Palladium catalyzed synthesis of naphthalene derivatives via direct fuse ring construction from amides with alkynes

Junliang Wu, Xiuling Cui*, Xia Mi, Ying Li and Yangjie Wu*

Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Department of Chemistry, Zhengzhou University, Zhengzhou, 450052, P. R. China

Supporting information	
Table of contents	
Experimental Procedures and Spectra Data	S2~10
Normalized absorption and fluorescence spectra of 3 j	S11
¹ H NMR, ¹³ C NMR and IR Spectra	S12~26
X-ray Crystallographic Data of compound 3c	

General Information

All reagents were used directly without further purification. Silica gel was purchased from Qing Dao Hai Yang Chemical Industry Co. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker DPX-400 spectrometer. Mass spectra were obtained on a Waters Q-Tof MicroTM spectrometer. IR spectra were recorded on a Bruker VECTOR22 spectrometer. Fluorescence spectra were recorded on a Jobin Yvon Fluoroma-P fluorescence spectrometer in the solid state, slit width 1nm.

Reaction procedure:

Optimization Study for ring construction of acetanilide (1a) with diphenylacetylene (2a) via C-H bonds cleavage (Table S1). Pd catalyst (1~10 mol %), oxidant (1~2 equiv) and acetanilide (40.5 mg, 0.3mmol, 1 equiv)were weighed into the flask, diphenylacetylene (112.14mg, 0.63mmol, 2.1 equiv) was added followed by solvent (1.5 mL) and additive (0.15 mmol, 0.5 equiv). The resulting mixture was stirred at the indicated temperature for 16 h in an oil bath at air atmosphere. The reaction was cooled to room temperature, filtered through a short Silica gel column washing with EtOAc (50 mL). The filtrate was concentrated, and evaporated to dryness under high vacuum. The yield of desired product was determined by HPLC (C₁₈ column, methanol/H₂O=80/20, 1.0mL/min, λ =242nm).

Table S1. Optimization Screen for ring construction of acetanilide (1a) with diphenylacetylene (2a) via C-H bonds cleavage^a

	1a	2a			- 3a	
Entry	Pd catalyst	Solvent	Oxidant	Additive	Temp.(°C)	Yield $(\%)^{b}$
1	$Pd(OAC)_2$	DMSO	BQ	TsOH	80	3
2	$Pd(OAC)_2$	CH ₃ CN	BQ	TsOH	80	15
3	$Pd(OAC)_2$	EtOH	BQ	TsOH	80	58
4	$Pd(OAC)_2$	HOAc	BQ	TsOH	80	58
5	$Pd(OAC)_2$	DMF	BQ	TsOH	80	36
6	$Pd(OAC)_2$	NMP	BQ	TsOH	80	38
7	$Pd(OAC)_2$	Dioxane	BQ	TsOH	80	39

