Supplementray Information for

Stereocontrolled Synthesis of Quaternary Cyclopropyl Esters

Christopher D. Bray* and Fabrizio Minicone

Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, U.K. Fax: +44 (0)20 7882 7427; Tel: +44 (0)20 7882 3271

E-mail: <u>c.bray@qmul.ac.uk</u>

General Conditions	P2
Reaction Procedures and Compound Data	P2-P7
(1 <i>R</i> ,2 <i>S</i>)-Ethyl 1-methyl-2-phenyl-cyclopropanecarboxylate 1a	P2
(1 <i>R</i> ,2 <i>S</i>)-Ethyl 1-ethyl-2-phenylcyclopropanecarboxylate 1b	P2
(1 <i>R</i> ,2 <i>S</i>)-Ethyl 2-phenyl-1-propylcyclopropanecarboxylate 1c	P3
(1 <i>S</i> ,2 <i>S</i>)-Ethyl 1-benzyl-2-phenylcyclopropanecarboxylate 1d	P3
(1 <i>R</i> ,2 <i>S</i>)-Ethyl 1-allyl-2-phenylcyclopropanecarboxylate 1e	P4
(1 <i>S</i> ,2 <i>S</i>)-Ethyl 1-benzyl-2-phenylcyclopropanecarboxylate 1f	P4
(1 <i>S</i> ,2 <i>R</i>)-Ethyl 1-benzyl-2-ethylcyclopropanecarboxylate 1g	P5
(1R,2R)-Ethyl 2-(benzyloxymethyl)-1-methylcyclopropanecarboxylate 1h	P5
$(1R^*, 2S^*)$ -Ethyl 1-benzyl-2-(fluoromethyl)cyclopropanecarboxylate 1i	P5
(1 <i>S</i> ,2 <i>R</i>)-Ethyl 2-(3-chlorophenyl)-1-ethylcyclopropanecarboxylate 1 j	P6
(1 <i>S</i> ,2 <i>S</i>)-Ethyl 2-((1,3-dioxoisoindolin-2-yl)methyl)-1-ethylcyclopropanecarboxylate 1k	P6
(1S*,2S*)Ethyl 1-allyl-2-(but-3-enyl)cyclopropanecarboxylate 11	P7
Ethyl bicyclo[5.1.0]oct-3-ene-1-carboxylate 2	P7
¹ H and ¹³ C NMR Spectra	P8-P20
(1 <i>R</i> ,2 <i>S</i>)-Ethyl 1-methyl-2-phenyl-cyclopropanecarboxylate 1a	P8
(1 <i>R</i> ,2 <i>S</i>)-Ethyl 1-ethyl-2-phenylcyclopropanecarboxylate 1b	P9
(1 <i>R</i> ,2 <i>S</i>)-Ethyl 2-phenyl-1-propylcyclopropanecarboxylate 1c	P10
(1 <i>S</i> ,2 <i>S</i>)-Ethyl 1-benzyl-2-phenylcyclopropanecarboxylate 1d	P11
(1 <i>R</i> ,2 <i>S</i>)-Ethyl 1-allyl-2-phenylcyclopropanecarboxylate 1e	P12
(1 <i>S</i> ,2 <i>S</i>)-Ethyl 1-benzyl-2-phenylcyclopropanecarboxylate 1f	P13
(1 <i>S</i> ,2 <i>R</i>)-Ethyl 1-benzyl-2-ethylcyclopropanecarboxylate 1g	P14
(1R,2R)-Ethyl 2-(benzyloxymethyl)-1-methylcyclopropanecarboxylate 1h	P15
$(1R^*, 2S^*)$ -Ethyl 1-benzyl-2-(fluoromethyl)cyclopropanecarboxylate 1i	P16
(1 <i>S</i> ,2 <i>R</i>)-Ethyl 2-(3-chlorophenyl)-1-ethylcyclopropanecarboxylate 1 j	P17
(1 <i>S</i> ,2 <i>S</i>)-Ethyl 2-((1,3-dioxoisoindolin-2-yl)methyl)-1-ethylcyclopropanecarboxylate 1k	P18
(1 <i>S</i> *,2 <i>S</i> *)Ethyl 1-allyl-2-(but-3-enyl)cyclopropanecarboxylate 1 l	P19
Ethyl bicyclo[5.1.0]oct-3-ene-1-carboxylate 2	P20
CCMS Characterizate	D21 D26

