Supporting Information

Efficient and chemoselective alkylation of amines/amino acids using alcohols as alkylating reagents under mild conditions

Chu-Pei Xu,^a Zhen-Hua Xiao^a, Bi-Qin Zhuo^a, Yu-Huang Wang^a and Pei-Qiang

 $Huang^{*a,b}$

^{a.} Department of Chemistry and Key Laboratory for Chemical Biology of Fujian

Province, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen,

Fujian 361005, China; ^{b.} The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China

Fax: 86-592-2186400; E-mail: pqhuang@xmu.edu.cn

Contents (60 pages):

- General procedure for the alkylation of amines with alcohol. (pp. 2)
- Procedure for the recovery and recycle of 10%Pd/C. (pp. 2)
- A plausible mechanism for the *N*-alkylation of an amine with an alcohol (pp.3)
- Experimental procedures for compounds 1, 2a-d, 3, 4, 5, 6, 8, 10, 14, 17, 18, 19, 20, 22, 24, 26 (pp. 4-11)
- ¹H and ¹³C NMR spectra of compounds 1, 2a-d, 3, 4, 5, 6, 8, 10, 14, 17, 18, 19, 20, 22, 24, 26 (pp. 12-49)
- References (pp. 50)

General Methods

Melting points were uncorrected. Optical rotations were measured with Perkin-Elmer 341 automatic polarimeter. Infrared spectra were measured using KBr pellet techniques. ¹H-NMR spectra were acquired at 400 or 500 MHz and ¹³C were acquired at 100 or 125 MHz. Mass spectra were recorded by a Bruker Dalton ESquire 3000 plus liquid chromatography-mass spectrum (direct injection). Silica gel (300-400 mesh) was used for flash column chromatography. The alcohols used are analytically pure grade.

General procedure for the alkylation of amines with alcohol.

After vacuume to remove air from the reaction tube, the stirred mixture of the amines/amino acids (0.1 mmol), 10% Pd/C (100 mg, 0.094 mmol) or 20% Pd(OH)₂/C (80 mg, 0.114 mmol) in an alcohol (5 mL) was hydrogenated under 1 atm of hydrogen (balloon) at room temperature. The reaction was vigorously stirred. When the reaction was judged to be complete by TLC monitoring, the mixture was filtered using a filter paper under a reduced pressure, and the filtrate was washed with the corresponding alcohol (5 mL) and the filtrate was concentrated under reduced pressure (about 80% of the solvent could be recovered by dstillation). The crude product was purified by flash column chromatography on silica gel, if necessary. Yield and time are indicated in Table 1 and Table 2.

Procedure for the recovery and recycle of 10%Pd/C.

The catalyst (10%Pd/C) was recovered by filtration through a filter paper under reduced pressue, and reused following the general procedure. This procedure was repeated four times with the results indicated in Table 3. **Caution:** upon washing of 10%Pd/C, this catalyst might burned spontaneously when expose to air, and precautions should be taken (avoiding the excessively dryness of Pd/C during the vacuum filtration).

Table 1. N-Alkylation reaction of amine with recycled catalyst or solvent.

Entry	Cycle	T (h)	Yield (%) ^[c]
1 ^[a]	1	14	73
2 ^[a]	2	19	86
3 ^[a]	3	21	71
4 ^[a]	4	24	79
5 ^[b]	1	16	70

^[a] Reaction with recycled catalyst.

^[b] Reaction with recycled solvent.

^[c] Isolated yield.

$$R_{2}CHOH \xrightarrow{Pd/C \text{ or } Pd(OH)_{2}/C}_{dehydrogenation} R_{2}CHO \xrightarrow{R_{1}NHR_{3}} R_{2}CHNR_{1}R_{3}$$

$$H_{2}, Pd/C \text{ or } Pd(OH)_{2}/C$$

$$R_{2}CHNR_{1}R_{3}$$

$$R_{2}CHNR_{1}R_{3}$$

Scheme 1. A plausible mechanism for the *N*-alkylation of an amine with an alcohol.