8	Pd(OAC) ₂	DCE	BQ	TsOH	80	52
9	Pd(OAC) ₂	THF	BQ	TsOH	80	65
10	Pd(OAC) ₂	CHCl ₃	BQ	TsOH	80	71
11	Pd(OAC) ₂	CH ₂ Cl ₂	BQ	TsOH	80	53
12	Pd(OAC) ₂	Toluene	BQ	TsOH	80	82(78)
13	-	Toluene	BQ	TsOH	80	No
14	Pd(OAC) ₂	Toluene/HOAc	BQ	TsOH	80	66
15	Pd(OAC) ₂	Toluene/H ₂ O	BQ	TsOH	80	20
16	Pd(OAC) ₂	Toluene/EtOH	BQ	TsOH	80	68
17	Pd(OAC) ₂	Toluene	-	TsOH	80	28
18	Pd(OAC) ₂	Toluene	H_2O_2	TsOH	80	21
19	Pd(OAC) ₂	Toluene	Cu(OAc) ₂	TsOH	80	13
20	Pd(OAC) ₂	Toluene	Ag ₂ O	TsOH	80	trace
21	Pd(OAC) ₂	Toluene	Oxone	TsOH	80	80
22	Pd(OAC) ₂	Toluene	AgI	TsOH	80	trace
23	Pd(OAC) ₂	Toluene	$K_2S_2O_8$	TsOH	80	83(80)
24	Pd(OAC) ₂	Toluene	$K_2S_2O_8$	TFA	80	10
25	Pd(OAC) ₂	Toluene	$K_2S_2O_8$	TfOH	80	71
26	Pd(OAC) ₂	Toluene	$K_2S_2O_8$	H_2SO_4	80	84
27	Pd(OAC) ₂	Toluene	$K_2S_2O_8$	TsOH	60	65
28	Pd(OAC) ₂	Toluene	$K_2S_2O_8$	TsOH	70	79
29	Pd(OAC) ₂	Toluene	$K_2S_2O_8$	TsOH	100	83
30	$Pd(OAC)_2^c$	Toluene	$K_2S_2O_8$	TsOH	80	84
31	PdCl ₂	Toluene	$K_2S_2O_8$	TsOH	80	34
32	Pd(PPh ₃) ₂ Cl ₂	Toluene	$K_2S_2O_8$	TsOH	80	31
33	$Pd_2(dba)_3^d$	Toluene	$K_2S_2O_8$	TsOH	80	80
34	Pd(PPh ₃) ₄	Toluene	$K_2S_2O_8$	TsOH	80	74
35	Pd(CF ₃ COO) ₂	Toluene	$K_2S_2O_8$	TsOH	80	79

a Reaction conditions: **1a** (0.3 mmol), **2a** (0.63 mmol), Pd-catalyst (5 mol%), additives(0.15mmol), oxidant (0.6mmol), solvent (1.5 mL), 16 h. *b* Yield determined by HPLC analysis and based on the amount of **1a** used. Value in parentheses indicates yield after purification. c 10 mol % of $Pd(OAC)_2$ was used. d 2.5 mol % of $Pd_2(dba)_3$ was used.

General catalytic procedure (Table 2)

 $Pd(OAc)_2$ (3.36 mg, 0.015mmol, 5%mol), $K_2S_2O_8$ (162.2mg, 0.60mmol, 2equiv), and anilide (0.3mmol, 1 equiv) were weighed into the flask, alkynes (0.63mmol, 2.1 equiv) was added followed by toluene (1.5 mL) and TsOH (25.8mg, 0.15 mmol, 0.5 equiv). The resulting mixture was stirred at the indicated temperature for 16 h in an oil bath at air atmosphere, then cooled down to room temperature. The mixture was diluted with 30 mL saturated NaHCO₃ and extracted with ether (3*20 mL). The combined organic phase was dried over Na₂SO₄. After evaporation of the solvents the residue was purified by silica gel

chromatography or thin layer chromatography (TLC) (elute: hexane-EtOAc).

5, 6, 7, 8-tetraphenyl-N-acetyl-1-aminonaphthalene 3a

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃) ppm: 7.95 (d, J=7.45Hz, 1H), 7.50 (dd, J₁=7.74Hz, J₁=0.61Hz, 1H), 7.40 (t, J=7.66Hz, 1H), 7.26~7.17 (m, 10H), 6.99(s, 1H, N-H), 6.85~6.73 (m, 10H), 1.40 (s, 3H). ¹³C NMR (100MHz, CDCl₃): 168.11, 142.21, 140.95, 140.13, 139.94, 139.66, 139.41, 138.84, 133.77, 132.97, 131.12, 131.08, 131.05, 131.00, 130.99, 130.96, 130.49, 128.21, 127.52, 127.04, 126.52, 126.45, 126.40, 125.78, 125.37, 125.28, 124.32, 123.33, 23.94. HRMS (ESI) Calcd. for $C_{36}H_{27}NO$: $[M+Na]^+$, 512.1990. Found: m/z 512.1987.

