Supporting Information for

Modification of Flexible Part in Cu²⁺ Interdigitated Framework for CH₄/CO₂ Separation

Yasutaka Inubushi, Satoshi Horike, Tomohiro Fukushima, George Akiyama, Ryotaro Matsuda and Susumu Kitagawa

Experimental

Preparation of 4,4'-dihydroxybiphenyl-3-carboxylic acid (H₃dhbpc).

Pd(II) acetate (55 mg; 0.23 mmol) was added under argon to a mixture of 5-bromosalicylic acid (5.4 g; 22.4 mmol), sodium carbonate (7.2 g; 68.1 mmol) and 4-methoxyboronic acid (3.8 g; 25 mmol) in water (125 mL). The reaction mixture was stirred at room temperature for 1 h. The resulting slurry was dissolved in hot water (1.3 L) and filtered to give a filtrate and precipitate. The filtrate was acidified with hydrochloric acid. The precipitate was washed with water and dried in vacuo to give 5.3 g (95%) of 4-hydroxy-4'-methoxy-3-biphenylcarboxylic acid.

A solution of 4-hydroxy-4'-methoxy-3-biphenylcarboxylic acid (5.3 g; 21.6 mmol), tetrabutylphosphonium bromide (0.8 g; 2,3 mmol), acetic acid (35 mL) and hydrobromic acid (35 mL of a 48% solution) was heated at reflux for 6 h. The reaction mixture was cooled and poured into water (400 mL). The resulting precipitate was isolated and recrystallised from ethyl acetate to give 2.4 g (47%) of 4,4'-dihydroxybiphenyl-3-carboxylic acid.

Preparation of [Cu(dhbpc)₂(4,4'-bpy)]·2Acetone (2⊃Acetone).

A water solution (20 mL) of Cu(NO₃)₂·3H₂O (0.24 g) was added to a acetone solution (20 mL) of 4,4'-dihyroxybiphenyl-3-carboxylic acid (H₃dhbpc) (0.74 g) and 4,4'-bipyridyl (0.13 g). After the mixture was allowed to stand for several days at 298 K, a green precipitate was collected, washed with acetone, and dried at 373 K under a vacuum. Elemental analysis for **2**; calc (%): C 63.8; H 3.9; N, 4.1; O 18.9; Cu 9.4. Found (%): C 62.9; H 3.5; N 4.3; O 20.2; Cu 9.2.

Single Crystal X-ray Diffraction.

Single crystal X-ray diffraction data collection for 1 was carried out on a Rigaku Saturn diffractometer with graphite monochromated MoK α radiation ($\lambda = 0.71075$ Å) and a CCD two-dimensional detector. Single crystal X-ray diffraction data collection for 2 \supset Acetone was carried

out on a Rigaku Mercury diffractometer with graphite monochromated MoK α radiation ($\lambda = 0.71070$ Å) and a CCD two-dimensional detector. The crystal structure was solved by a direct method (SIR-97 for 1 and SIR-2004 for 2 \supset Acetone) and refined by full matrix least squares refinement using the SHELXL-97. The hydrogen atoms were positioned geometry and refined using a riding model.

Crystal data of 1 and 2⊃Acetone.

Crystal data for **1**. $C_{24}H_{18}CuN_2O_8$, M = 525.96, triclinic, a = 6.6917(17), b = 8.125(2), c = 11.044(3), $\alpha = 84.075(17)$, $\beta = 75.581(14)$, $\gamma = 77.251(18)$, U = 556.5(3), T = 93(1) K, space group *P*-1 (no. 2), Z = 1, 8289 reflections measured, 2058 unique ($R_{int} = 0.038$) which were used in all calculations. The final R_1 (obs) was 0.0393 and $wR(F_2)$ was 0.096 (all data).

Crystal data for **2**DAcetone. C₄₂H₃₄CuN₂O₁₀, M = 790.25, monoclinic, a = 23.078(9), b = 11.080(4), c = 15.594(6), $\beta = 106.481(4)$, U = 3824(2), T = 223(2) K, space group *P*2/c (no. 13), Z = 4, 55430 reflections measured, 8750 unique ($R_{int} = 0.0463$) which were used in all calculations. The final R_1 (obs) was 0.0655 and $wR(F_2)$ was 0.193 (all data).

Physical Measurements.