General Conditions

Commercially available reagents were used as received without further purification. All reactions required anhydrous conditions and were conducted in flame-dried apparatus under an atmosphere of nitrogen. Reactions in DME at 130 °C were conducted in 10 ml thick walled microwave vials (CEM) fitted with crimp top teflon seals. Analytical thin-layer chromatography (TLC) was performed on silica gel plates (0.25mm) precoated with a fluorescent indicator. Standard flash chromatography procedures were performed using Kieselgel 60 (40-63 µm) or with a Varian Superflash automated purification system. Petrol refers to the fraction boiling between 40-60 °C. Residual solvent was removed using a static oil pump (< 1 mbar). Optical rotations were recorded on a Jasco P1010 polarimeter. Infrared spectra were recorded directly as neat liquids on a Bruker Tensor 37 FTIR machine fitted with a PIKE MIRacle ATR accessory. ¹H and ¹³C spectra were recorded in CDCl₃ at 400 and 100 respectively on Bruker AV400 or AMX400 machines. Chemical shifts are reported relative to CHCl₃ [$\delta_{\rm H}$ 7.27] and CDCl₃ [$\delta_{\rm C}$ 77.0]. Mass spectra were obtained by the EPSRC National Mass Service (Swansea) using a high resolution double focussing mass spectrometer (Finnigan MAT 95 XP).

Reaction Procedures and Compound Data

(1*R*,2*S*)-Ethyl 1-Methyl-2-phenyl-cyclopropanecarboxylate¹ 1a

To a solution of triethyl 2-phosphonopropionate (0.42 ml, 2.00 mmol) in -CO₂Et DME (4.0 ml) at 25 °C was added *n*-butyllithium (2.5 M; 0.82 ml, 2.05 mmol) dropwise over 5 min. (S)-Styrene oxide (114 µl, 1.00 mmol) was Me added in one portion. The reaction was heated to 130 °C for 20 h. The reaction was cooled before sat. aq. NH₄Cl (8 ml) was added. The reaction was extracted three times with Et₂O (3 \times 20ml). The organic layers were combined, dried over MgSO₄ and filtered before the solvent was removed in vacuo. The residue was loaded onto 5 ml of silica and purified by flash column chromatography (4% EtOAc/petrol) to give the title compound **1a** (195 mg, 95%) as colourless oil: [α]_D –142.0 (*c* 1.7, Me₂CO); IR (cm⁻¹) 1714, 1603, 1499, 1454, 1381, 1311, 1240, 1206, 1151, 1112, 1078, 1060, 1026; ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.08 (m, 5H, $5 \times \text{ArH}$, 4.10 (q, J = 7.1 Hz, 2H, OCH₂), 2.73 (dd, J = 9.2 and 7.0 Hz, 1H, CH), 1.61 (dd, J = 9.2 and 4.5 Hz, 1H, 1 of cyclopropane-CH₂), 1.21 (t, J = 7.1 Hz, 3H, CH₂Me), 1.08 (dd, J =7.0 and 4.5 Hz, 1H, 1 of cyclopropane-CH₂), 0.91 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 137.0, 129.3, 128.1, 126.6, 60.7, 31.6, 25.1, 19.9, 14.5, 14.2; HRMS m/z (M + H⁺, 100%) Found: 205.1223 C₁₃H₁₇O₂ requires 205.1223.

