Mechanochemistry of magnesium oxide revisited: facile derivatisation of pharmaceuticals using coordination and supramolecular chemistry

Ernest H. H. Chow, Fiona C. Strobridge and Tomislav Friščić*

Supplementary Material

Experimental		1
Figure S1.	Reflectance FTIR spectra for ibuprofen experiments	2
Figure S2.	Powder diffraction patterns for ibuprofen experiments	3
Figure S3.	Thermogram of thermal decomposition of $Mg(H_2O)_6(\mathbf{RS-ibu})_2 \cdot 2H_2O$.	4
Figure S4.	Thermogram of thermal decomposition of Compound 1	4
Figure S5.	Reflectance FTIR spectra for experiments involing salicylic acid and 15c5.	5
Figure S6.	Solid-state CP-MAS 13 C NMR spectra for selected Mg(H ₂ O) ₂ (sal) ₂ and Hsal.	6
Figure S7.	Solid-state CP-MAS ¹³ C NMR spectrum of Compound 1	7
Figure S4. Figure S5. Figure S6. Figure S7.	Thermogram of thermal decomposition of Compound 1 Reflectance FTIR spectra for experiments involing salicylic acid and 15c5 . Solid-state CP-MAS ¹³ C NMR spectra for selected Mg(H ₂ O) ₂ (sal) ₂ and Hsal . Solid-state CP-MAS ¹³ C NMR spectrum of Compound 1	4 5 6 7

Experimental

Mechanochemical experiments All chemicals were commercially available from the Sigma-Aldrich Company. Magnesium oxide was calcined at 600 °C before use, and the crown ether **15c5** was kept over molecular sieves. In a typical mechanochemical experiment, 0.5 mmol (20 mg) of MgO or Mg(OH)₂ (29 mg) was ground with the apropriate amount of the ligand, in the presence of water and/or organic solvent. For the construction of Mg(H₂O)₆(ibu)₂·2H₂O, 206 mg (1 mmol) of ibuprofen were used, along with 70 µL water (3.9 mmol). For the construction of Mg(H₂O)₄(**sal**)₂, 138 mg **Hsal** (1 mmol) was used along with 40 µL H₂O (2.2 mmol), while the synthesis of compound **1** involved additional 93 µL **15c5**, 10 µL H₂O and 30 µL acetonitrile. In each case the reaction mixture was placed in a stainless steel jar of 10 mL volume along with a pair of stainless steel balls of 7 mm diameter, and ground using a Retsch MM200 mill operating at a frequency of 30 Hz. The temperature of the reaction mixture measured immediately after grinding never exceeded 30 °C.

Powder X-ray diffraction PXRD data were collected on a Philips X'Pert Pro diffractometer, equipped with an X'celerator RTMS detector, using Ni-filtered CuK α radiation, using a flat plate configuration.

Single crystal X-ray diffraction Single crystal diffraction data were collected on a Nonius Kappa CCD diffractometer equipped with a graphite monochromator and an Oxford cryostream, using Mo $K\alpha$ radiation. Structure solution and refinement was perfromed using SHELX available with the WinGX package of crystallographic tools, running on a Pentium-based PC under MS Windows XP.

Thermogravimetric analysis Thermogravimetric measurements were performed on a Mettler Toledo TGA/SDTA851^e thermobalance, using samples of 10-15 mg weight placed in 100 μ L pierced lid aluminium pans. All measurements were performed in a dynamic atmosphere of air (100 cm³/min), and at a heating rate of 20 K min⁻¹.

FT-IR reflectance spectroscopy Spectra were recorded on a ThermoNicolet NEXUS spectrometer with the Golden Gate ATR accessory, in the range $4000-600 \text{ cm}^{-1}$.

Figure S1. Reflectance FTIR spectra (from top to bottom): $Mg(H_2O)_6(RS-ibu)_2 \cdot 2H_2O$; commercial **RS-Hibu**, $Mg(H_2O)_6(S-ibu)_2 \cdot 2H_2O$; commercial **S-Hibu**.

Figure S2. Powder diffraction patterns (from top to bottom): **RS-Hibu**; product of 30 min neat grinding of MgO and **RS-Hibu**; product of 30 min neat grinding of Mg(OH)₂ and **RS-Hibu**; product of 5 min LAG of MgO and **RS-Hibu**; product of 30 min LAG of MgO and **RS-Hibu**; commercial Mg(OH)₂ and the product of 30 min grinding of MgO and water in 1:1 stoichiometric ratio.

Lab: METTLER

Figure S3. Thermogram of thermal decomposition of Mg(H₂O)₆(RS-ibu)₂:2H₂O. Calculated percentage of water is 24.9%, observed loss is 23.9%.

Figure S4. Thermogram of thermal decomposition of compound 1. The first step (9.0%) roughly corresponds to the loss of acetonitrile (7.9%) and is probably also accompanied by partial loss of water.

Figure S5. Reflectance FTIR spectra (from top to bottom): commercial salicylic acid, commercial **15c5**, synthesised $Mg(sal)_2(H_2O)_4$; Compound 1. Compound 1 clearly contains **15c5** and is different than the known magnesium salicylate tetrahydrate.

Figure S6. Cross-polarisation magic angle spinning (CP-MAS) solid-state ¹³C NMR spectra of solution-synthesised $Mg(H_2O)_2(sal)_2$ (top) and commercial **Hsal** (bottom). The NMR spectra reveal that solution synthesis provides a sample of magnesium salicylate tetrahydrate containing a small amount of starting material salicylic acid.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Figure S7. Cross-polarisation magic angle spinning (CP-MAS) solid-state ¹³C NMR spectrum of Compound **1**. Besides demonstrating a difference from the $Mg(H_2O)_2(sal)_2$ in the region 100-200 ppm, the spectrum also confirms the presence of **15c5** in the sample by the strong signal around 50 ppm. The absence of signals that could be assigned to acetonitrile suggests the included molecules are dynamic.