(4-Methylpiperazin-1-yl)(phenyl)methanone (2a)

Following the general procedure, the reaction of *N*-benzoylpiperazine (**1**) (0.1 mmol, 19 mg) in MeOH (5 mL) and in the presence of 10% Pd/C (100 mg) gave $2a^{[3]}$ as a colorless oil (17.3 mg, 85%).

By using 20%Pd(OH)₂/C (80 mg) as the catalyst, 12.6 mg of **2a** was obtained (yield: 62%). IR (film) v_{max} : 2936, 2850, 2786, 1632, 1424, 1296, 1271, 1168, 1141, 1128, 1019, 1004 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 2.31 (s, 3H), 2.35 (br s, 2H), 2.48 (br s, 2H), 3.44 (br s, 2H), 3.79 (br s, 2H), 7.28-7.42 (s, 5H); ¹³C NMR (100 MHz, CDCl₃) δ : 42.0, 46.0, 47.5, 55.0(2C), 127.0, 128.4, 129.6, 135.8, 170.3; MS (ESI): *m/z* 205.1 (M+H⁺, 100).

(4-Ethylpiperazin-1-yl)(phenyl)methanone (2b)

Following the general procedure, the reaction of *N*-benzoylpiperazine (**1**) (0.1 mmol, 19 mg) in EtOH (5 mL) and in the presence of 10% Pd/C (100 mg) gave $2\mathbf{b}^{[4]}$ as a colorless oil (19.4 mg, 89%).

By using 20%Pd(OH)₂/C (80 mg) as the catalyst, 16.1 mg of **2b** was obtained (yield: 74%). IR (film) v_{max} : 2970, 2924, 2805, 1632, 1577, 1427, 1290, 1260, 1165, 1119, 1013, cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 1.08 (t, *J* = 7.2 Hz, 3H), 2.38 (br s, 2H), 2.43 (q, *J* = 7.2 Hz, 2H), 2.50 (br s, 2H), 3.43 (br s, 2H), 3.79 (br s, 2H), 7.36-7.40 (s, 5H); ¹³C NMR (100 MHz, CDCl₃) δ : 11.8, 42.2, 47.7, 52.2, 52.4, 53.0, 127.0, 128.4, 129.6, 135.8, 170.2; MS (ESI): *m/z* 219.1 (M+H⁺, 100).

Phenyl(4-propylpiperazin-1-yl)methanone (2c)

Following the general procedure, the reaction of *N*-benzoylpiperazine (1) (0.1 mmol, 19 mg) in *n*-PrOH (5 mL) and in the presence of 10% Pd/C (100 mg) gave $2c^{[5]}$ as a

colorless oil (17.6 mg, 76%).

By using 20%Pd(OH)₂/C (80 mg) as the catalyst, 21.3 mg of **2c** was obtained (yield: 92%). IR (film) v_{max} : 2964, 2921, 2866, 2805, 2765, 1632, 1427, 1372, 1293, 1278, 1159, 1015, 1001 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 0.91 (t, *J* = 7.4 Hz, 3H), 1.51 (tq apparent sextet, *J* = 7.7, 7.4 Hz, 2H), 2.33 (t, *J* = 7.7 Hz, 2H), 2.38 (br s, 2H), 2.52 (br s, 2H), 3.44 (br s, 2H), 3.50 (br s, 2H), 7.39 (s, 5H); ¹³C NMR (125 MHz, CDCl₃) δ : 11.8, 19.9, 42.2, 47.7, 52.9, 53.4, 60.5, 127.0, 128.4, 129.6, 136.0, 170.2; MS (ESI): *m/z* 233.1 (M+H⁺, 100).