4-mehtyl-5, 6, 7, 8-tetraphenyl-N-acetyl-1-aminonaphthalene 3b

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃) ppm: 7.72 (d, J=7.71Hz, 1H), 7.26 (d, J=5.62Hz, 1H), 7.23~7.06 (m, 10H), 6.81~6.78 (m, 6H), 6.74 (s, 1H, N-H), 6.67~6.64 (m, 4H), 1.88 (s, 3H), 1.38 (s, 3H). ¹³C NMR (100MHz, CDCl₃): 168.15, 142.65, 142.51, 140.25, 140.07, 139.90, 138.63, 134.75, 134.08, 132.97, 131.56, 131.24, 131.14, 131.07, 130.38, 130.26, 128.15, 126.91, 126.72, 126.54, 126.36, 126.31, 126.19, 125.11, 125.03, 123.88, 25.30, 23.74. HRMS (ESI) Calcd. for $C_{37}H_{29}NO$: [M+Na]⁺, 526.2147. Found: m/z 526.2148.

3-mehtyl-5, 6, 7, 8-tetraphenyl-N-acetyl-1-aminonaphthalene 3c

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃) ppm: 7.84(d, J=1.05Hz, 1H), 7.28~7.17 (m, 11H), 6.97 (s, 1H, N-H), 6.84~6.73 (m, 10H), 2.38(s, 3H), 1.40 (s, 3H). ¹³C NMR (100MHz, CDCl₃): 168.13, 142.27, 140.32, 140.06, 140.02, 139.82, 138.91, 128.72, 135.67, 134.30, 133.89, 132.76, 131.22, 131.18, 130.99, 130.95, 130.50, 128.19, 127.52, 127.00, 126.55, 126.50, 126.45, 126.39, 126.36, 125.31, 125.22, 124.50, 122.62, 24.00, 21.80. IR (KBr): 3426, 3055, 3025, 2922, 2851, 1671, 1622, 1542, 1494, 1465, 1441, 1404, 1369, 1279, 734, 701cm⁻¹. HRMS (ESI) Calcd. for $C_{37}H_{29}NO: [M+Na]^+$, 526.2147. Found: m/z 526.2146.

2, 3-dimehtyl-5, 6, 7, 8-tetraphenyl-N-acetyl-1-aminonaphthalene 3d

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃) ppm: 7.42 (s, 1H), 7.25~7.11 (m, 10H), 6.78~6.75 (m, 10H), 6.39 (s, 1H, N-H), 2.32(s, 3H), 2.17 (s, 3H), 1.38 (s, 3H). ¹³C NMR (100MHz, CDCl₃): 168.50, 143.60, 140.37, 140.29, 140.23, 138.17, 138.12, 135.71, 135.53, 134.48, 131.70, 131.26, 131.22, 131.16, 131.10, 131.06, 131.03, 130.92, 130.89, 130.76, 129.58, 128.15, 128.10, 128.04, 127.29, 127.09, 126.51, 126.25, 126.18, 126.13, 126.06, 125.96, 125.92, 125.01, 124.83, 22.86, 21.27, 15.42. HRMS (ESI) Calcd. for $C_{38}H_{31}NO$: $[M+Na]^+$, 540.2303. Found: m/z 540.2302.

3, 4-dimehtyl-5, 6, 7, 8-tetraphenyl-N-acetyl-1-aminonaphthalene 3e

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃)ppm: 7.18~7.08 (m, 11H), 6.78~6.64 (m, 10H), 6.21 (s, 1H, N-H), 2.23 (s, 3H), 1.87 (s, 3H), 1.39 (s, 3H). ¹³C NMR (100MHz, CDCl₃): 168.19, 143.89, 142.46, 140.31, 140.28, 140.22, 139.19, 138.25, 135.54, 135.12, 134.94, 133.32, 131.52, 131.41, 131.05, 130.99, 130.93, 129.80, 128.33, 127.76, 126.69, 126.13, 126.07, 126.02, 126.00, 125.97, 125.78, 124.76, 25.16, 22.87, 18.67. HRMS (ESI) Calcd. for $C_{38}H_{31}NO$: $[M+Na]^+$, 540.2303. Found: m/z 540.2304.

