Supplementary Information

A mild deuterium exchange reaction of free carboxylic acids by photochemical decarboxylation

Tatsuya Itou^{a, *}, Yasuharu Yoshimi^{b, *}, Keisuke Nishikawa^b, Toshio Morita^b, Yutaka Okada^a, Nobuyuki Ichinose^c and Minoru Hatanaka^d

^a Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan, E-mail: t-itou@fc.ritsumei.ac.jp; Tel: +81-77-561-2810

^b Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

^c Department of Chemistry and Materials Technology, Kyoto Institue of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan

^d Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan

General

IR spectra were recorded on JASCO FT/IR-620. ¹H and ¹³C NMR were recorded on JEOL JNM-AL500 (500 and 125MHz) and JEOL JNM-AL300 (300 and 75 MHz) spectrometers and for solutions in CDCl₃ containing TMS as an internal standard. High resolution mass spectra (HRMS) were obtained on JEOL JMS-700T. The light source was Riko UV-400HA 400-W high-pressure mercury lamp. Phen and DCB were recrystallized from hexane and EtOAc.

General Procedure for the Deuterium Exchange via Photochemical Decarboxylation

An acetonitrile-deuterium oxide solution (CH₃CN/D₂O = 98:2, CH₃CN 58.8 ml, D₂O 1.2 ml) of *N*-Boc-L-amino acid (1) (0.6 mmol, 10 mM), phenanthrene (Phen, 0.6 mmol, 10 mM), 1,4-dicyanobenzene (DCB, 0.6 mmol, 10 mM) and *t*-dodecanethiol (R'SH, 1.2 mmol, 20 mM) in four Pyrex (18 mm x 180 mm) was purged with argon for 5 min. The mixture was irradiated with 400-W high-pressure mercury lamp for 8. Then the solvent was evaporated, and the resulting residue was dissolved in EtOAc and washed with water, dried over Na₂SO₄, and concentrated under reduced pressure to yield the corresponding deuterated product (**2**). Similar photoreaction of aliphatic acid (**3c-d**, **5**, **7**) (0.6 mmol, 10 mM), phenanthrene (Phen, 0.6 mmol, 10 mM), 1,4-dicyanobenzene (DCB, 0.6 mmol, 10 mM) and *t*-dodecanethiol (R'SH, 1.2 mmol, 20 mM) in a CH₃CN-D₂O solution (CH₃CN/D₂O = 9:1, CH₃CN 54 ml, D₂O 6 ml) in the presence of 1 equiv. NaOH (0.6 mmol, 10 mM) afforded the deuterated product (**4c-d**, **6**, **8**). These products were isolated by column chromatography on silica gel using hexane and EtOAc as eluents and by preparative HPLC using a GPC column or reversed phase column.

Characterization Data

2a¹: IR (KBr, cm⁻¹) 3357, 2962, 1701; ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.18 (m, 5H), 4.53 (s (br), 1H), 3.40-3.36 (m, 1H), 2.80 (d, *J* = 6.7 Hz, 2H), 1.44 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 155.8, 139.0, 128.8, 128.5, 126.3, 79.2, 41.7, 36.2, 28.4; HRMS (FAB) calcd for (M+H)⁺ C₁₃H₁₉DNO₂: 223.1557, found: 223.1550.

2b: IR (KBr, cm⁻¹) 3357, 2963, 1701; ¹H NMR (500 MHz, CDCl₃) δ 4.46 (s (br), 1H), 3.12 (s (br), 1H), 1.63-1.57 (m, 2H), 1.44 (s, 9H), 0.91 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 155.9, 79.0, 38.8, 28.4, 25.7, 22.5; HRMS (FAB) calcd for (M+H)⁺ C₁₀H₂₁DNO₂: 189.1713, found: 189.1709.

2c²: IR (KBr, cm⁻¹) 3339, 2961, 1699; ¹H NMR (500 MHz, CDCl₃) δ 3.33-3.28 (m, 3H), 1.82 (m, 4H), 1.46 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 154.7, 78.9, 45.8, 28.5, 25.7; HRMS (FAB) calcd for (M+H)⁺ C₉H₁₆DNO₂: 173.1400, found: 173.1347.

2d: IR (KBr, cm⁻¹) 3357, 2982, 1691; ¹H NMR (500 MHz, CDCl₃) δ 4.54 (s (br), 2H), 3.13-1.10 (m, 3H), 1.59-1.56 (m, 2H), 1.50-1.30 (m, 22H); ¹³C NMR (125 MHz, CDCl₃) δ 156.0, 79.0, 40.3, 29.7, 28.4, 23.8; HRMS (FAB) calcd for (M+H)⁺ C₁₅H₃₀DN₂O₄: 304.2346, found: 304.2332.