(1*R*,2*S*)-Ethyl 1-ethyl-2-phenylcyclopropanecarboxylate¹ 1b

⁽¹⁾ Panne, P.; DeAngelis, A.; Fox, J. M. Org. Lett. 2008, 10, 2987-2989.

removed *in vacuo*. The residue was loaded onto 5 ml of silica and purified by flash column chromatography (4% EtOAc/petrol) to give the title compound **1b** (211 mg, 97%) as colourless oil: $[\alpha]_D$ –107.8 (*c* 1.07, Me₂CO); IR (cm⁻¹): 1715, 1606, 1582, 1500, 1451, 1393, 1379, 1319, 1302, 1275, 1209, 1152, 1105, 1085, 1050, 1028; ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.09 (m, 5H, 5 × ArH), 4.18-4.04 (m, 2H, OCH₂), 2.73 (dd, *J* = 9.2 and 7.0 Hz, 1H, CH), 1.61-1.51 (m, 2H), 1.22 (t, *J* = 7.1 Hz, 3H, OCH₂*Me*), 1.08 (dd, *J* = 7.0 and 4.5 Hz, 1H, 1 of cyclopropane-CH₂), 0.91 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 137.1, 129.3, 128.1, 126.6, 60.6, 32.3, 31.4, 21.8, 17.8, 14.3, 11.7; HRMS *m*/*z* (M + H⁺, 100%) Found: 219.1380 C₁₄H₁₉O₂ requires 219.1380.

(1R,2S)-Ethyl 2-phenyl-1-propylcyclopropanecarboxylate 1c

To a solution of triethyl 2-phosphonopentanoate (533 mg, 2.00 mmol) in -CO₂Et DME (4.0 ml) at 25 °C was added n-butyllithium (2.5 M; 0.82 ml, 2.05 mmol) dropwise over 5 min. (S)-Styrene oxide (114 µl, 1.00 mmol) was added in one portion. The reaction was heated to 130 °C for 20 h. The reaction was cooled before sat. aq. NH_4Cl (8 ml) was added. The reaction was extracted three times with Et₂O (3 \times 20ml). The organic layers were combined, dried over MgSO₄ and filtered before the solvent was removed in vacuo. The residue was loaded onto 5 ml of silica and purified by flash column chromatography (4% EtOAc/petrol) to give the *title compound* 1c (216 mg, 93%) as colourless oil: $[\alpha]_{D}$ –113.6 (c 1.41, Me₂CO); IR (cm⁻¹): 1713, 1603, 1498, 1453, 1381, 1291, 1224, 1205, 1151, 1071, 1025; ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.09 (m, 5H, 5 × ArH), 4.17-4.04 (m, 2H, OCH₂), 2.67 (dd, J = 9.6 and 7.2 Hz, 1H, cyclopropane-CH), 1.61 (ddd, J =9.2, 4.5 and 1.1 Hz, 1H, 1 of CH₂), 1.57-1.48 (m, 1H, 1 of CH₂), 1.34-1.18 (m, 2H, CH₂), 1.21 (t, J = 7.4 Hz, 3H, OCH₂Me), 1.10 (dd, J = 7.2 and 4.5 Hz, 1H, 1 of cyclopropane-CH₂), 0.76-0.68 (1H, m, 1 of cyclopropane-CH₂), 0.66 (3H, t, J = 7.4, Me); ¹³C NMR (100 MHz, CDCl₃) § 175.0, 137.1, 129.2, 128.1, 126.6, 60.6, 32.0, 30.6, 30.4, 20.7, 17.9, 14.2, 14.2; HRMS m/z (M + H⁺, 100%) Found: 233.1538 C₁₅H₂₁O₂ requires 233.1536.

(15,2S)-Ethyl 1-benzyl-2-phenylcyclopropanecarboxylate 1d

⁽²⁾ Lehnert, W. Tetrahedron 1974, 30, 4723-4724.

CH₂), 1.21 (t, J = 7.1 Hz, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 140.4, 136.7, 129.3, 128.7, 128.4, 128.0, 127.0, 125.9, 60.9, 33.5, 32.7, 30.9, 17.9, 14.1; HRMS m/z (M + H⁺, 100%) Found: 281.1532 C₁₉H₂₁O₂ requires 281.1536.