(4-Isopropylpiperazin-1-yl)(phenyl)methanone (2d)

Following the general procedure, the reaction was performed starting from *N*-benzoylpiperazine (**1**) (0.1 mmol, 19 mg), *i*-PrOH (5 mL) and 10% Pd/C (100 mg). The residue was purified by flash column chromatography on silica gel eluting with CH₂Cl₂–CH₃OH (60:1), gave **2d**^[6] as a colorless oil (14.8 mg, 64%). IR (film) v_{max} : 2969, 2924, 2853, 2811, 1631, 1576, 1424, 1283, 1262, 1177, 1012 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 1.04 (d, *J* = 6.6 Hz, 6H), 2.45 (br s, 2H), 2.58 (br s, 2H), 2.72 (h, *J* = 6.6 Hz, 1H), 3.42 (br s, 2H), 3.79 (br s, 2H), 7.38 (s, 5H); ¹³C NMR (100 MHz, CDCl₃) δ : 18.3, 42.3, 48.0, 48.3, 49.0, 54.6, 127.0, 128.4, 129.5, 135.9, 170.1; MS (ESI): *m/z* 233.1 (M+H⁺, 100).

(S)-2-(Dimethylamino)-3-methylbutanoic acid (Dov, 3)

Following the general procedure, the reaction of L-valine (**15**) (0.1 mmol, 11.7 mg) in MeOH (5 mL) and in the presence of 10% Pd/C (100 mg) gave **3** as a white solid (13.5 mg, 93%). $[\alpha]_D^{20}$ +45.4 (*c* 0.80, H₂O) {lit. ^[13] $[\alpha]_D^{14}$ +40.6 (*c* 2, H₂O)}; M.p. 154-156 °C (EtOH/CH₃COCH₃) (lit. ^[13] 154 °C). IR (KBr) v_{max}: 3436, 2961, 2765, 1604, 1461, 1421, 1372, 1351 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ : 0.96 (d, *J* = 6.8 Hz,

3H), 1.09 (d, J = 6.8 Hz, 3H), 2.29-2.42 (m, 1H), 2.89 (d, J = 7.4 Hz, 6H), 3.43 (d, J = 5.1 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ : 15.8, 19.3, 26.0, 40.0, 43.0, 76.1, 171.6; MS (ESI): m/z 146.0 (M+H⁺, 100).

(R/S)-2-(Dimethylamino)-4-methylpentanoic acid (4)

Following the general procedure, the reaction of (±)-leucine (**13**) (0.1 mmol, 13.1 mg) in MeOH (5 mL) and in the presence of 10% Pd/C (100 mg) gave **4** as a white solid (13.6 mg, 94%). M.p. 192-194 °C (EtOH) (lit.^[12] 194 °C). IR (KBr) v_{max} : 3436, 2960, 2869, 1625, 1472, 1378, 1341, 1323, 1146, 1119 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ : 0.95-1.01 (t, 6H), 1.60-1.80 (m, 3H), 2.90 (br s, 6H), 3.58 (dd, *J* = 9.7, 4.1 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ : 20.7, 22.7, 25.1, 36.8, 40.1, 42.3, 70.3, 173.5; MS (ESI): *m/z* 160.1 (M+H⁺, 100).

(2S,3S)-2-(Dimethylamino)-3-methylpentanoic acid (2S,3S)-N,N-diMe-Ile) (5)

Following the general procedure, the reaction of L-isoleucine (**16**) (0.1 mmol, 13.1 mg) in MeOH (5 mL) and in the presence of 10% Pd/C (100 mg) gave **5** as a white solid (14.5 mg, 91%). $[\alpha]_D^{20}$ +53.3 (*c* 1.13, H₂O) {lit. ^[14] $[\alpha]_D^{20}$ +48 (*c* 1, H₂O)}; M.p. 174-175 °C (CH₃COCH₃) (lit.^[14] 173-174 °C). IR (KBr) v_{max}: 3433, 2970, 2869, 1622, 1470, 1385, 1311, 1144, 1064 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ : 0.93-1.02 (m, 6H), 1.28-1.41 (m, 1H), 1.48-1.61 (m, 1H), 2.03-2.14 (m, 1H), 2.88 (s, 3H), 2.91 (s, 3H), 3.52 (d, *J* = 4.4 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ : 11.2, 13.1, 26.6, 32.7, 39.7, 43.5, 74.9, 171.7; MS (ESI): *m/z* 160.0 (M+H⁺, 100).

