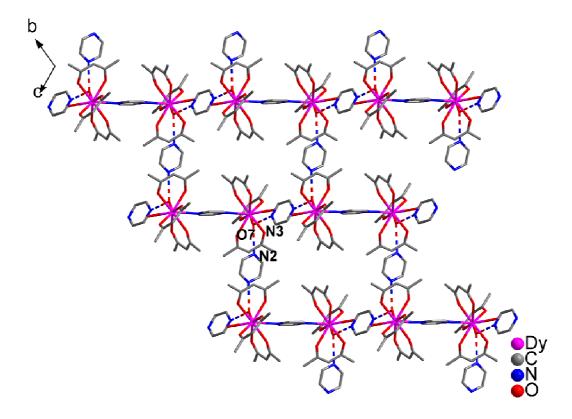
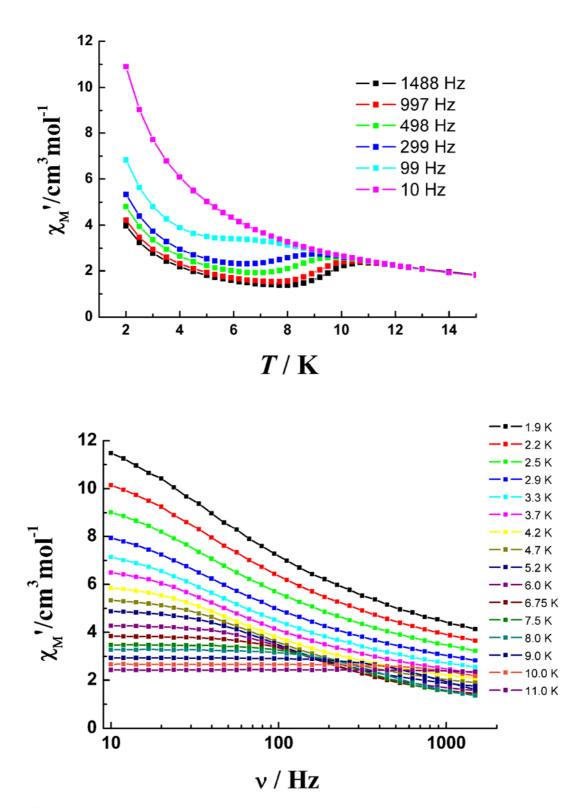

Electronic Supplementary Information For

Pyrazine-Bridged Dy₂ Single-Molecule Magnet with a Large Anisotropic

Barrier

Yue Ma, ^a Gong-Feng Xu, ^b Xi Yang, ^a Li-Cun Li, ^a Jinkui Tang, * ^b Shi-Ping Yan, ^a Peng Cheng ^a and Dai-Zheng Liao*^a


Synthesis of Dy₂(hfac)₆(H₂O)₄pz·2pz (1): Dy(hfac)₃·2H₂O (0.1 mmol) was dissolved in boiling dry n-heptane (20 mL). After stirring for 2 hours, pyrazine (0.1 mmol) in CH₂Cl₂ (5 mL) was added and refluxed for 30 minutes. Then the solution was cooled to room temperature, filtrated and the filtrate was stored in a refrigerator at 4°C for a week to give pale-yellow crystals, which are suitable for X-ray analysis. Yield: 0.0095g, 5.1%. Elemental Analysis for C₄₂H₂₆Dy₂F₃₆N₆O₁₆: calcd: C 26.84, H 1.39, N 4.47%; found: C 26.69, H 1.28, N 4.56%. IR spectra of complex **1** (KBr cm⁻¹): 3677.46m, 3618.61m, 3483.55m, 1652.19 vs, 1614.04w 1563.86s, 1538.16s, 1495.37vs, 1261.62s, 1225.06s, 1144.77s, 1103.79w, 1044.33w, 804.66m, 742.80w, 663.12s,588.79.


Fig. S1. The three capped trigonal prism environment of the nine- coordinated Dy^{III} ions.

^a Department of Chemistry, Nankai University, Tianjin 300071, P. R. China. Tel: (+86) 22-2350-506; E-mail: liaodz@nankai.edu.cn

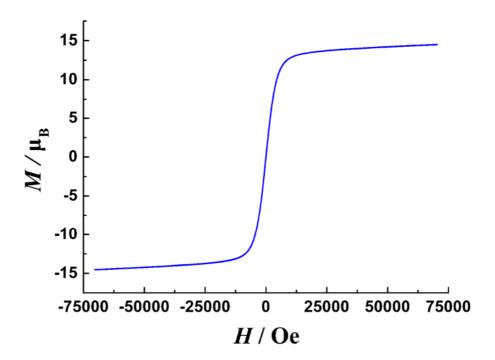

^b State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. Fax: (+)86-431-85262878; E-mail: tang@ciac.jl.cn

Fig. S2 Packing diagram of compound **1**, showing the 2D plan linked by the hydrogen bonding and the shortest intermolecular Dy···Dy distance between dinuclear $[Dy_2]$ units.

Fig. S3 Temperature (top) and frequency (bottom) dependence of the in-phase ac susceptibility for complex 1 measured under zero static field.

Fig. S4 *M vs. H* data of **1** at 1.9 K emphasizing the absence of significant magnetic hysteresis loop at 1.9 K

Magnetic measurements were performed in the temperature range 1.9–300 K, using a Quantum Design MPMS-XL SQUID magnetometer equipped with a 7 T magnet. The diamagnetic corrections for the compounds were estimated using Pascal's constants, and magnetic data were corrected for diamagnetic contributions of the sample holder.