(1R,2S)-Ethyl 1-allyl-2-phenylcyclopropanecarboxylate 1e

To a solution of 2-allyl triethylphosphonoacetate³ (529 mg, 2.00 mmol) in CO₂Et DME (4.0 ml) at 25 °C was added n-butyllithium (2.5 M; 0.82 ml, 2.05 mmol) dropwise over 5 min. (S)-Styrene oxide (114 μ l, 1.00 mmol) was added in one portion. The reaction was heated to 130 °C for 20 h. The reaction was cooled before sat. aq. NH₄Cl (8 ml) was added. The reaction was extracted three times with Et₂O (3 \times 20ml). The organic layers were combined, dried over MgSO₄ and filtered before the solvent was removed in vacuo. The residue was loaded onto 5 ml of silica and purified by flash column chromatography (4% EtOAc/petrol) to give the title compound 1e (198 mg, 86%) as colourless oil: [α]_D –65.0 (*c* 1.86, Me₂CO); IR (cm⁻¹): 2981; 1716, 1641, 1499, 1431, 1382, 1304, 1219, 1203, 1151, 1079, 1027; ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.10 (m, 5H, 5 × ArH), 5.75-5.63 (m, 1H, =CH), 4.85-4.74 (m, 2H, =CH₂), 4.17-4.04 (m, 2H, OCH₂), 2.77 (t, J = 9.0 Hz, 1H, cyclopropane-CH), 2.36 (ddd, J = 15.4, 6.1 and 1.2 Hz, 1H, 1 of allylic-CH₂), 1.65 (ddd, J = 9.0, 4.5 and 0.9 Hz, 1H, 1 of cyclopropane-CH₂), 1.49 (dd, J = 15.4 and 10.4 Hz, 1H, 1 of allylic-CH₂), 1.21 (t, J = 7.1, 3H, Me), 1.16 (dd, J = 7.3 and 4.5 Hz, 1H, 1 of cyclopropane-CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 136.7, 135.9, 129.3, 128.2, 126.8, 115.7, 60.7, 32.5, 32.0, 29.5, 17.7, 14.2. HRMS m/z (M + H⁺, 100%) Found: 231.1382 C₁₅H₁₉O₂ requires 231.1380.

(1R,2S)-Ethyl 1-benzyl-2-methylcyclopropanecarboxylate 1f

To a solution of 2-benzyltriethylphosphonoacetate² (629 mg, 2.00 mmol) CO₂Et in DME (4.0 ml) at 25 °C was added *n*-butyllithium (2.5 M; 0.82 ml, 2.05 Me mmol) dropwise over 5 min. (R)-Propylene oxide (70 µl, 1.00 mmol) was Bn added in one portion. The reaction was heated to 130 °C for 20 h. The reaction was cooled before sat. aq. NH₄Cl (8 ml) was added. The reaction was extracted three times with Et₂O (3 \times 20ml). The organic layers were combined, dried over MgSO₄ and filtered before the solvent was removed in vacuo. The residue was loaded onto 5 ml of silica and purified by flash column chromatography (4% EtOAc/petrol) to give the *title compound* 1f (172 mg, 79%) as colourless oil: $[\alpha]_{\rm D}$ +10.1 (c 0.61, Me₂CO); IR (cm⁻¹): 1716, 1605, 1498, 1455, 1382, 1303, 1195, 1137, 1097, 1079, 1029; ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.08 (m, 5H, 5 × ArH), 4.01-3.84 (m, 2H, OCH₂), 3.14 (d, J = 15.1 Hz, 1H, 1 of PhCH₂), 2.71 (d, J = 15.1 Hz, 1H, 1 of PhCH₂), 1.60-1.51 (m, 1H, CH), 1.43 (dd, J = 9.1 and 4.1 Hz, 1H, 1 of CH₂), 1.13 (d, J = 6.3 Hz, 3H, Me), 1.04 (t, J = 7.1 Hz, 3H, OCH₂Me), 0.48 (dd, J = 6.6 and 4.1 Hz, 1H, 1 of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 140.7, 128.5, 128.1, 125.8, 60.5, 33.3, 27.8, 22.3, 21.9, 14.1, 14.1; HRMS m/z (M + H⁺, 100%) Found: 219.1377 C₁₄H₁₉O₂ requires 219.1380.

⁽³⁾ Minami, T.; Hirakawa, K.; Koyanagi, S.; Nakamura, S.; Yamaguchi, M. J. Chem. Soc., Perkin Trans. 1. 1990, 2385-2390.

