Supplementary Information

Addition of [CH(CN)₂]⁻ and [TCNE]^{•-} to Ru^{VI}=N bearing 8-quinolinolato ligands

Chi-Fai Leung,^a Shek-Man Yiu,^a Jing Xiang,^a and Tai-Chu Lau^{a,*}

^a Department of Biology and Chemistry, City University of Hong Kong, Tat Chee

Avenue, Kowloon, Hong Kong, PR China.

* corresponding author, email: bhtclau@cityu.edu.hk

Experimental Section

Materials

The 8-hydroxyquinoline ligands were purchased from Acros. Malononitrile and tetracyanoethene were purchased from Aldrich. NaTCNE,¹ $[N^nBu_4][Ru(N)Cl_4]$ and $[N^nBu_4][Ru(N^{15})Cl_4]^2$ were prepared by literature procedures. All other chemicals were of reagent grade and were used without further purification.

Physical measurements

IR spectra were obtained from KBr discs by using a Bomen MB-120 FTIR spectrophotometer. UV/visible spectra were recorded on a Perkin-Elmer Lamda 19 spectrophotometer. ¹H NMR spectra were recorded on a Varian (300 MHz) FT NMR spectrometer. The chemical shifts (δ ppm) were reported with reference to tetramethylsilane (TMS) or residue solvent peaks.

Ru^{VI}(N)(Q)₂Cl (1a). 8-hydroxyquinoline (70 mg, 0.48 mmol) was added to a solution

of [N^{*P*}Bu₄][Ru(N)Cl₄] (120 mg, 0.24 mmol) in methanol (8 mL), and the mixture was stirred at room temperature for 15 min. 2,6-dimethylpyridine (200 µL) was then added dropwise, resulting in the immediate formation of a dark brown microcrystalline solid. After stirring for another 30 min, the dark brown crystalline solid was filtered, washed with methanol and diethyl ether. Yield (80 mg, 76%). Calc. for C₁₈H₁₂N₃O₂ClRu: C, 49.3; H, 2.8; N, 9.6 %. Found: C, 49.45; H, 2.9; N, 9.4 %. λ_{max} (CH₃CN)/ nm: 237 (*e*/mol⁻¹dm³ cm⁻¹ 14 900), 262 (19 800), 388 (2 600). v_{max} (KBr)/cm⁻¹: 1034(Ru¹⁴N)/1009(Ru¹⁵N). $\delta_{\rm H}$ (300 MHz, CD₂Cl₂): 6.72(1H, d, ³J_{HH} = 7.80, Q), 7.20(1H, d, ³J_{HH} = 8.10, Q), 7.40(1H, dd, ³J_{HH} = 8.10, ⁴J_{HH} = 5.10, Q), 7.48(3H, m, Q), 7.63(1H, d, ³J_{HH} = 7.50, Q), 7.71(1H, m, Q), 7.79(1H, dd, ³J_{HH} = 9, ⁴J_{HH} = 3.9, Q), 8.47(1H, d, ³J_{HH} = 8.7, Q), 8.61(1H, d, ³J_{HH} = 7.5, Q), 9.25(1H, d, ³J_{HH} = 3.9, Q). m/z(CH₂Cl₂): 390[M-Cl-N]⁺, 404 [M-Cl]⁺.

Ru^{VI}(N)(MeQ)₂Cl (1b). The complex was synthesized by a similar procedure to 1a, using 2-methyl-8-hydroxyquinoline (77 mg, 0.48 mmol). Yield (60 mg, 54%). Calc. for C₂₀H₁₆N₃O₂ClRu: C, 51.45; H, 3.45; N, 9.0%. Found: C, 51.6; H, 3.7; N, 8.9%. λ_{max} (CH₃CN)/nm: 237 (ε/mol⁻¹dm³ cm⁻¹ 22 300), 262 (28 600), 388 (3 900). v_{max} (KBr)/cm⁻¹: 1033(Ru¹⁴N)/1009(Ru¹⁵N). $\delta_{\rm H}$ (300 MHz, CD₃CN): 3.42(6H, s, 2 × CH₃), 6.37(1H, d, ³J_{HH} = 7.50, Q), 7.20(1H, d, ³J_{HH} = 9.00, Q), 7.28(2H, dd, ³J_{HH} = 8.40, ${}^{4}J_{HH} = 5.7$, Q), 7.43(2H, d, ${}^{3}J_{HH} = 7.50$, Q), 7.65(1H, t, ${}^{3}J_{HH} = 7.80$, Q), 7.78(1H, d, ${}^{3}J_{HH} = 8.40$, Q), 8.36(1H, d, ${}^{3}J_{HH} = 8.40$, Q), 8.46(1H, d, ${}^{3}J_{HH} = 8.1$, Q). m/z (acetone): 418[M-Cl-N]⁺, 432 [M-Cl]⁺.