2e: IR (KBr, cm⁻¹) 3358, 3200, 2972, 1696, 1637; ¹H NMR (500 MHz, CDCl₃) δ 6.21 (s (br), 1H), 5.40 (s (br), 1H), 4.75 (s (br), 1H), 3.20 (m, 1H), 2.28 (t, *J* = 6.8 Hz, 2H), 1.83 (q, *J* = 6.8 Hz, 2H), 1.44 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 175.1, 156.6, 79.4, 39.6, 32.8, 28.1, 25.7; HRMS (FAB) calcd for (M+H)⁺ C₉H₁₈DN₂O₃: 204.1458, found: 204.1462.

2f: IR (KBr, cm⁻¹) 3358, 2972, 1701; ¹H NMR (500 MHz, CDCl₃) δ 4.65 (s (br), 1H), 3.17 (s (br), 1H), 2.41 (t, *J* = 7.1 Hz, 2H), 1.84 (q, *J* = 7.1 Hz, 2H), 1.44 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 178.1, 156.2, 76.5, 39.4, 31.2, 28.3, 25.1; HRMS (FAB) calcd for (M+H)⁺ C₉H₁₇DNO₄: 205.1298, found: 205.1296.

4a: IR (KBr, cm⁻¹) 3300, 2964, 1677, 1644, 1530; ¹H NMR (500 MHz, CDCl₃) δ 6.16 (s, 1H), 5.14 (s, 1H), 3.77 (d, *J* = 6.1 Hz, 2H), 3.11-3.09 (m, 1H), 1.80-1.73 (m, 1H), 1.46 (s, 9H), 0.92 (d, *J* = 6.7 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 169.4, 46.7, 46.5, 46.4, 46.2, 44.6, 28.2, 20.0; HRMS (FAB) calcd for (M+H)⁺ C₁₁H₂₂DN₂O₃: 232.1771, found: 232.1794.

4b: IR (KBr, cm⁻¹) 3291, 2964, 1700, 1646, 1516; ¹H NMR (500 MHz, CDCl₃) δ 6.15 (s, 1H), 5.12 (s, 1H), 3.78 (d, *J* = 6.7 Hz, 2H), 3.11-3.09 (m, 1H), 1.80-1.73 (m, 1H), 1.46 (s, 9H), 0.92 (d, *J* = 6.7 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 169.4, 58.7, 46.8, 30.5, 28.4, 28.3, 28.2, 20.1, 20.0, 19.3, 17.8; HRMS (FAB) calcd for (M+H)⁺ C₁₆H₃₁DN₃O₄: 331.2455, found: 331.2434.

4c: ¹H NMR (500 MHz, CDCl₃) δ 1.31-1.23 (m, 24H), 0.89 (t, *J* = 7.0 Hz, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 31.9, 29.7, 22.7, 14.1.

4d^{1, 3}: IR (KBr, cm⁻¹) 2962; ¹H NMR (500 MHz, CDCl₃) δ 4.51 (s, 1H), 4.29 (d, J = 2.1 Hz, 1H), 4.15-4.00 (m, 3H), 1.49 (s, 3H), 1.44 (s, 3H), 1.38 (s, 3H), 1.32 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 111.6, 105.2, 97.5, 84.7, 73.2, 71.6, 60.2, 28.9, 26.7, 26.1, 18.7; HRMS (FAB) calcd for (M+H)⁺ C₁₁H₁₈DO₅: 232.1295, found: 232.1297.

6⁴: ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.25 (m, 5H), 7.19-7.16 (m, 5H), 2.65 (d, J = 7.6 Hz, 4H), 1.96-1.92 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 142.2, 128.4, 128.3, 125.7, 35.4, 35.3; HRMS (FAB) calcd for (M+H)⁺ C₁₅H₁₆D: 198.1393, found: 198.1385.

8^{4, 5}: ¹H NMR (500 MHz, CDCl₃) δ 7.29-7.25 (m, 5H), 7.19-7.16 (m, 5H), 2.64 (s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 142.2, 128.4, 128.2, 125.7, 35.3, 35.2; HRMS (FAB) calcd for (M+H)⁺ $C_{15}H_{15}D_2$: 199.1455, found: 199.1454.

References

- 1. Y. Yoshimi, T. Itou and M. Hatanaka, Chem. Commun. 2007, 5244.
- (a) J.-C. Cintrat, F. Pillon and B. Rousseau, *Tetrahedron Lett.* 2001, 42, 5001. (b) N. Faucher,
 J.-C. Cintrat and B. Rousseau, *Appl. Catal. A: Gen.* 2008, 346, 86.
- 3. A. T. Khan and Md. Musawwer Khan, Carbohydr. Res. 2010, 345, 154.
- (a)K. A. De Castro, S. Oh, J. Yun, J. K. Lim, G. An, D. K. Kim and H. Rhee, *Synth. Commun.* 2009, **39**, 3509. (b) B. Štefane and S. Polanc, *Tetrahedron* 2009. **65**. 2339.
- (a) D. Kuck and H.-F. Grützmacher, Org. Mass Spectrom. 1978, 13, 90. (b) G. Boche, D. R. Schneider and K. Wernicke, Tetrahedron Lett. 1984, 25, 2961.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