(1S,2R)-Ethyl 1-benzyl-2-ethylcyclopropanecarboxylate 1g

To a solution of 2-benzyltriethylphosphonoacetate² (629 mg, 2.00 mmol) in CO_2Et DME (4.0 ml) at 25°C was added *n*-butyllithium (2.5 M; 0.82 ml, 2.05 mmol) dropwise over 5 min. (S)-1,2-Epoxybutane (87 µl, 1.00 mmol) was

added in one portion. The reaction was heated to 130 °C for 20 h. The reaction was cooled before sat. aq. NH₄Cl (8 ml) was added. The reaction was extracted three times with Et₂O (3 \times 20ml). The organic layers were combined, dried over MgSO₄ and filtered before the solvent was removed in vacuo. The residue was loaded onto 5 ml of silica and purified by flash column chromatography (4% EtOAc/petrol) to give the *title compound* 1g (177 mg, 76%) as colourless oil: $[\alpha]_D$ –3.24 (c 0.5, Me₂CO); IR (cm⁻¹): 1730, 1666, 1600, 1511, 1493, 1453, 1377, 1261, 1229, 1208, 1178, 1156, 1074, 1029; ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.05 (m, 5H, 5 × ArH), 4.01-3.90 (m, 2H, OCH₂), 3.25 (d, J = 15.3 Hz, 1H, 1 of PhCH₂), 2.59 (d, J = 15.3 Hz, 1H, 1 of PhCH₂), 1.55-1.36 (m, 3H), 1.35-1.25 (m, 1H, 1 of MeCH₂), 1.04 (t, J =7.1 Hz, 3H, $MeCH_2$), 0.96 (t, J = 7.2 Hz, 3H, OCH_2Me), 0.52-0.48 (m, 1H, 1 of cyclopropane-CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 140.8, 128.6, 128.1, 125.8, 60.5, 33.4, 29.8, 28.1, 22.8, 21.0, 14.1, 13.9; HRMS m/z (M + H⁺, 100%) Found: 233.1534 C₁₅H₂₁O₂ requires 233.1536.

(1R,2R)-Ethyl 2-(benzyloxymethyl)-1-methylcyclopropanecarboxylate 1h

≝_CO₂Et BnO_\ Me

To a solution of triethyl 2-phosphonopropionate (0.42 ml, 2.00 mmol) in DME (4.0 ml) at 25 °C was added *n*-butyllithium (2.5 M; 0.82 ml, 2.05 mmol) dropwise over 5 min. (R)-Benzyl glycidyl ether (153 µl,

1.00 mmol) was added in one portion. The reaction was heated to 130 °C for 20 h. The reaction was cooled before sat. aq. NH₄Cl (8 ml) was added. The reaction was extracted three times with Et₂O (3 \times 20 ml). The organic layers were combined, dried over MgSO₄ and filtered before the solvent was removed in vacuo. The residue was loaded onto 5 ml of silica and purified by flash column chromatography (4% EtOAc/petrol) to give the title compound **1h** (194 mg, 78%) as colourless oil: $[\alpha]_{\rm D}$ +60.6 (c 1.74, Me₂CO); IR (cm⁻¹): 1717, 1498, 1456, 1369, 1347, 1323, 1308, 1279, 1178, 1153, 1078, 1030; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.27 (m, 5H, 5 × ArH), 4.53 (q, J = 11.9 Hz, 2H, OCH₂Me), 4.18-4.03 (m, 2H, OCH_2CH), 3.66 (dd, J = 10.6 and 5.8 Hz, 1H, 1 of PhCH₂), 3.37 (dd, J = 10.6 and 8.5 Hz, 1H, 1 of PhCH₂), 1.86 (tt, *J* = 8.6 and 6.2 Hz 1H, BnOCH₂CH), 1.40 (dd, *J* = 9.3 and 4.2 Hz, 1H, 1 of cyclopropane- CH_2), 1.31 (s, 1H, Me), 1.24 (t, J = 7.1 Hz, 3H, OCH₂Me), 0.54 (dd, J = 6.3 and 4.3 Hz, 1H, 1 of cyclopropane- CH_2); ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 138.2, 128.4, 127.7, 127.6, 72.8, 69.3, 60.6, 25.7, 22.7, 20.4, 14.1, 13.9; HRMS m/z (M + H⁺, 100%) Found: 249.1485 C₁₅H₂₁O₃ requires 249.1485.