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃)ppm: 7.95 (d, J=7.21Hz, 1H), 7.45 (d, J=8.35Hz, 1H), 7.34 (t, J=7.81Hz, 1H), 7.12~7.03 (m, 9H), 6.64~6.59 (m, 8H), 2.30 (s, 3H), 2.29 (s, 3H), 2.07 (s, 6H), 1.40 (s, 3H). ¹³C NMR (100MHz, CDCl₃): 167.98,141.16, 139.31, 139.24, 139.05, 137.34, 137.09, 136.88, 136.47, 135.73, 134.36, 134.31, 134.29, 133.94, 132.97, 131.14, 130.96, 130.91, 130.75, 130.38, 128.82, 128.20, 127.20, 127.08, 125.41, 125.20, 124.32, 122.61, 23.91, 21.21, 21.09, 21.02. HRMS (ESI) Calcd. for C₄₀H₃₅NO: $[M+Na]^+$ 568.2616. Found: m/z 568.2617. **3-methyl-5, 6, 7, 8-tetra (4-methylphenyl)-N-acetyl-1-aminonaphthalene 3g**

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃)ppm: 7.84(d, J=1.27Hz, 1H), 7.24(s, 1H), 7.11~7.03(m, 9H), 6.64~6.61(m, 8H), 2.36(s, 3H), 2.31(s, 3H), 2.29(s, 3H), 2.07(s, 6H), 1.40(s, 3H). ¹³C NMR (100MHz, CDCl₃): 167.92, 140.21, 139.30, 139.11, 138.65, 137.53, 137.21, 137.01, 136.39, 135.59, 135.21, 134.25, , 134.21, 134.15, 134.07, 132.79, 131.01, 130.79, 130.40, 129.48, 128.79, 128.19, 127.21, 127.17, 127.06, 127.01, 126.89, 126.34, 124.50, 124.28, 122.58, 23.95, 21.77, 21.25, 21.10, 21.07, 20.99. HRMS (ESI) Calcd. for $C_{41}H_{37}NO$: $[M+Na]^+582.2773$. Found: m/z 582.2773.

2-methyl-5, 6, 7, 8-tetra (4-methylphenyl)-N-acetyl-1-aminonaphthalene 3h

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃)ppm: 7.51(d, J=8.73Hz, 1H), 7.25(d, J=7.61Hz, 1H), 7.05~7.03(m, 8H), 6.63~6.58(m, 8H), 6.35(s, 1H, N-H), 2.30(s, 3H), 2.28(s, 3H), 2.25(s, 3H), 2.07(s, 6H), 1.41(s, 3H). ¹³C NMR (100MHz, CDCl₃): 168.14, 141.57, 140.76, 138.95, 138.43, 137.46, 137.37, 136.89, 135.60, 135.41, 135.36, 135.64, 134.19, 134.06, 132.58, 130.98, 130.96, 130.91, 130.80, 129.80, 128.69, 128.67, 128.64, 128.56, 128.20, 128.12, 127.20, 127.11, 126.91, 22.98, 21.21,

21.07, 21.03, 21.01, 19.23. IR (KBr): 3417, 3023, 2923, 2861, 1668, 1511, 1374, 1260, 1108, 1029, 811, 740cm⁻¹. HRMS (ESI) Calcd. for C₄₁H₃₇NO: [M+Na]⁺582.2773. Found: m/z 582.2774.

