1	Electronic Supplementary Information
2	
3	Bio-bar-code dendrimer-like DNA as signal amplifier for cancerous
4	cells assay using ruthenium nanoparticle-based ultrasensitive
5	chemiluminescence detection
6	
7	Sai Bi, Shuangyuan Hao, Li Li, and Shusheng Zhang*
8	
9	Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of
10	Chemistry and Molecular Engineering, Qingdao University of Science and
11	Technology, Qingdao 266042, P. R. China
12	
13	
14	* Corresponding author. Tel.: +86-532-84022750; Fax: +86-532-84022750.
15	E-mail: shushzhang@126.com

1	Chemicals. The oligonucleotides sequences (Table S1) were commercially synthesized and
2	PAGE purified by SBS Genetech Co. Ltd. (China). RuCl ₃ ·3H ₂ O was purchased from Shanghai
3	Zenith Company (China). A luminol (standard powder, Sigma-Aldrich) stock solution $(1.0 \times 10^{-2}$
4	M) was prepared by dissolution in 0.1 M NaOH and further stored in dark. The stock solution was
5	consecutively diluted with 0.02 M NaOH-NaHCO3 in order to obtain the proper solution used for
6	FI-CL determination. T4 DNA ligase was ordered from Beijing TransGen Biotech (China).
7	N-hydroxysuccinimide (NHS), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride
8	(EDC) were purchased from Sigma. Double-distilled, deionized water was used throughout the
9	experiments. Whole blood samples were provided by Qingdao Papermaking Hospital.

Strand	Segment 1	Segment 2
$\begin{array}{c} Y_{0a} \\ Y_{1a} \\ Y_{2a} \\ Y_{3a} \\ Y_{4a} \end{array}$	5'-TGAC 5'-GTCA 5'-ATCG 5'-ATGC 5'- <mark>GCAA</mark>	TGGATCCGCATGACATTCGCCGTAAG-3'
$\begin{array}{c} Y_{0b} \\ Y_{1b} \\ Y_{2b} \\ Y_{3b} \\ Y_{4b} \end{array}$	5'-TGAC 5'-CGAT 5'-GCAT 5'-TTGC 5'-NH ₂ -GGAT	CTTACGGCGAATGACCGAATCAGCCT-3'
$\begin{array}{c} Y_{0c} \\ Y_{1c} \\ Y_{2c} \\ Y_{3c} \\ Y_{4c} \\ Y_{4p} \end{array}$	5'-TGAC 5'-CGAT 5'-GCAT 5'-TTGC 5'-NH ₂ -GGAT 5'-GAGGAGGGCCAC	AGGCTGATTCGGTTCATGCGGATCCA-3'
Aptamer	5'-GTGGCCCTCCTCTG ACAAGACAT-NH ₂ -3'	GGACTTGTCGGTGGCTTGATAGGAGGGCC

10 Table S1. DNA Sequences Used in This Work

11

13 instrument (MPI-F, Remex Analytical Instrument Co. Ltd., Xi'an, China), including a model

1	IFIS-D flow injection system, a model RFL-1 luminometer, and a computer. The kinetics of CL
2	signals after adding quenchers to luminol- H_2O_2 - Ru^{3+} system were investigated on a BPCL
3	ultraweak luminescence analyzer (Institute of Biophysics Academic Sinica, Beijing, China).
4	UV-vis and fluorescence spectra were recorded on a Cary 50 UV-Vis-NIR spectrophotometer
5	(Varian, USA) and a F-4500 fluorescence spectrophotometer (HITACHI, Japan), respectively.
6	Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images were
7	taken with a H-7650 (HITACHI, Japan) and a JSM-6700F microscope (HITACHI, Japan),
8	respectively.
9	Preparation of Ruthenium Nanoparticles (RuNPs). RuNPs were prepared according to the
10	Viau's protocol through the reduction of ruthenium (III) chloride in a liquid polyol. Briefly,
11	RuCl ₃ ·3H ₂ O (0.32 mmol) and sodium acetate (1 mmol) were dissolved in 100 ml of
12	1,2-propanediol. When the temperature was reached at 150 °C for 10 min with stirring, the color
13	of the solution turned from intense red to pale green and finally to yellowish brown indicating the

temperature with stirring, the colloidal RuNPs were obtained and separated by centrifugation at 12

16 000 rpm for 30 min. The soft sediment was resuspended in 0.01 M PBS solution and stored at 4 °C

17 for further use. A UV-vis spectrum was also recorded to confirm the formation of Ru-NPs (Fig.

