Supporting Information

Materials

Multiwalled carbon nanotubes (MWNTs, $\varphi = 10-30$ nm) were purchased from Nanotech Port Co. Ltd. Tetraethylorthosilicate (Shenzhen, China). (TEOS, >98 %). Triton X-100 and 1.3dicyclohexylcarbodiimide (DCC) were purchased from Sigma-Aldrich. Propargylamine hydrochloride and (3-chloropropyl)trimethoxysilane (CTMS, >95 %) were obtained from Alfa (Ward Hill, MA). Tetramethylbenzidine (TMB), sodium azide (NaN₃) and sodium ascorbate were purchased from BBI (Ontario, Canada). Glutathione (GSH) was obtained from Genview Corp (Houston, TX). CuSO₄·5H₂O, H₂O₂, cyclohexane, *n*-hexanol, FeCl₃·6H₂O, FeCl₂·4H₂O, NH₄OH (25%) and triethylamine were obtained from Beijing Chemicals Inc (Beijing, China). All other regents were of analytical reagent grade. Aqueous solutions were prepared using distilled water pre-treated with nitrogen gas.^[1]

Preparation of acetylene-functionalization of MWNTs (MWNT-al).

The carboxyl-modified MWNTs were prepared by sonicating the primitive MWNTs in a 3:1 v/v solution of concentrated sulfuric acid (98%) and concentrated nitric acid (70%) for 6 h (MWNT-6h) or 24 h (MWNT-24h) at 35–40 °C and washed with copious water, then dried in vacuum at 40 °C for 24 h.^[2-3]

For preparation of MWNT-al, 25 mg MWNT-COOH (MWNT-6h) were dispersed in 10 mL DMF solutions containing 20 mg DCC, and 0.1 mL triethylamine.^[4] This mixture solution was sonicated for 1 h, followed by addition of 15 mg propargylamine hydrochloride. After stirring at room temperature for 72 h, 20 mL chloroform was added. The products were obtained by centrifugation, followed by a wash three times with 20 mL chloroform and two times with 10 mL water.

Preparation of magnetic silica nanoparticles (MSNs).

The Fe₃O₄ nanoparticles were prepared as previously reported and in size 5 nm in diameter.^[5] Magnetic silica nanoparticles were synthesized by the reverse microemulsion method. Briefly, the nanoparticles were synthesized by adding 8.85 g of Triton X-100, 37.5 mL of cyclohexane, and 8 mL of *n*-hexanol to a 100 mL glass vial with continuous magnetic stirring. Next, 2 mL of ddH₂O and 25 mg Fe₃O₄ nanoparticles were added. Followed by the addition of 600 μ L of TEOS, the materials were stirred

for 40 min. To initiate silica polymerization, 400 μ L of NH₄OH was added. This polymerization was allowed to proceed for 18 h. The particles were obtained by magnetic separation, followed by a wash three times with 20 mL ethanol and two times with water.

Preparation of 3-chloropropyl-functionalized magnetic silica nanoparticles (MSN-Cl).

Magnetic silica nanoparticles (100 mg) were dried at 110°C under vacuum conditions for 90 minutes. Afterwards, the amount of 15 mL dry toluene was added under nitrogen atmosphere. After addition of 3-chloropropyltrimethoxysilane (200 µl), the reaction mixture was allowed to stir for overnight under reflux conditions.^[6] The functionalized MSN-Cl was separated by centrifugation and washed with each 30 mL of toluene, methanol and water before being dried at 60°C for 12 hours.

Preparation of azide-functionalized magnetic silica nanoparticles (MSN-N₃).

The amount of 50 mg MSN-Cl was added to 10 mL of a saturated solution of sodium azide in DMF.^[6] The resulting mixture was stirred at 90°C for overnight. The material was obtained by magnetic separation followed by two times with 30 mL of water and ethanol before being dried at 60°C for 12 hours.

Preparation of magnetic silica nanoparticles decorated multiwalled-carbon nanotubes (MWNT-MSN).

To a solution containing 100 μ g·ml⁻¹ of MWNT-al and 100 μ g·ml⁻¹ of MSN-N₃ in ddH₂O, a freshly prepared aqueous solution of CuSO₄·5H₂O and ascorbic sodium was added.^[6.7] The final concentration of Cu²⁺ was keeping at 0.5 mM, while ascorbic sodium was added at five times the concentration of Cu²⁺. The resulting mixture was allowed to keep at room temperature for 24 h. The magnetic silica nanoparticles decorated multiwalled-carbon nanotubes were recovered by magnetic separation and washed three times with water.

TEM was performed using a JEOL 1011 transmission electron microscope at an accelerating voltage of 100 kV. SEM and EDX were carried out using a HITACHI S-4500 instrument. FTIR characterization was carried out on a BRUKE Vertex 70 FTIR spectrometer.

Assay: Kinetic measurements were carried out in time course mode by monitoring the absorbance change at 652 nm^[8, 9] on a Jasco-V550 UV-Vis spectrophotometer. Experiments were carried out at room temperature using 50 μ g·ml⁻¹ MWNT-al, 50 μ g·ml⁻¹ MSN-N₃ or MWNT-MSN (prepared from 50 μ g·ml⁻¹ MWNT-al and 50 μ g·ml⁻¹ MSN-N₃) in a reaction volume of 500 μ L buffer solution (25 mM Na₂HPO₄, pH 4.0) with 800 μ M TMB as substrate, and H₂O₂ concentration was 5 mM, unless otherwise stated.