(R/S)-2-(Dimethylamino)-3-phenylpropanoic acid (6)

COOH

Following the general procedure, the reaction of (±)-phenylalanine (**14**) (0.1 mmol, 16.5 mg) in MeOH (5 mL) and in the presence of 10% Pd/C (100 mg) gave **6** as a white solid (17.8 mg, 92%). M.p. 229-230 °C (MeOH) (lit.^[13] 228 °C). IR (KBr) v_{max} : 3430, 3031, 2921, 1616, 1418, 1378, 1348, 1335, 1287, 1177, 1144, 1089, 1025 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ : 2.94 (br s, 6H), 3.13 (dd, *J* = 13.7, 9.2 Hz, 1H), 3.35 (dd, *J* = 13.7, 5.7 Hz, 1H), 3.85 (dd, *J* = 9.2, 5.7 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ : 34.0, 41.5, 42.4, 72.2, 127.5, 129.0, 129.2, 135.4, 172.2; MS (ESI): *m/z* 194.0 (M+H⁺, 100).

(2S,4R)-4-Hydroxy-1-methylpyrrolidine-2-carboxylic acid (7)

Following the general procedure, the reaction of (2S,4R)-4-hydroxypyrrolidine-2-carboxylic acid (**11**) (0.1 mmol, 13.1 mg) in MeOH (5 mL) and in the presence of 10% Pd/C (100 mg) gave **7** as a white solid (12.6 mg, 87%). [α]_D²⁰ –90.0 (*c* 0.13, CH₃OH) {lit.^[15] [α]_D²⁰ –95.0 (*c* 0.1, CH₃OH)}; M.p. 238-240 °C (MeOH) (lit.^[16] 237-241 °C). IR (KBr) ν_{max} : 3418, 1625, 1403, 1339, 1208, 1071 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ : 2.20-2.31 (m, 1H), 2.44-2.55 (m, 1H), 3.06 (s, 3H), 3.21 (d, *J* = 13.0 Hz, 1H), 3.97 (dd, *J* = 13.0, 4.6 Hz, 1H), 4.21 (dd, *J* = 11.0, 7.5 Hz, 1H), 4.62-4.67 (m, 1H); ¹³C NMR (100 MHz, D₂O) δ : 38.3, 43.2, 62.7, 69.5, 70.1, 172.9; MS (ESI): *m/z* 145.9 (M+H⁺, 100).

(R/S)-1-Methylpiperidine-2-carboxylic acid (8)

N СООН

Following the general procedure, the reaction of (\pm) -piperidine-2-carboxylic acid (12) (0.1 mmol, 12.9 mg) in MeOH (5 mL) and in the presence of 10% Pd/C (100 mg) gave **8** as a white solid (12.9 mg, 90%).

By using 20%Pd(OH)₂/C (80 mg) as the catalyst, 13.4 mg of **8** was obtained (yield: 94%). M.p. 208-209 °C (EtOH) (lit.^[10] 208-210 °C). IR (KBr) v_{max} : 3401, 3026, 2959,

2933, 2860, 1614, 1393, 1354, 1322, 1284, 1114 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ : 1.53-1.66 (m, 1H), 1.70-1.84 (m, 2H), 1.87-2.03 (m, 2H), 2.22-2.31 (m, 1H), 2.91 (s, 3H), 3.04-3.13 (m, 1H), 3.50-3.58 (m, 2H); ¹³C NMR (100 MHz, D₂O) δ : 16.9, 21.0, 22.6, 28.0, 42.4, 54.5, 69.0, 174.1; MS (ESI): *m/z* 144.1 (M+H⁺, 100).