Reaction of Ru^{VI}(N)Q₂Cl with NCCH₂CN

 $[C_5H_{12}N][Ru^{II}{HN=C(CN)_2}(MeQ)_2CI]$ (2). 1b (120 mg, 0.26 mmol) and NCCH₂CN (20 mg, 0.31 mmol) were dissolved in 10 mL acetone at room temperature. Piperidine (50.8 µL, 0.52 mmol) was then slowly added to the solution with stirring, resulting in the immediate formation of a red microcrystalline solid. The red solid was filtered, washed with acetone (2 mL) and then diethyl ether (10 mL). Yield (80 mg, 50%). Calc. for C₂₈H₂₉N₆O₂ClRu: C, 54.4; H, 4.7; N, 13.6%. Found: C, 54.3; H, 4.7; N, 13.5%. λ_{max} (CH₃CN)/nm: 350(ε /mol⁻¹dm³ cm⁻¹ 8 300), 440(12 200), 521(9 100). v_{max} (KBr)/cm⁻¹: 2194(CN), 3203(NH), 2956(CH), 1561. δ_{H} (300 MHz, CD₂Cl₂): 1.70(10H, s, CH₂), 2.68(6H, s, CH₃), 2.81(2H, s, NH), 6.73(1H, d, ${}^{3}J_{HH} = 8.70$, Q), $6.93(2H, dd, {}^{3}J_{HH} = 7.80, {}^{4}J_{HH} = 3.30, Q), 6.98(1H, d, {}^{3}J_{HH} = 7.50, Q), 7.19(1H, d, d)$ ${}^{3}J_{HH} = 7.50, Q$), 7.35(3H, m, Q), 7.77(1H, d, ${}^{3}J_{HH} = 8.40, Q$), 8.00(1H, d, ${}^{3}J_{HH} = 8.40, Q$) Q) 17.47(1H, s, N(H)=C). m/z(CH₃OH): 444, [M-Cl-(NHC(CN)₂)]⁻, 479 [M-(NHCC(CN)₂)]⁻, 504[M-CN-2H]⁻, 531 [M-H]⁻

Reaction of Ru^{VI}(N)Q₂Cl with NaTCNE

 $Ru^{II}O_2(L^1)$ (3). 1a (120 mg, 0.26 mmol) was suspended in methanol (10 mL) and NaTCNE (40 mg, 0.26 mmol) was added. The dark brown nitrido complex rapidly dissolved to give a green solution. The mixture was stirred for 12 h at room temperature, during this time the solution slowly turned red. The solvent was removed and the reddish brown residue was dissolved in CH₂Cl₂, filtered and loaded onto a neutral alumina column. Elution with dichloromethane/methanol (60:1) gave a red band which was dried to give a red solid. Recrystallization from dichloromethane/ diethyl ether gave a red crystalline solid. Yield (50 mg, 39%). Calc. for C₂₂H₁₇N₅O₃Ru: C, 52.8; H, 3.4; N, 14.0%. Found: C, 53.0; H, 3.5; N, 13.9%. λ_{max} (CH₃CN)/nm: 354(ε /mol⁻¹dm³ cm⁻¹ 6 400), 473(13 100). v_{max} (KBr)/cm⁻¹: 2194(CN), 1561. $\delta_{\rm H}(300 \text{ MHz}, \text{CD}_2\text{Cl}_2)$: 3.91(3H, s, CH₃O), 6.55(1H, m, Q), 6.70(1H, d, ${}^{3}J_{HH} = 8.10$, Q), 6.86(1H, dd, ${}^{3}J_{HH} = 8.10$, ${}^{4}J_{HH} = 4.80$, Q), 6.94(3H, m, Q), 7.07(1H, t, Q), 7.24(1H, dd, ${}^{3}J_{HH} = 8.70$, ${}^{5}J_{HH} = 5.40$, Q), 7.40(1H, t, ${}^{3}J_{HH} = 7.80$, Q), 7.56(1H, d, ${}^{3}J_{HH} = 4.80$, Q), 7.90(1H, d, ${}^{3}J_{HH} = 8.10$, Q), 7.98(1H, d, ${}^{3}J_{HH} = 7.80$, Q), 14.30(1H, s, N(H)=C), 16.60(1H, s, N(H)=C). m/z(CH₃OH): 501 [M]⁺, 524[M+Na]⁺