5, 6, 7, 8-tetra (4-trifluoromethylphenyl)-N-acetyl-1-aminonaphthalene 3i

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃)ppm: 7.78 (d, J=6.88Hz, 1H), 7.55~7.46(m, 6H), 7.35~7.30(m, 4H), 7.15 (t, J=7.24Hz, 4H), 6.89(d, J=7.92Hz, 2H), 6.84(d, J=7.96Hz, 2H), 6.49(s, 1H, N-H), 1.39(s, 3H). ¹³C NMR (100MHz, CDCl₃): 168.33, 145.42, 142.72, 142.66, 142.45, 139.05, 138.74, 137.06, 134.26, 133.61, 132.62, 131.19, 131.13, 130.94, 130.49, 129.68, 129.65, 129.35, 129.33, 128.68, 128.63, 128.35, 128.31, 127.06, 126.91, 126.16, 125.92, 125.26, 125.02~124.90(m), 124.17~124.06 (p, J=3.6Hz), 124.00~123.89 (p, J=3.7Hz), 122.55, 122.32, 122.29, 23.26. HRMS (ESI) Calcd. for $C_{40}H_{23}F_{12}NO$: $[M+Na]^+784.1486$. Found: m/z 784.1486.

4-methyl-5, 6, 7, 8-tetra (4-trifluoromethylphenyl)-N-acetyl-1-aminonaphthalene 3j

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃)ppm: 7.57(d, J=7.66Hz, 1H), 7.47(d, J=8.11Hz, 2H), 7.40(d, J=8.09Hz, 2H), 7.35(d, J=7.72Hz, 1H), 7.26(m, 2H), 7.20(d, J=8.01Hz, 2H), 7.11 (d, J=7.13Hz, 4H), 6.76(d, J=7.24Hz, 4H), 6.37(s, 1H, N-H), 1.89(s, 3H), 1.37(s, 3H). ¹³C NMR (100MHz, CDCl₃): 168.28, 145.85, 145.47, 142.99, 142.84, 138.16, 137.94, 134.92, 134.65, 132.80, 131.53, 131.45, 131.14, 131.10, 131.03, 130.38, 129.34, 129.01, 128.68, 128.49, 128.42, 128.17, 128.10, 127.96, 127.77, 126.99, 125.24, 125.06~124.89 (m), 124.31~124.21 (q, J=36.), 123.95~123.81 (p, J=3.8), 122.53, 122.36, 122.32, 25.61, 23.11. IR (KBr): 3445, 3042, 3021, 2931, 2855, 1664, 1616, 1522, 1405, 1328, 1169, 1126, 1069, 1020, 844, 723cm⁻¹. HRMS (ESI) Calcd. for $C_{41}H_{25}F_{12}NO$: $[M+Na]^+798.1642$. Found: m/z 798.1642.

3-methyl-5, 6, 7, 8-tetra (4-trifluoromethylphenyl)-N-acetyl-1-aminonaphthalene 3k

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃)ppm: 7.62(d, J=1.17Hz, 1H), 7.53(m,

4H), 7.33(d, J=7.98Hz, 2H), 7.28(d, J=8.03Hz, 2H), 7.21(s, 1H), 7.13(m, 4H), 6.87(d, J=8.10Hz, 2H), 6.82(d, J=8.00Hz, 2H), 6.41(s, 1H, N-H), 2.41(s, 3H), 1.39(s, 3H). ¹³C NMR (100MHz, CDCl₃): 168.37, 145.54, 142.92, 142.78, 142.63, 138.07, 137.30, 137.12, 134.10, 133.75, 132.34, 131.25, 130.98, 130.50, 129.64, 129.31, 128.95, 125.28, 125.04~124.96(m), 124.12~124.08(q, J=4.0Hz), 123.96~123.93(q, J=3.8Hz), 122.34, 23.34, 21.70. HRMS (ESI) Calcd. for $C_{41}H_{25}F_{12}NO$: $[M+Na]^+798.1642$. Found: m/z 798.1641.