(R/S)-1-Methylpyrrolidine-2-carboxylic acid (10)

Срессоон

Following the general procedure, the reaction of (\pm) -proline (9) (0.1 mmol, 11.5 mg) in MeOH (5 mL) and in the presence of 10% Pd/C (100 mg) gave 10 as a white solid (11.5 mg, 89%).

By using 20%Pd(OH)₂/C (80 mg) as the catalyst, 10.7 mg of **10** was obtained (yield: 83%). M.p. 168-169 °C (EtOH) (lit.^[8] 168-170 °C). IR (KBr) v_{max} : 3430, 3064, 2857, 1628, 1473, 1455, 1400, 1321 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ : 2.00-2.11 (m, 1H), 2.11-2.29 (m, 2H), 2.52-2.65 (m, 1H), 3.00 (s, 3H), 3.18-3.28 (m, 1H), 3.77-3.85 (m, 1H), 3.97-4.04 (m, 1H); ¹³C NMR (100 MHz, D₂O) δ : 22.8, 28.8, 40.8, 56.5, 70.5, 173.3; MS (ESI): *m/z* 152.0 (M+Na⁺, 100).

(S)-4-(3-Hydroxy-2-(methylamino)propyl)phenol (17)

To a mixture of (*S*)-3-(4-(benzyloxy)phenyl)-2-(methylamino)propan-1-ol^[17] (68 mg, 0.25 mmol) and 10% Pd/C (20 mg) was added MeOH (5 mL). The mixture was stirred at room temperature under an atmosphere of H₂ for 1.5 hours. The mixture was filtered and concentrated under reduced pressure to give **17** (44.5 mg, 98%) as a white solid. $[\alpha]_D^{20}$ +11.2 (*c* 0.5, MeOH); M.p. 152-153 °C (MeOH). IR (KBr) v_{max}: 3430, 3305, 3143, 2912, 1616, 1592, 1519, 1467, 1443, 1363, 1269, 1238, 1107, 1065, 1031 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ : 2.35 (s, 3H), 2.51 (dd, *J* = 15.1, 9.7 Hz, 1H), 2.59-2.67 (m, 2H), 3.34 (dd, *J* = 11.2, 5.6 Hz, 1H), 3.47 (dd, *J* = 11.2, 4.0 Hz, 1H), 6.66 (d, *J* = 8.4 Hz, 2H), 6.97 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD) δ :

33.8, 36.9, 63.0, 64.1, 116.4, 130.5, 131.2, 157.1; MS (ESI): *m*/*z* 182.0 (M+H⁺, 100). Anal. Calcd for C₁₀H₁₅NO₂: C, 66.27; H, 8.34; N, 7.73. Found: C, 66.62; H, 8.58; N, 7.38.

(S)-4-(2-(Dimethylamino)-3-hydroxypropyl)phenol (18)

Following the general procedure, the reaction of (S)-4-(3-hydroxy-2-(methylamino)propyl)phenol (17) (0.1 mmol, 18.1 mg) in MeOH (5 mL) and in the presence of 10% Pd/C (100 mg) gave **18** as a white solid (14 mg, 72%). $[\alpha]_{D}^{20}$ +7.3 (c 0.55, MeOH); M.p. 153-155 °C (MeOH). IR (KBr) v_{max}: 3168, 2933, 2869, 2835, 2799, 1613, 1589, 1516, 1461, 1384, 1275, 1247, 1235, 1165, 1061, 1037, 1010 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ : 2.37 (s, 6H), 2.43 (dd, J = 13.2, 9.3 Hz, 1H), 2.68-2.82 (m, 2H), 3.49 (d, J = 5.6 Hz, 2H), 6.68-6.74 (m, 2H), 6.99-7.04 (m, 2H); ¹³C NMR (100 MHz, CD₃OD) δ: 32.1, 41.4, 61.2, 68.9, 116.3, 131.0, 131.8, 156.8; MS (ESI): *m/z* 196.0 (M+H⁺, 100).