$(1R^*, 2S^*)$ -Ethyl 1-benzyl-2-(fluoromethyl)cyclopropanecarboxylate 1i

To a solution of 2-benzyltriethylphosphonoacetate² (629 mg, 2.00 mmol) in DME (4.0 ml) at 25°C was added *n*-butyllithium (2.5 M; 0.82 ml, 2.05 mmol) dropwise over 5 min. Epifluorohydrin (71 µl, 1.00 mmol) was added in one portion. The reaction was heated to 130 °C for 20 h. The

reaction was cooled before sat. aq. NH₄Cl (8 ml) was added. The reaction was extracted three times with Et₂O (3 \times 20ml). The organic layers were combined, dried over MgSO₄ and filtered before the solvent was removed *in vacuo*. The residue was loaded onto 5 ml of silica and purified by flash column chromatography (4% EtOAc/petrol) to give the *title compound* **1i** (177 mg, 75%) as colourless oil: IR (cm⁻¹) 1718, 1605, 1497, 1454, 1412, 1369, 1305, 1247, 1206, 1170, 1136, 1096, 1080, 1055; ¹H NMR (400 MHz, CDCl₃): δ 7.23-7.07 (m, 5H, 5 × ArH), 4.61 (ddd, *J* = 48.0, 10.4 and 5.7 Hz, 1H, 1 of FCH₂), 4.32 (ddd, *J* = 48.0, 10.4 and 9.0 Hz, 1H, 1 of FCH₂), 4.07-3.94 (m, 2H, OCH₂), 3.30 (d, *J* = 15.9, 1H, 1 of Ph*CH*₂), 2.75 (d, *J* = 15.9, 1H, 1 of Ph*CH*₂), 2.03-1.93 (m, 1H, CH), 1.58-1.51 (m, 1H, 1 of cyclopropane-CH₂), 1.06 (t, *J* = 7.1 Hz, 3H, Me), 0.84-0.76 (m, 1H, 1 of cyclopropane-CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 139.8, 128.5, 128.2, 126.1, 82.7 (d, *J* = 16.4 Hz), 61.0, 33.3, 28.4 (d, *J* = 3.4) 26.1 (d, *J* = 24.2), 18.1 (d, *J* = 8.8), 14.0; HRMS *m*/*z* (M + H⁺, 100%) Found: 254.1553 C₁₄H₁₈FO₂ requires 254.1551.

(1S,2R)-Ethyl 2-(3-chlorophenyl)-1-ethylcyclopropanecarboxylate 1j

CI CO₂Et

To a solution of triethyl 2-phosphonobutyrate (0.48 ml, 2.00 mmol) in DME (4.0 ml) at 25 °C was added *n*-butyllithium (2.5 M; 0.82 ml, 2.05 mmol) dropwise over 5 min. (*R*)-3-Chlorostyrene oxide (127 μ l,

1.00 mmol) was added in one portion. The reaction was heated to 130 °C for 20 h. The reaction was cooled before sat. aq. NH₄Cl (8 ml) was added. The reaction was extracted three times with Et₂O (3 × 20ml). The organic layers were combined, dried over MgSO₄ and filtered before the solvent was removed *in vacuo*. The residue was loaded onto 5 ml of silica and purified by flash column chromatography (4% EtOAc/petrol) to give the *title compound* **1j** (185 mg, 73%) as colourless oil: $[\alpha]_D$ +99.0 (*c* 1.39, Me₂CO); IR (cm⁻¹) 1716, 1598, 1377, 1313, 1241, 1154, 1060; ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.20 (m, 3H, 3 × ArH), 7.17-7.08 (m, 1H, 1 × ArH), 4.28-4.15 (m, 2H, OCH₂), 2.80 (dd, *J* = 8.7 and 7.2 Hz, 1H, ArCH), 1.71-1.61 (m, 2H, *CH*₂CH₃), 1.32 (t, *J* = 7.1 Hz, 3H, OCH₂*Me*), 1.16 (dd, *J* = 7.0 and 1.8 Hz, 1H, 1 of CH₂), 0.98-0.86 (m, 4H, Me and 1 of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 139.3, 134.0, 129.3, 127.5, 126.8, 60.7, 31.7, 31.5, 21.8, 17.9, 14.2, 11.7; HRMS *m*/*z* (M + H⁺, 100%) Found: 253.0986 C₁₄H₁₈³⁵ClO₂ requires 253.0990.