18 S1A), and SEM were recorded to confirm the average size of Ru-NPs (Fig. S1B).

15

19 Construction of Y-DNA and bbc-DL-DNA. Stock solutions of oligonucleotides were 20 prepared by dissolving in annealing buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA, and 50 21 mMNaCl). Taking the construction of Y₀-DNA (shorten as Y₀) as example, the same molar 22 amount of Y_{0a} , Y_{0b} and Y_{0c} were mixed with a final concentration of 5 mM for each

1	oligonucleotide. After denaturing at 95 °C for 2 min, the solution was quickly cooled down to 60
2	$^{\circ}$ C, and further annealing to 4 $^{\circ}$ C with a continuous temperature decrease at a ratio of 2 $^{\circ}$ C/min.
3	Similarly, Y_1 , and Y_n and so on were constructed according to above procedures.
4	For the construction of bbc-DL-DNA, individual Y-DNA was ligated specifically to
5	corresponding Y-DNA. Briefly, 0 generation of DL-DNA (shorten as G_0) was actually the
6	structure of Y_0 ; G_1 was fabricated by ligating 3 Y_1 with $1G_0$; G_2 was fabricated by ligating 6 Y_2
7	with $1G_1$. Other higher generations of DL-DNA were fabricated in the same way. Note that, for
8	the construction of functionalized G ₄ , two kinds of $Y_4 (Y_{4a} + Y_{4b} + Y_{4c} \rightarrow Y_4 \text{ and } Y_{4a} + Y_{4b} + Y_{4l}$
9	\rightarrow Y ₄ ', l standing for linker DNA, Y _{4b} and Y _{4c} were modified with amino-group) were added at
10	the molar ratio of 23:1 to perform the concept of bio-bar-code DL-DNA (bbc-DL-DNA). For each
11	ligation, the Y-DNA monomer was ligated in ligase buffer containing T4 DNA ligase (200
12	units/µL) at 25 °C for 1 h.
13	Agarose Gel Electrophoresis. Each generation DL-DNA samples were characterized on
14	agarose Ready-Gel. Agarose gel (3%) were prepared in Tris-acetate-EDTA (TAE) buffer (40 mM
15	Tris,20 mM acetic acid and 2 mM EDTA, pH 8.5) and run at 100 V for 30 min. The gel was
16	stained with ethidium bromide (0.5 $\mu\text{g}/$ ml) in TAE solution. The visualization and photography
17	were performed using a digital camera under UV illumination. The results are shown in Fig. 1 in
18	the main text.
19	Fabrication of RuNP-bbc-DL-DNA/aptamer-MBs Conjugates. A suspension of
20	carboxylated MBs (100 μ L) was previously washed with 400 μ L of 0.1 M imidazol-HCl buffer
21	
	(pH 7.0) three times, and activated in a 0.2 M NHS solution (200 μ L) and a 0.8 M EDC solution

1	and resuspended to a final volume of 200 μ L. And then, 500 μ L of 2.0 \times 10 ⁻⁸ M amino-modified
2	aptamer was added to ~50 μL of the above resulting MBs solution, and incubated at 37 $^o\!C$ for 8 h
3	with gentle shaking. Excess aptamers were removed by magnetic force, followed by washing the
4	resulting aptamer-MBs three times with PBS buffer. The RuNP-bbc-DL-DNA/aptamer-MBs
5	conjugates were fabricated by adding 200 μ L of G ₄ bbc-DL-DNA solution to the above prepared
6	aptamer-MBs and incubated at 37 °C for 1 h, followed by reacted with Ru-NPs solution (1.0 \times 10 ⁻⁴
7	M) for 12 h. The resulting RuNP-bbc-DL-DNA/aptamer-MBs conjugates were separated from the
8	excess unlabeled Ru-NPs solution magnetically, washed three times with 200 μ L of PBS buffer,
9	and resuspended in 200 μL PBS buffer for further use at 4 $^{o}C.$
10	Cancer Cell Culture. Ramos cells (target cells) and CEM cells (control cells) were cultured in
11	cell flasks separately in RPMI 1640 medium supplemented with 10% (v/v) fetal bovine serum
12	(FBS) and 100 IU/mL penicillin-streptomycin in a humidified atmosphere with 5% CO ₂ at 37 $^{\circ}$ C.
13	Prior to the experiments, the cell density was counted using a hemocytomer. And then, a 1.0 mL
14	of $\sim 8.0 \times 10^6$ cells suspension was centrifuged at 3500 rpm for 5 min and washed five times with
15	phosphate-buffered saline (18.6 mM phosphate, 4.2 mM KCl, and 154.0 mM NaCl). The resulting
16	cells suspension was resuspended in 1.0 mL cell media buffer.
17	Magnetic Extraction. After adding 50 μ L of RuNP-bbc-DL-DNA/aptamer-MBs conjugates to
18	each cell sample followed by incubating for 15 min at 37 °C, a magnetic field was employed to
19	separate the supernatant which contained the released RuNP-bbc-DL-DNA probes resulting from
20	the structure-switching of cell aptamers. The amount of released RuNP-bbc-DL-DNA probes were
21	proportional to the amount of target cells and decanted using a pipette for the following FI-CL
22	detection.