1-Ethylpyrrolidine-2-carboxylic acid (19)

Following the general procedure, the reaction of (\pm) -proline (9) (0.1 mmol, 11.5 mg) in EtOH (5 mL) and in the presence of 10% Pd/C (100 mg) gave **19** as a white solid (12.2 mg, 85%).

By using 20%Pd(OH)₂/C (80 mg) as the catalyst, 10.7 mg of **19** was obtained (yield: 75%). M.p. 168-169 °C (CHCl₃) (lit.^[9] 170 °C). IR (KBr) v_{max} : 3433, 3055, 2985, 2881, 1628, 1461, 1400, 1327, 1235, 1171, 1043 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ : 1.34 (t, *J* = 7.2 Hz, 3H), 1.88-2.02 (m, 1H), 2.04-2.19 (m, 2H), 2.38-2.50 (m, 1H), 3.05-3.14 (m, 1H), 3.15-3.26 (m, 1H), 3.27-3.38 (m, 1H), 3.69-3.78 (m, 1H), 3.83-3.90 (m, 1H); ¹³C NMR (100 MHz, CD₃OD) δ : 11.3, 24.4, 30.3, 51.6, 55.5, 70.1, 173.3; MS (ESI): *m/z* 144.1 (M+H⁺, 100).

1-Ethylpiperidine-2-carboxylic acid (20)

Following the general procedure, the reaction of (\pm) -piperidine-2-carboxylic acid (12) (0.1 mmol, 12.9 mg) in EtOH (5 mL) and in the presence of 10% Pd/C (100 mg) gave **20**^[11] as a white solid (13.5 mg, 86%).

By using 20%Pd(OH)₂/C (80 mg) as the catalyst, 15.1 mg of **20** was obtained (yield: 96%). M.p. 200-201 °C (EtOH). IR (KBr) v_{max} : 3427, 2975, 2940, 2927, 2863, 1617, 1457, 1377, 1322, 1274, 1175, 1085, 1018 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ : 1.34 (t, J = 7.4 Hz, 3H), 1.50-1.63 (m, 1H), 1.63-1.82 (m, 2H), 1.82-1.91 (m, 1H), 1.91-2.00 (m, 1H), 2.16-2.26 (m, 1H), 2.90-3.01 (m, 1H), 3.06-3.18 (m, 1H), 3.26-3.37 (m, 1H), 3.51-3.58 (m, 1H), 3.59-3.67 (m, 1H); ¹³C NMR (100 MHz, D₂O) δ : 8.6, 21.1, 22.3, 27.9, 50.6, 51.3, 67.6, 174.4; MS (ESI): m/z 180.1 (M+Na⁺, 100).

(2R,3R,4R,5R)-2,5-Bis(hydroxymethyl)-1-methylpyrrolidine-3,4-diol (22)

To 4.2 mg of 10% Pd/C was added a solution of compound (2*R*,3*R*,4*R*,5*R*)-**21** (14.0 mg, 0.032 mmol) in 2 mL of dry methanol. The mixture was stirred under 1 atm of hydrogen for two days at rt and then filtered through filter paper under reduced pressure. After concentration under reduced pressure, the resulting residue afforded compound **22** (5.0 mg, 89%). $[\alpha]_D^{20}$ –8.0 (*c* 0.4, H₂O) [lit.^[19] $[\alpha]_D^{20}$ –8.5 (*c* 1.0, H₂O)]; IR (film): v_{max} : 3350, 2922, 1423, 1252, 1120 cm⁻¹; ¹H NMR (400 MHz, D₂O): δ : 2.59 (s, 3H), 3.03~3.10 (m, 2H), 3.85 (dd, *J* = 1.4, 4.6 Hz, 4H), 4.00 (td, *J* = 2.8, 4.6 Hz, 2H); ¹³C NMR (100 MHz, D₂O) δ : 37.8, 61.6, 72.5, 80.0; MS (ESI) *m/z* 178 (M+H⁺, 100).

