Supporting Information:

Enhanced Photo-induced Surface Reactivity of Mesoporous Titania Modified with Benzene Siloxane

Xiaonao Liu, Junfang Guo, Liping Xiao, Jie Fan*

Experimental

Synthesis of BS-mTiO₂ materials: BS-mTiO₂ is synthesized by AcHE process¹³. In a typical synthesis of a mesostructured membrane, 10mmol of Ti(OBu)₄, 0.1 mmol of BTEB, 40mmol of acetic acid, 12 mmol of HCl (or HNO₃) and 1.6 g of F127 (EO₉₆PO₇₀EO₉₆, MW = 12000 g/mol) were dissolved in 30mL ethanol. The mixture was stirred vigorously for 1 hour and transferred into a Petri dish (diameter 125 mm). The ethanol was evaporated at 40 °C with a relative humidity of ~ 40%. After 12 hours, a transparent membrane formed, and was transferred into a 65 °C oven and aged for an additional 24 hours. As-synthesized mesostructured hybrids were calcined at 350 °C in air for 6 hours (ramp rate 2 °C/min) in order to obtain mesoporous membranes. The membrane materials are ground into fine powders before use for the photocatalytic reaction.

Characterization: The particle size of the titania and organosilica precursors in the AcHE solution and the isoelectric point of catalysts were assessed by Nano-ZS ZEN3600 (MALVERN Instrument) at 25 °C. For the isoelectric point measurements, the suspension fluid was a 1g/L aqueous solution of potassium chloride. The concentration of catalyst in the suspension was 0.5 mg mL⁻¹. The pH value of the suspension was adjusted using solution of 0.05µmol hydrochloric acid and 0.05µmol potassium hydroxide. FT-IR spectra of the samples were recorded on a Nicolet NEXUS 470 FT-IR spectrometer. The concentrations of the samples in KBr were kept around 0.5-0.6%. SAXRD and WXRD patterns were recorded on a Bruker D8 diffractometer using $Cu_{K\alpha}$ radiation. TEM images were taken using a JEOL 2010 electron microscope operating at 200 keV. Nitrogen sorption analysis was carried out at 77 K using a Micrometrics TriStar 3000 system. Solid-state ¹³C and ²⁹Si NMR analyses were performed at room temperature on a Bruker DMX 500 MHz NMR spectrometer using a 4mm magic-angle spinning (MAS) probe. The photocatalyst powders were spun at a rate of 10 kHz for ¹³C MAS NMR and at a rate of 4kHz for ²⁹Si MAS NMR spectra. TGA was carried out on a TG/DTA 320 system (ramp rate: 10 °C/min). The photoluminescence emission spectra were carried out on a fluorospectrophotometer (RF 5301 PC) by using a 280 nm excitation wavelength of a Xe lamp with 150 W powders at room temperature. A Shimadzu UV-2401 UV-visible spectrophotometer was used to obtain the reflectance spectra of the catalysts over a range of 200-700 nm.

Photocatalytic reaction: The MB photo-degradation was carried out under top-irradiation by a 100 W high-pressure Hg lamp. The solution was continuously stirring in a 100 mL water-jacketed Pyrex-glass bottle to maintain a reaction temperature at 25 °C. A typical reaction system contained 50 mg of catalyst powders and 100mL of the MB solution (15 mg/L). Prior to the irradiation, the MB solution with the photocatalyst powders was kept in the dark for 2 hours to ensure the sorption equilibrium. The concentration change of MB is monitored by UV-vis spectroscopy.

EPR and Spinning Trapping Experiment: *X*-band EPR signals were recorded at ambient temperature on a Bruker EPR A-300 spectrometer. The settings for the EPR spectrometer were as follows: center field, 3511.39 G; sweep width, 100 G; microwave frequency, 9.86 G; modulation frequency, 100 kHz; power, 101 mW; conversion time, 10msec. The spin trapping experiments were performed as follows: 5,5-Dimethyl-pyrroline-N-oxide (DMPO) spin-trapping reagent and other chemicals were purchased from Sigma-Aldrich Chemical Co. and used without further purification. Stock solutions of DMPO (0.8 M) in deaerated water were prepared under argon and stored in the dark at -20 °C. The stock DMPO solution was first diluted to 0.08M with phosphate buffer solution (pH = 7.6) prior to the reaction with any solid substrate. The solid catalyst (~ 2.0 mg) was mixed with calculated amount of ice-cooled DMPO solution (0.08 M). The mixture was quickly transferred into a glass capillary tube and tested by EPR spectroscopy at room temperature upon photo-irradiation. A 100 W Hg lamp (LOT Oriel) was used as the light source.

Fig. S1 Size evolution of individual titania and benzene siloxane precursors and their mixture in AcHE solution at room temperature as monitored by time-resolved dynamic light scattering (DLS).

Fig. S2 FT-IR spectra of (a), as-made BS- $mTiO_2$ prepared by using amphiphilic triblock copolymer F127 as a template, and (b), calcined BS- $mTiO_2$ at 350 °C.

Fig. S3 Wide-angle X-ray diffraction patterns of mTiO₂ and BS- mTiO₂ calcined at 350 °C in air.

Fig. S4 Nitrogen sorption isotherms of a) mTiO₂ and b) BS- mTiO₂ calcined at 350 °C.

Fig. S5 UV-vis absorbance spectra of mTiO₂ and BS- mTiO₂ calcined at 350 °C.

Fig. S6 Reaction rate constants of BS- $mTiO_2$ photocatalysts with different B/T ratios (calcined at 350 °C).

Fig. S7 Zeta potential-pH value plots of mTiO₂ and BS- mTiO₂ calcined at 350 °C.

Fig. S8 a) Solid-state ¹³C CP and b) ²⁹Si MAS NMR spectra of BS- mTiO₂ (B/T = 0.5) calcined at 350 °C. c) TGA curves of BTEB xerogel, mTiO₂ and BS-mTiO₂ (B/T = 0.5) calcined at 350 °C in air.

- [1] J. Fan, S. W. Boettcher, G. D. Stucky, *Chemistry of Materials* **2006**, *18*, 6391.
- [2] E. P. Barrett, L. G. Joyner, P. P. Halenda, *Journal of the American Chemical Society* **1951**, *73*, 373.