5, 6, 7, 8-tetraphenyl-N-propionyl-1-aminonaphthalene 31

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃)ppm: 8.01(d, J=7.45Hz, 1H), 7.48(d, J=8.29Hz, 1H), 7.39(t, J=8.30Hz, 1H), 7.25~7.16(m, 10H), 7.01(s, 1H, N-H), 6.84~6.72(m, 10H), 1.48(q, J=7.56Hz, 2H), 0.91(t, J=7.54Hz, 3H). ¹³C NMR (100MHz, CDCl₃): 171.73, 142.20, 140.89, 14.017, 139.98, 139.71, 139.41, 138.80, 134.40, 133.79, 133.18, 131.15, 131.13, 130.97, 130.55, 128.18, 127.52, 127.04, 126.52, 126.40, 125.82, 125.37, 125.26, 125.07, 124.24, 122.94, 29.64, 9.38. HRMS (ESI) Calcd. for $C_{37}H_{29}NO$: [M+Na]⁺, 526.2147. Found: m/z 526.2146.

Normalized absorption (purple) and fluorescence (blue) spectra of 3j in the solid state

Fig. 1 ¹H NMR spectrum of compound **3a**

Fig. 2 ¹³C NMR spectrum of compound **3a**

Fig. 3 ¹H NMR spectrum of compound **3b**

Fig. 4 ¹³C NMR spectrum of compound **3b**

Fig. 5 ¹H NMR spectrum of compound **3**c

Fig. 6 13 C NMR spectrum of compound **3c**

Fig. 8 ¹H NMR spectrum of compound **3d**

Fig. 9¹³C NMR spectrum of compound **3d**

Fig. 11 ¹³C NMR spectrum of compound **3e**

Fig. 12 ¹H NMR spectrum of compound **3f**

Fig. 13 ¹³C NMR spectrum of compound **3f**

Fig. 15 13 C NMR spectrum of compound **3g**

Fig. 16 ¹H NMR spectrum of compound **3h**

Fig. 17¹³C NMR spectrum of compound **3h**

Fig. 18 IR NMR spectrum of compound 3h

Fig. 23-a ¹³C NMR spectrum of compound **3i**

Fig. 23-b¹³C NMR spectrum of compound **3i**

Fig. 24 ¹H NMR spectrum of compound **3**j

Fig. 25-a ¹³C NMR spectrum of compound **3**j

Fig. 25-b ¹³C NMR spectrum of compound **3**j

Fig. 30¹³C NMR spectrum of compound **3**l

X-Ray Crystallographic Data of compound 3c

Table S2. Crystal data and structure refinement for compound 3c

Identification code	compound 3c
Empirical formula	C112 H88 Cl3 N3 O3
Formula weight	1630.20
Temperature	291(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 14.7772(10) A alpha = 101.132(6) deg.
	b = 15.6258(11) A beta = 96.957(5) deg.
	c = 20.3531(12) A gamma = 102.181(6) deg.
Volume	4442.7(5) A^3
Z, Calculated density	2, 1.219 Mg/m^3
Absorption coefficient	0.159 mm^-1
F(000)	1712
Crystal size	0.20 x 0.20 x 0.20 mm
Theta range for data collection	3.04 to 25.00 deg.
Limiting indices	-17<=h<=17, -18<=k<=18, -24<=l<=23
Reflections collected / unique	33044 / 15628 [R(int) = 0.0333]
Completeness to theta = 25.00	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9689 and 0.9689
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	15628 / 0 / 1088
Goodness-of-fit on F^2	1.050
Final R indices [I>2sigma(I)]	R1 = 0.0600, wR2 = 0.1455
R indices (all data)	R1 = 0.1400, wR2 = 0.1549
Extinction coefficient	0.0013(3)
Largest diff. peak and hole	0.724 and -0.746 e.A^-3