For sensing of Cu(II), different concentration of CuSO4·5H₂O was added to a solution containing 50 μ g·ml⁻¹ of MWNT-al and 50 μ g·ml⁻¹ of MSN-N₃ in ddH₂O. Sodium ascorbate at five times the concentration of Cu²⁺ was also added.^[7] After keeping at room temperature for 24 h, the composite was collected by using an external magnetic field and then washed three times with water. With addition of 5 mM H₂O₂ and 800 μ M TMB, kinetic studies were performed to quantitatively evaluate the catalytic ability of the composite. In control experiments, 0.5 mM Al³⁺, Cr²⁺, Ni²⁺, Ba²⁺, Ca²⁺, Co²⁺, Mn²⁺, Zn²⁺, K⁺, Na⁺, Ag⁺ were used instead of Cu²⁺ for the experiment.

For sensing of Cu(I), a solution of Cu(I)-GSH (premixed from 2 mM Cu²⁺ and 20 mM glutathione) was added to the solution containing 50 μ g·ml⁻¹ of MWNT-al and 50 μ g·ml⁻¹ of MSN-N₃ in water. ^[1] After keeping at room temperature for 24 h, the composite was collected by using an external magnetic field and then washed three times with H₂O. With addition of 5 mM H₂O₂ and 800 μ M TMB, kinetic studies were performed to quantitatively evaluate the catalytic ability of the composite.

Reference

- [1] R. F. H. Viguier, A. N. Hulme, J. Am. Chem. Soc. 2006, 128, 11370.
- [2] X. Li, Y. H. Peng, X. G. Qu, *Nucleic Acids Res.***2006**, *34*, 3670.
- [3] X. Li, Y. H. Peng, J. S. Ren, X. G. Qu, Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 19658
- [4] J. X. Yu, S. Mathew, B. S. Flavel, M. R. Johnston, J. G. Shapter, J. Am. Chem. Soc. 2008, 130, 8788.
- [5] Y. J. Song, C. Zhao, J. S. Ren, X. G. Qu, *Chem. Comm.* **2009**, 1975.
- [6] A. Schlossbauer, D. Schaffert, J. Kecht, E. Wagner, T. Bein, J. Am. Chem. Soc. 2008, 130, 12558.
- [7] Y. Zhou, S. X. Wang, K. Zhang, X. Y. Jiang, Angew. Chem. Int. Ed. 2008, 47, 7454.
- [8] Y. J. Song, X. H. Wang, C. Zhao, K. G. Qu, J. S. Ren, X. G. Qu, *Chem. Eur. J.* 2010, 16,3617.
- [9] Y. J. Song, K. G. Qu, C. Zhao, J. S. Ren, X. G. Qu, Adv. Mater. 2010, 22,2206.

Scheme S1. Synthetic Scheme of magnetic silica nanoparticles clicked on multiwalled-carbon nanotubes.

Figure S1. TEM image of A) MSN-N₃; SEM images of B) MSN-N₃, C) MWNT-al and D) MWNT-MSN.

Figure S2. FTIR spectra of (A)MWNT-COOH, (B) MWNT-al, (C) MSN-N₃ and D) MWNT-MSN.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Figure S3. Different morphologies of MWNT-MSN: A) MSNs at the ends of MWNT; B) MSN at the sidewalls of MWNT; C) MSNs aggregates on MWNTs; (D) End-to -end array of MWNTs linked by MSNs.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Figure S4. (A) EDX spectra of pristine MWNTs (black) and MWNT-24h (red). (B) The timedependent absorbance changes at 652 nm in the absence (black) or presence of MWNT-24h: 5 (red), 10 (blue), and 30 μ g·mL⁻¹ (green) in phosphate buffer (25 mM Na₂HPO₄, pH 5.0) at room temperature. 800 μ M TMB and 50 mM H₂O₂ were added to 500 μ L buffer solution to perform the experiment.

Figure S5. A) Selectivity analysis for Cu^{2+} detection by monitoring the relative absorbance. Ion concentration of Al^{3+} , Cr^{2+} , Ni^{2+} , Ba^{2+} , Ca^{2+} , Co^{2+} , Mn^{2+} , Zn^{2+} , K^+ , Na^+ and Ag^+ is 0.5 mM. $[Cu^{2+}] = 200 \mu$ M. Sodium ascorbate at five times the concentration of ions was also added. Inset: Typical photographs for Cu^{2+} detection with the colorimetric method developed using click chemistry and peroxidase-like catalytic reaction. (from left to right: 0.5 mM Al^{3+} , Cr^{2+} , Ni^{2+} , Ba^{2+} , Ca^{2+} , Co^{2+} , Mn^{2+} , Zn^{2+} , K^+ , Na^+ , Ag^+ and 200 μ M Cu^{2+} , sodium ascorbate at five times the concentration of ions was also added). B) The time-dependent absorbance changes at 652 nm in the absence (black) or presence of 10 μ M (red) and 50 μ M (blue) Cu (I)-GSH complex (prepared from 2 mM Cu²⁺ and 20 mM glutathione).