5

1	FI-CL Detection. 200 μ L of 0.2 M nitric acid solution was used to dissolve RuNPs which were
2	labeled on the released RuNP-bbc-DL-DNA probes. After adjusting the pH of resulting Ru^{3+}
3	solution to 5.0 with NaOH, the volume of the solution was adjusted to 5 mL with 0.02 M HNO_3
4	(pH 5.0). After optimizing the luminol- H_2O_2 - Ru^{3+} CL system, the FI-CL detection was performed
5	by mixing 5.0 \times 10 $^{-4}$ M luminol in pH 10.0, 0.02 M NaOH-NaHCO3 buffer solution with 4.0 \times
6	10^{-2} M H ₂ O ₂ , and then reacting with metal ions in the flow cell to produce CL signal.

11 **Fig. S1.** (A) UV-vis absorption spectra of RuCl₃ solution (black curve) and RuNPs (red curve).

12 (B) The SEM images of RuNPs with an average diameter of 4 nm.

13

10

The TEM images of magnetic beads (MBs) before and after conjugation with DL-DNA capped with RuNPs were recorded and shown in **Fig. S2**. The TEM of the construction of RuNP-bbc-DL-DNA/aptamer-MBs conjugates were shown in **Fig. S2B**. Numerous RuNPs could be seen on the surface of the MB compared to that of MB before conjugation as shown in **Fig.**

- 1 S2A. The results indicated that the conjugates of RuNP-bbc-DL-DNA/aptamer-MBs were
- 2 constructed satisfactorily as expectation.

4 Fig. S2 The TEM images of magnetic beads (MBs) (A) before and (B) after conjugation with

- 5 DL-DNA capped with RuNPs.
- 6

3

Moreover, the amount of RuNPs constructed on the surface of one MB was determined as follows: **Preparation of FI-CL calibration curve of standard RuNPs solutions.** Standard RuNPs solutions were prepared from the solution of 1.0×10^{-3} M RuNPs. The FI-CL calibration curve of RuNPs is shown in **Fig. S3**, the regression equation could be expressed as $Y = -0.0596X^2 + 17.4568X + 31.3619$ (X is the concentration of RuNPs solution, 10^{-5} M; Y is the FI-CL intensity, n 12 = 12, R = 0.9980).

14 Fig. S3 The calibration curve of peak height versus the concentration of RuNPs solution from 1.0

1	Determination of the surface coverages of RuNPs on MBs. 1.0×10^{-3} M RuNPs solution was
2	reacted with DL-DNA/aptamer-MBs conjugates and incubated for 12 h. Then the supernatant was
3	taken for FI-CL detection. The number of RuNPs immobilized on the MBs can be quantitatively
4	calculated by the FI-CL intensities differences between the RuNPs solution before and after
5	immobilization, which is calculated as below.
6	FI-CL intensity of the background of luminol-H ₂ O ₂ FI-CL system: 63
7	FI-CL intensity of the supernatant before immobilization: 1242
8	\rightarrow Concentration of RuNPs before immobilization: 9.98 × 10 ⁻⁴ M
9	FI-CL intensity of the supernatant after immobilization: 1027
10	\rightarrow Concentration of RuNPs after immobilization: 7.04 × 10 ⁻⁴ M
11	Thus, the concentration of RuNPs immobilized on MBs: $(9.98 - 7.04) \times 10^{-4} = 2.94 \times 10^{-4} \text{ M}$
12	
13	Calculation of moles of MBs in a given preparation
14	MNP diameter = 0.75×10^{-4} cm
15	MNP Volume = $4/3\pi r^3 = 1.77 \times 10^{-12} \text{ cm}^3$
16	Mass MNP = $\rho_{\text{MNP}} \times V_{\text{MNP}}$ =1.18 × 1.77 × 10 ⁻¹² = 2.09 × 10 ⁻¹² (g / MNP)
17	The concentration of MNP in 0.01g/mL MNP solution for the preparing
18	$(0.01 \times 10^3) / (2.09 \times 10^{-12}) / (6.02 \times 10^{23}) = 7.95 \times 10^{-12} \text{ M}$
19	Thus, $(2.94 \times 10^{-4}) / (7.95 \times 10^{-12}) = 3.7 \times 10^7$ RuNPs were constructed on the surface of one