(15,25)-Ethyl 2-((1,3-dioxoisoindolin-2-yl)methyl)-1-ethylcyclopropanecarboxylate 1k

To a solution of triethyl 2-phosphonobutyrate (0.48 ml, 2.00 mmol) in DME (1.0 ml) at 25 °C was added *n*-butyllithium (2.5 M; 0.82 ml, 2.05 mmol) dropwise over 5 min. (*R*)-*N*-(2,3-epoxypropyl)phthalamide (203 mg, 1.00 mmol) was dissolved

in DME (3.0 ml) and transferred drop wise into the phosphonate via cannula. The reaction was heated to 130 °C for 20 h. The reaction was cooled before sat. aq. NH₄Cl (8 ml) was added. The reaction was extracted three times with Et₂O (3 × 20ml). The organic layers were combined, dried over MgSO₄ and filtered before the solvent was removed *in vacuo*. The residue was loaded onto 5 ml of silica and purified by flash column chromatography (10% EtOAc/petrol) to give the *title compound* **1k** (172 mg, 57%) as colourless oil: $[\alpha]_D$ +22.6 (*c* 0.85, Me₂CO); IR (cm⁻¹) 1774, 1708, 1616. 1468, 1435, 1389, 1368, 1329, 1305, 1246, 1158, 1115, 1089, 1037; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, *J* = 5.4, 3.0 Hz, 2H, 2 × ArH), 7.65 (dd, *J* = 5.4 and 3.0 Hz, 2H, 2 × ArH), 4.01 (q, *J* = 7.2 Hz, 2H, OCH₂), 3.90 (dd, *J* = 14.1 and 5.8 Hz, 1H, 1 of NCH₂), 3.50 (dd, *J* = 14.1 and 9.2 Hz, 1H, 1 of NCH₂), 1.92-1.82 (m,

1H, 1 of CH_2 CH₃), 1.81-1.72 (m, 1H, 1 of CH_2 CH₃), 1.69-1.59 (m, 1H, CH), 1.25 (dd, J = 9.2 and 4.4 Hz, 1H, 1 of cyclopropane-CH₂), 1.14 (t, J = 7.2 Hz, 3H, OCH₂Me), 1.00 (t, J = 7.3 Hz, 3H, Me), 0.65 (dd, J = 6.5 and 4.4 Hz, 1H, 1 of cyclopropane-CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 168.2, 134.0, 132.1, 123.3, 60.6, 37.5, 29.4, 25.4, 22.0, 19.7, 14.2, 12.5; HRMS m/z (M + H⁺, 100%) Found: 302.1390 C₁₇H₂₀NO₄ requires 302.1387.

(1S*,2S*)Ethyl 1-allyl-2-(but-3-enyl)cyclopropanecarboxylate 11

To a solution of 2-allyl triethylphosphonoacetate⁴ (529 mg, 2.00 mmol) in DME (4.0 ml) at 25 °C was added *n*-butyllithium (2.5 M; 0.82 ml, 2.05 mmol) dropwise over 5 min. (\pm)-1,2-Epoxy-5-hexene (113 µl, 1.00 mmol) was added in one portion. The reaction was