(2*R*,4*S*,5*R*)-1-Methyl-4-hydroxy-5-hydroxymethyl pyrrolidine-2-carboxylic acid (24)

To 50 mg of 20% Pd(OH)₂/C was added a solution of compound (2*R*,4*S*,5*R*)-**23** (16 mg, 0.047 mmol) in 5 mL of MeOH. The mixture was hydrogenated under 1 atm hydrogen pressure and stirred at room temperature for 15 h. The mixture was filtered through celite and the filtrate was evaporated in *vacuo* to afford **24** (8.1 mg, 99%) as a colorless oil. $[\alpha]_D^{20}$ +55.2 (*c* 0.63, MeOH), IR (film): 1024, 1093, 1334, 1383, 1629, 3317 cm⁻¹; ¹H-NMR (400 MHz, D₂O) δ 2.40 (ddd, *J* = 5.4, 8.5, 13.9 Hz, 1H), 2.49 (ddd, *J* = 5.4, 8.5, 13.9 Hz, 1H), 3.13 (s, 3H), 3.55 (dd, *J* = 4.6, 9.2 Hz, 1H), 3.92 (dd, *J* = 4.6, 12.9 Hz, 1H), 4.03 (dd, *J* = 4.6, 12.9 Hz, 1H), 4.25 (t, *J* = 8.5 Hz, 1H), 4.39 (dd, *J* = 5.4, 9.2 Hz, 1H); ¹³C-NMR (100 MHz, D₂O) δ 36.5, 42.4, 56.7, 69.9, 70.2, 76.3, 172.7; MS (ESI): 198 *m*/*z* (M+Na⁺, 100). ESI-HRMS: calcd for [C₇H₁₃NO₄ + H⁺]: 176.0923; found: 176.0937.

1-(3,4-Dimethylphenyl)-4-methylpiperazine (26)

Following the general procedure, the reaction of 1-(3,4-dimethylphenyl)piperazine (**25**) (0.1 mmol, 19 mg) in MeOH (5 mL) and in the presence of 10% Pd/C (100 mg) gave **26** as a yellow oil (14.9 mg, 73%). IR (film) v_{max} : 2967, 2936, 2793, 1622, 1507, 1449, 1375, 1293, 1244, 1153, 1000 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 2.18 (s, 3H), 2.23 (s, 3H), 2.36 (s, 3H), 2.59 (t, *J* = 5.0 Hz, 4H), 3.17 (t, *J* = 5.0 Hz, 4H), 6.69 (dd, *J* = 8.0, 2.5 Hz, 1H), 6.76 (d, *J* = 2.5 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 18.7, 20.1, 46.1, 49.7, 55.2, 113.8, 118.1, 128.0, 130.2, 137.1, 149.6; MS (ESI): *m*/*z* 205.1 (M+H⁺, 100). ESI-HRMS: calcd for [C₁₃H₂₀N₂+H⁺]: 205.1705; found: 205.1696.

20

mdd ترستعداد فاطرتك فاخددم منا الأحدثني ورجنين ولظاء يلدران المرال وتحتميا وتكدر فاراب وأمرار بزارت المتعني واللك 2 22°6τ — 2 66'SZ — 8 6 50.54 40.04 2 8 مقاله والثاني تماكمات الرجاء 2 ₽T.97 — 8 8 and the second second <u>6</u> م من ظريفتان .. دا يو برا ينيغ ايل خوي الشوير و راياني و F 140 130 120 150 ووقته والعمان وأشرط فالمرتعاد أومرعت وإوقا فمادحا الألل يعتمد أسأته تتر المراعات فالسأم فيتر بلاط 160 170 100MHz, D₂0 45 °τ 4τ -COOH 200 190 180 •z XCPB151T-C D20

mdd فللتعد العالم فالأزل والمقالل والمتعتدان وماستشار أتدار فاستعلمهم أشرطتهم 엳 8 8 F sz.85 4 E 6 T ° E 🗄 — 20 متقريف أوحدر وللفرطة تحدى تالتزون والكرأط بالتركيل والمريز ترو 8 F 49.29-15.69 01.07 22 8 8 فحقاق تعضا يساورها والمراوري <u>6</u> 140 130 120 110 ففاخضته للسراك يكفر . خطاذ فيافع التقيم اعتماد الخياد عنا ليستعما الانها توماني E 180 170 160 150 Ē -COOH 100MHz, D₂0 88 ° ZL T -كخمض لواطير ومؤكر فكالعا يتوسطك XCPB153T-C D20 190 Ē 200