20 MB.

1 **Optimization of Luminol-H**₂ O_2 -Ru³⁺ FI-CL System. The effects of luminol and H₂ O_2 concentrations, and Ru³⁺ standard solution pH in luminol-H₂O₂-Ru³⁺ FI-CL system were 2 3 investigated comprehensively. As shown in Fig. S4A, the signal/background ratios increased with 4 an increase in luminol concentrations from 1.0×10^{-4} to 5.0×10^{-4} mol/L, and decreased with 5 further increasing luminol concentrations. Furthermore, the effect of H₂O₂ concentration on luminol-H₂O₂-Ru³⁺ CL system was studied in the range of $1.0 \times 10^{-3} \sim 1.0 \times 10^{-1}$ mol/L. As shown 6 7 in Fig. S4B, the CL signal/background ratios increased with increasing H₂O₂ concentrations in the range of $1.0 \times 10^{-3} \sim 4.0 \times 10^{-2}$ mol/L, and a maximal signal was obtained at 4.0×10^{-2} mol/L. 8 Therefore, 5.0 \times 10⁻⁴ mol/L and 4.0 \times 10⁻² mol/L were selected as the optimal concentrations of 9 10 luminol and H₂O₂, respectively. As a critical factor of luminol-H₂O₂-Ru³⁺ CL reaction system, the pH value of Ru³⁺ standard 11 solution was studied extensively through adjusting the pH values of Ru³⁺ standard solution in the 12 13 range of 2.5 to 7.0. From Fig. S4C, the maximum CL signal/background ratio was occured at pH 5.0 of Ru³⁺ standard solution. 14 After optimizing the conditions of luminol-H₂O₂-Ru³⁺ FI-CL system, the calibration curve of 15 relative CL intenties versus Ru³⁺ concentrations was further investigated. As shown in Fig. S4D, 16 the CL intensities were found to increase gradually with increasing the concentration of Ru³⁺. For 17 the concentrations of 1.0×10^{-8} to 1.0×10^{-6} g/mL Ru³⁺ standard solution, the nonlinear function 18 could be expressed as $I = -0.0708C^2 + 17.7950C + 34.6885$ (I is the relative CL intensity; C is the 19 concentration of Ru³⁺, 10⁻⁸ M; n = 12, $R^2 = 0.9978$); for the concentrations of 1.0×10^{-8} to 1.0×10^{-8} 20

21 10^{-7} g/mL Ru³⁺ standard solution, the linear regression equation could be expressed as I =

1 22.0154C + 13.5034 (C is the concentration of Ru^{3+} , 10⁻⁸ g/mL; I is relative the CL intensity, n = 7,

Fig. S4 Effects of the reactant conditions on the luminol-H₂O₂-Ru³⁺ CL system. (A) Effects of the 5 concentration of luminol: pH 10.0, 0.02 M NaOH-NaHCO3 buffer solution, 7.5×10^{-3} M H₂O₂ 6 and pH 5.0, 5.0×10^{-7} g/mL Ru³⁺ solution. (B) Effects of the concentration of H₂O₂: 5.0×10^{-4} M 7 8 luminol in pH 10.0, 0.02 M NaOH-NaHCO₃ buffer solution, pH 5.0, 5.0×10^{-7} g/mL Ru³⁺ solution. (C) Effects of Ru^{3+} solution pH: 5.0 \times 10⁻⁴ M luminol in pH 10.0, 0.02 M 9 NaOH-NaHCO₃ buffer solution, 4.0×10^{-2} M H₂O₂ and 5.0×10^{-7} g/mL Ru³⁺ solution. (D) CL 10 signal calibration curve of Ru^{3+} standard solution. The concentration of luminol and H_2O_2 were 11 5.0×10^{-4} M in pH 10.0, 0.02 M NaOH-NaHCO₃ buffer solution and 4.0×10^{-2} M, respectively. 12 The pH of Ru^{3+} standard solution was 5.0. 13

