) Acceptor compounds was dissolved in toluene (1×10^{-3} M) at 25 °C. (3) Acceptor solution was injected into donor solution and the concentrations were adjusted between 0 and 1×10^{-4} M (0 and 5 equiv.). (4) The mixed solution was kept at 20 °C in a minute and measured UV-visible, CD and Fluorescence spectroscopy.

Figure S1. Fluorescence spectral changes of **TP** (20 μ M) upon addition of (a) **C**₆₀ (0–100 μ M) in cyclohexane at 20 °C. Excitation wavelength was 550 nm. Allows indicate the increase of **C**₆₀ concentration. The inset shows a fluorescence quenching plots.

Figure S2. TEM images of (a) gTP and (b) gTP- $pyC_{60}(1:1)$ complex. The samples were prepared by casting from a 0.1 mM cyclohexane solution, and no staining reagent was used.

Figure S3. (a) UV-visible and (b) CD spectral change of gTP (20 μ M) upon addition of (a) pyC_{60} (0–20 μ M) in cyclohexane at 20 °C. Allows indicate the increase of C_{60} concentration.

Figure S4. Benesi-Hildebrand plots of (a) $gTP-pyC_{60}$ complex, (b) $TP-pyC_{60}$ complex, (c) $gTP-C_{60}$ complex and (b) $TP-C_{60}$ complex in cyclohexane to obtain the binding constant with fluorescence date. The concentrations of porphyrin derivatives were 20 μ M.

Figure **S5.** Optimized structures of the pyC_{60} . The red arrows indicate the direction of the molecule's dipole moment (p). The AM1 semiempirical energy minimization calculation of the pyC_{60} is carried out by using HyperChem^M.

Figure S6. (a) ¹H NMR titration of *g*TP with up to 1 equiv. of pyC_{60} in chloroform-*d* at 25 °C. (b) Job's plots for stoichiometry of *g*TP-*py*C₆₀ complex.

Figure S7. Fluorescence spectral changes of gTP (1 μ M) upon addition of (a) pyC_{60} (0–5 μ M) in cyclohexane at 20 °C. Excitation wavelength was 560 nm. The inset shows a Stern-Volmer plots for fluorescence quenching.

Figure S8. Temperature dependent UV-vis and CD spectral change of (a) *g*TP and (b) *g*TP-*py*C₆₀ (2 : 1) complex. [*g*TP] = 20 μ M. Allows indicate increase of temperature from 10 °C (blue line) to 60 °C (red line).