Ę

mqq 우 20 8 L0 ° ΖΕ —— 47°32 98°32 98°32 48°23 48°555 48°55 6 20 8 21' 11 20 6.89 —— 8 8 ê 110 120 82.911 -----130 50.151 97.151 140 150 s 4 ° 95T -----<mark>9</mark> 400MHz, Methanol-d4 170 НО <mark>18</mark> 19 XCPB149T-C CD30D 200 È

> HC OH CH3 CH13N04

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010 074.05 T8E.2P----527.82----898:69 502:0*L* 0τε.97----017.271----100MHz, D₂0

mqq

Ē

엳

OH CH₃NO₄ 오

References:

- [1] L. Mu, S.-S. Feng, M. L. Go, Chem. Pharm. Bull. 2000, 48, 808.
- [2] T. S. Moore, M. Boyle, V. M. Thorn, J. Chem. Soc. 1929, 39.
- [3] I. Iriepa, A. I. Madrid, E. Galvez, J. Bellanato, J. Mol. Struct. 2006, 78, 8.
- [4] S. P. Webster, P. Ward, M. Binnie, E. Craigie, K. M. M. McConnell, K. Sooy, A. Vinter, J. R. Seckl, B. R. Walker, *Bioorg. Med. Chem. Lett.* 2007, 17, 2838.
- [5] S. Kafka, J. Cermak, T. Novak, F. Pudil, I. Viden, M. Ferles, Collect. Czech. Chem. Commun. 1985, 50, 1201.
- [6] M. A. Letavic, K. S. Ly, Tetrahedron Lett. 2007, 48, 2339.
- [7] X. Cui, J. Li, Z. –P. Zhang, Y. Fu, L. Liu, Q. –X. Guo, J. Org. Chem. 2007, 72, 9342.
- [8] C. Renshaw, J. Am. Chem. Soc. 1939, 61, 1195.
- [9] R. Paul, S. Tchelitcheff, Bull. Soc. Chim. Fr. 1958, 736.
- [10] K. H. Buechel, F. Korte, Chem. Ber. 1962, 95, 2453-2459.
- [11]D. E. Caddey, J. H. P. Utley, J. Chem. Soc., Perkin Trans. 2, 1973, 1258.
- [12] A. D. Headley, S. D. Starnes, J. Am. Chem. Soc. 1995, 117, 9309.
- [13] R. E. Bowman, H. H. Stroud, J. Chem. Soc. 1950, 1342.
- [14] E. Zbiral, E. L. Ménard, J. M. Müller, Helv. Chim. Acta, 1965, 48, 404.
- [15] J. Puripattanavong, S. Weber, V. Brecht, A. W. Frahm, Planta Med. 2000, 66, 740.
- [16] R. Figliuolo, S. Naylor, J. L. Wang, J. H. Langenheim, *Phytochemistry*, 1987, 26, 3255.
- [17] M. Hirotake, T. Jun, S. Yukio, H. Toshio, Heterocycles, 2004, 62, 343.
- [18]J. M. Defauw, M. M.Murphy, G. E. Jagdmann, H. Hu, J. W. Lampe, S. P. Hollinshead, T. J. Mitchell, H. M. Crane, J. M. Heerding, J. S. Mendoza, J. E. Davis, J. W. Darges, F. R. Hubbard, S. E. Hall, *J. Med. Chem.* 1996, **39**, 5215
- [19]N. Asano, H. Kizu, K. Oseki, E. Tomioka and K. Matsui. J. Med. Chem. 1995, 38 2349.