heated to 130 °C for 20 h. The reaction was cooled before sat. aq. NH₄Cl (8 ml) was added. The reaction was extracted three times with Et₂O (3 × 20 ml). The organic layers were combined, dried over MgSO₄ and filtered before the solvent was removed *in vacuo*. The residue was loaded onto 5 ml of silica and purified by flash column chromatography (4% EtOAc/petrol) to give the *title compound* **1**l (179 mg, 86%) as colourless oil: IR (cm⁻¹) 3079; 2981; 2929, 1718, 1641, 1435, 1399, 1367.0, 1307, 1209, 1157, 1043; ¹H NMR (400 MHz, CDCl₃) δ 5.91-5.69 (m, 2H, 2 × =CH), 5.02-4.85 (m, 4H, 2 × =CH₂), 4.03 (qd, *J* = 7.1, 1.7 Hz, 2H, OCH₂), 2.48 (dd, *J* = 15.4, 6.2 Hz, 1H, 1 of allylic-CH₂), 2.15-2.03 (m, 3H, 3 of allylic-CH), 1.62-1.50 (m, 1H, 1 of alkyl-CH₂), 1.47-1.37 (1H, m, cyclopropane-CH), 1.36-1.27 (m, 2H, 1 of cyclopropane-CH₂ and 1 of alkyl-CH₂), 1.16 (t, *J* = 7.1 Hz, 3H, Me), 0.36 (dd, *J* = 6.7, 4.1 Hz, 1H, 1 of cyclopropane-CH₂); ¹³C-NMR (100 MHz, CDCl₃) δ 175.2, 138.1, 136.6, 115.6, 114.9, 61.6, 60.5, 33.7, 32.7, 28.6, 27.2, 26.9, 20.8, 14.0; HRMS *m*/z (M + H⁺, 100%) Found: 209.1530 C₁₃H₂₁O₂ requires 209.1536.

Ethyl bicyclo[5.1.0]oct-3-ene-1-carboxylate 2

To a solution of ethyl 1-allyl-2-(but-3-enyl)cyclopropanecarboxylate 11 (392
CO₂Et mg, 1.59 mmol) in CH₂Cl₂ (15.0 ml) at 25 °C was added Grubb's 1st generation catalyst (5 mol%, 66 mg, 0.08 mmol) in one portion. The reaction was heated to 40 °C for 12 h. The reaction was cooled and the residue was

loaded onto 5 ml of silica and purified by flash column chromatography (100% petrol) to give the *title compound* **2** (161 mg, 56%) as colourless oil: IR (cm⁻¹) 2930, 2856, 1715, 1447, 1367, 1305, 1194, 1153, 1037; ¹H NMR (400 MHz, CDCl₃) δ 5.67-5.57 (m, 1H, =CH), 5.42-5.34 (m, 1H, =CH), 4.02 (q, *J* = 7.1 Hz, 2H, OCH₂), 2.79 (dd, *J* = 16.2, 8.1 Hz, 1H, 1 of allylic-CH₂), 2.28-2.20 (m, 2H, alkyl-CH₂) 1.99 (m, 2H, 2 of allylic-CH₂), 1.59-1.46 (m, 2H, 1 of allylic-CH₂ and cyclopropane-CH), 1.32 (dd, *J* = 7.9 and 3.9, 1H, 1 of cyclopropane-CH₂), 1.15 (t, *J* = 7.1 Hz, 3H, Me), 0.67 (dd, *J* = 5.1 and 3.8 Hz, 1H, 1 of cyclopropane-CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 129.6, 127.1, 60.4, 30.9, 30.9, 28.0, 27.9, 26.2, 24.7, 14.2; HRMS *m*/*z* (M + H⁺, 100%) Found: 181.1230 C₁₁H₁₇O₂ requires 181.1229. ¹H and ¹³C NMR Spectra

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

GC/MS Analysis of Compounds

Abundance TIC: Styrene-Me.D\data.ms .CO₂Et 1.4e+07 Ph Ńе 1.3e+07 1.2e+07 1a 1.1e+07 1e+07 9000000 8000000 7000000 6000000 5000000 4000000 3000000 2000000 1000000 6.00 10.00 12.00 14.00 16.00 18.00 4.00 8.00 Time--> Abundance .CO₂Et TIC: Styrene + ethyl.D\data.ms 3.4e+07 Ph 3.2e+07 Ėt 3e+07 1b 2.8e+07 2.6e+07 2.4e+07 2.2e+07 2e+07 1.8e+07 1.6e+07 1.4e+07 1.2e+07 1e+07 8000000 6000000 4000000 2000000 4.00 6.00 10.00 12.00 14.00 16.00 18.00 8.00 Time-->

Time-->

Time-->