All chemicals and solvents used in the syntheses were of reagent grade and used without further purification. Thermogravimetric analysis (TGA) were performed using a Rigaku Thermo plus TG 8120 apparatus in the temperature range between 298 and 773 K in a N₂ atmosphere and at a heating rate of 10 Kmin⁻¹. Elemental analysis was examined using PerkinElmer 2400II for C, H, N. Cu was determined by ICP instrument (Thermo Scientific IRIS-AP). X-ray powder diffraction (XRPD) data were collected on a Rigaku RINT-2200HF (Ultima) diffractometer with CuK α radiation. The adsorption isotherms for CO₂ and CH₄ at 273 K were measured with BELSORP-HP and adsorption isotherms for H₂O at 298 K were measured with BELSORP-aqua3 volumetric adsorption equipment from BEL JAPAN, INC. The powder pattern of **2** was measured at BL19B2 Synchrotron line of SPring-8 (Super Photon ring-8 GeV), Hyogo, Japan and indexed by using the indexing program DICVOL91 and unit cell refinement was obtained by using the Le Bail fitting method. Obtained parameters are : *a* = 11.861(1) Å, *b* = 11.274(1) Å, *c* = 6.9254(2) Å, α = 69.602(2) °, β = 102.000(3) °, γ = 113.000(3) °, V = 796(1) Å³, *R*_p = 2.32%, *R*_{wp} = 3.22%, χ^2 = 1.52 (see Figure S4).

Selective CO₂ adsorption experiment from CH₄/CO₂ mixture.

10 mL of round bottom two-neck flask containing powder sample (0.10 g) of whose one neck was closed with septum and syringe with 100 mL of mixed gas (50 mL of CO_2 and CH_4) and vacuum

pump are connected. The sample was activated by evacuation for three hours at 373 K and set the system in vacuo, and the 100 mL of mixed gas was introduced to the sample until the system reaches 1 atm at 273 K. After three hours the residual gas (1 mL) was picked up from septum and characterized the composition by gas chromatography (Shimazu GC-14B).

Figure S1 TGA curve of **2** over the temperature range from 25-500 °C at a heating rate of 5 °C min⁻¹ under the N_2 atmosphere.

Figure S3. Powder X-ray diffractions of (a) simulated pattern of **2Acetone** from single crystal structure and experimental patterns of (b) **2Acetone** and (c) **2** (degassed phase).

Figure S4. Result on the LeBail fitting of 2.

Figure S5. IR spectrum of 2.

Figure S6. Simultaneous measurements of (a) CO₂ adsorption and (b) powder X-ray diffraction for 2 at 195 K. The each pressure point ((i)~(iii)) is corresponding to the powder X-ray diffraction in (b).

Figure S7. Adsorption (closed circle) and desorption (open circle) isotherms of H₂O for (a) 1 and (b) 2 at 298 K. Abrupt drop at P = 1 kPa in desorption profile in (a) is attributed by structural transformation as guests release.

Table S1. Selected lists of reported compounds about adsorption results on CO_2 and CH_4 from single gas component measurement. Note some of values here were obtained from figures of adsorption isotherms in the references.

Compounds	Adsorption	Measurement conditions	References
	amounts of CO_2	(temperature and	
	and CH_4 (mLg ⁻¹)	pressure)	
CUK-1	87 (CO ₂)	298 K, 1 atm	Adv. Mater.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

	8 (CH ₄)		2007, 19, 1830–1834.
SAPO-34	80 (CO ₂)	295 K, 1 atm	Microporous and
	4.5 (CH ₄)		Mesoporous Materials
			2008, 110, 310–317.
$[Zn_3(OH)(p-CDC)_{2.5}]^1$	67 (CO ₂)	298 K, 1 MPa	Chem. Commun.
	27 (CH ₄)		2008, 4135–4137.
Nitrogen doped carbon	85 (CO ₂)	273 K, 1 MPa	Chem. Commun.
nanotubes (CN-3)	29 (CH ₄)		2010, 46, 1308–1310.
MIL-53	18 (CO ₂)	304 K, 1 MPa	Angew. Chem. Int. Ed.
	trace (CH ₄)		45, 2006, 7751-7754.
MIL-120	94 (CO ₂)	303 K, 1 MPa	Chem. Mater.
	40 (CH ₄)		2009, 21, 5783–5791.
ZIF-8	48 (CO ₂)	Room temperature,	J. Am. Chem. Soc.
	3.3 (CH ₄)	1 atm	2010, 132, 76–78.
NaY zeolite	95 (CO ₂)	303 K, 1 MPa	Microporous and
	28 (CH ₄)		Mesoporous Materials,
			2009, 119, 117–128.
2	115 (CO ₂)	273 K, 0.95 MPa	This work
	4.6 (CH ₄)		

 ^{-1}p -CDC²⁻ = deprotonated form of 1,12-dihydroxydicarbonyl-1,12-dicarba-*closo*-dodecaborane