 $\cdot O_2$

1 Investigation on the Mechanism of Luminol-H₂O₂-Ru³⁺ CL System.

luminol and H_2O_2 were 5.0 × 10⁻⁴ M and 4.0 × 10⁻² M, respectively. (D) The CL mechanism of 15

luminol-H₂O₂-Ru³⁺ system. 16

1	In order to prove whether the mechanism of luminol- H_2O_2 -Ru ³⁺ system was the "coordination
2	complex mechanism" or not, the UV-vis and fluorescence spectra were first investigated. From
3	Fig. S5A and B, the UV-vis absorption spectra and fluorescence spectra of luminol, luminol- H_2O_2 ,
4	luminol- Ru^{3+} and luminol- H_2O_2 - Ru^{3+} with different Ru^{3+} concentrations seem nearly identical.
5	Thus, it could be proposed that there was no coordination complex formed during the reaction,
6	and the possible CL mechanism of luminol- H_2O_2 -Ru ³⁺ system was not the "coordination complex
7	mechanism". Consequently, we further investigated the possible CL mechanism of
8	luminol-H ₂ O ₂ -Ru ³⁺ system by adding different CL quenchers, such as \cdot O ₂ ⁻ quencher, superoxide
9	dimutase (SOD), and HO· quenchers, mannitol and methanol. From Fig. S5C of CL kinetics, the
10	CL intensities were obviously decreased by HO \cdot quenchers, especially quenched by $\cdot O_2^-$ quencher.
11	Thus, it is reasonable that the possible CL mechanism of luminol- H_2O_2 - Ru^{3+} system was the "free
12	radical mechanism", which is summerized in Fig. S5D.

1 Control Experiment by Employing Single RuNP as Labels for Assay.

Fig. S6 Schematic illustration of employing single RuNP as labels for the assay of cancer cells
based on luminol-H₂O₂-Ru³⁺ FI-CL reaction system.

5

6 As controls, we also investigated the assay by employing single RuNP as labels for cancer cells 7 detection (Fig. S6). The procedures were performed as described in the main text except using 8 single RuNP rather than bbc-DL-DNA as labels at step (II). As shown in Fig. S7, under the optimized experimental conditions, the FI-CL signals of luminol-H2O2-Ru3+ reaction system 9 10 increased with the increase of concentrations of Ramos cells ranging from 5000 to 100000 cell/mL with a nonlinear function of $I = -3.4372 \times 10^{-8}C^2 + 0.0117C$ -6.0871 (*I* is the FI-CL intensity; *C* is 11 the concentration of target cells, n = 9, $R^2 = 0.9991$) and detection limit of 3622 cells/mL, which 12 13 was ~50-fold higher than that obtained by employing bbc-DL-DNA as labels.

14

15 Fig. S7 The calibration curve of peak heights versus the concentrations of target cells from 5000

¹⁶ to 100000 cells/mL.

1 Investigation of the impact of the DL-DNA capped with RuNPs on the sensitivity of this 2 approach. The impact of the DL-DNA capped with RuNPs on the sensitivity of this approach has 3 been investigated (Fig. S8). Upon the introduction of cell samples, bbc-DL-DNA labels (step 4 IVa) and RuNP-bbc-DL-DNA labels (step IVb) were released from the surface of MBs and 5 following dissolved via nitric acid for luminol-H2O2 CL system. From the results of our study, the 6 CL intensities obtained from employing bbc-DL-DNA as labels without incubating with RuNPs 7 (hv_1) were approximate to that of luminol-H₂O₂ system (hv_0) , while significantly increased by 8 employing RuNPs-bbc-DL-DNA as labels (hv_2). The concentration of target cells for each assay 9 was 1000 cells/mL. Thus, it could be deduced that the DL-DNA has no influence on the sensitivity 10 of this approach, which could ascribe to the denaturation of DNA dendrimers under the strong 11 acid conditions at step V in order to dissolve RuNPs into Ru³⁺ ions for FI-CL detection.

13 Fig. 8 Investigation of the impact of the DL-DNA capped with RuNPs on the sensitivity of this

14 approach.

1 Mixed Cell Samples Assay.

2

3

4 Fig. S9 FI-CL signals of (a) blank sample, (b) pure Romas target cells sample, and (c) Romas

5 target cells and CEM control cells mixing sample. Both concentrations of target cells and control

- 6 cells are 2000 cells/mL.
- 7

8 **Table S2.** FI-CL Signals of Blood Samples Spiked with and without Romas Target Cells

Sample	Blood sample (cells/mL)	Added target cells (cells/mL)	Detected cells (cells/mL)	Recovery (%)
1	- [a]	100	62	62.0
2	-	1000	713	71.3
3	-	10000	8652	86.5

9 [a] No FI-CL response