Ru^{II}Q₂(L²) (4). NaTCNE (40 mg, 0.26 mmol) was added to **1a** (120 mg, 0.26 mmol) dissolved in 1:1 acetone/MeOH (16 mL), the dark brown solution immediately turned

green, and the solution was further stirred for 12 h at room temperature to give a red solution. The solvent was removed and the brown red residue was dissolved in acetone, loaded onto a silica column and eluted with acetone/methanol (20:1). The reddish-purple band was collected, and recrystallization of the resulting solid from acetone/diethyl ether gave red single crystals suitable for X-ray crystallography. Yield (56 mg, 39%). Calc. for C₂₅H₂₂N₄O₅Ru: C, 53.7; H, 4.0; N, 10.0%. Found: C, 53.5; H, 3.75; N, 10.2%. λ_{max} (CH₃CN)/nm: 350(ε /mol⁻¹dm³ cm⁻¹ 9 300), 462(15 800), 524(14 400). $v_{max}(KBr)/cm^{-1}$: 1760(CO), 1570. $\delta_{H}(300 \text{ MHz}, \text{ CD}_2\text{Cl}_2)$: 1.27(6H, s. $C(CH_3)_2$, 4.17(3H, s, CH₃O), 6.75(1H, d, ³J_{HH} = 7.50, Q), 6.83(1H, d, ³J_{HH} = 3.90, Q), $6.87(3H, m, Q), 6.98(1H, d, {}^{3}J_{HH} = 3.90, Q), 7.06(1H, m, Q), 7.22(1H, dd, {}^{3}J_{HH} =$ $8.40, {}^{4}J_{HH} = 5.10, Q$, $7.36(1H, t, {}^{3}J_{HH} = 8.10, Q), 7.48(1H, d, {}^{3}J_{HH} = 4.20, Q), 7.89(1H, d, {}^{3}J_{HH} = 4.20, Q)$ d, ${}^{3}J_{HH} = 7.80$, Q), 8.01(1H, d, ${}^{3}J_{HH} = 8.10$, Q) 16.50(1H, s, N(H)=C). m/z(CH₃OH): $561 [M+H]^+, 583 [M+Na]^+$.

Crystal Structure Determination.

Crystals of compound **2**, **3** and **4** were obtained for X-ray diffraction analysis. Crystal data and structure refinement details are listed in Table S1. Selected bond angles and bond lengths are given in Table S2. Crystals of suitable dimensions coated with paratone-N and mounted on a nylon cryoloop were used for X-ray diffraction analysis.

X-ray diffraction data were collected on an Oxford Diffraction Gemini S Ultra 4-circle kappa diffractometer with a 92 mm diagonal Sapphire CCD detector using monochromatized Mo-K_{α} radiation ($\lambda = 0.71073$ Å) or Cu-K_{α} radiation ($\lambda = 1.54178$ Å) at 173 K or 293K. Data collection was made with 1° oscillation step of omega (ω) and the data were processed using CrysAlis³. The images were interpreted and intensities were integrated using program CrysAlis. Structures were solved and refined using full-matrix least-squares based on F^2 with program SHELXS-97⁴ and SHELXL-97⁴ within WinGX⁵. Metal and many non-hydrogen atoms were located according to direct method. The positions of other non-hydrogen atoms were found after successful refinement using program SHELXL-97. H atoms were generated by program SHELXL-97. The positions of H atoms were calculated based on riding mode with thermal parameters equal to 1.2 times or 1.5 times that of the associated C atoms and 1.2 times that of the associated N atoms, all these were participated in the calculation of final R-indices.

Compound	2	3· (0.625H₂O + 0.25CH₃CH₂OH)	4· (0.875H ₂ O)
Formula	$C_{28}H_{29}N_6O_2ClRu$	C _{22.50} H _{19.75} N ₅ O _{3.88} Ru	C ₂₅ H _{23.75} N ₄ O _{5.88} Ru
Formula weight	618.09	523.25	575.30
Crystal system	Triclinic	Tetragonal	Monoclinic
Space group	P-1	I-4	P2(1)/n
Unit cell dimensions	a = 9.1223(5)	a = 31.5680(2)	a = 15.20680(10)
	b = 10.4936(6)	b = 31.5680(2)	b = 18.9057(2)
	c = 14.8426(9)	c = 11.1516(2)	c = 17.7568(2)
a, b, c (A)	$\alpha = 79.785(5)$		$\beta = 104.0680(10)$
α , p, γ (deg)	$\beta = 86.546(5)$		
	$\gamma = 72.825(5)$		
Cell volume (Å ³)	1335.90(13)	11113.0(2)	4951.88(8)
Ζ	2	16	8
D _{calcd} (g/cm ³⁾	1.537	1.251	1.543
μ (mm ⁻¹)	0.725	4.835	5.532
F ₀₀₀	632.0	4236.0	2342.0
Temperature (K)	173(2)	173(2)	293(2)
Radiation	ΜοΚα	СиКα	СиКα
λ (Å)	0.71073	1.54178	1.54178
θ _{min, max} (°)	3.1, 25.0	4.0, 66.9	3.4, 67.00
R _{int}	0.0614	0.0349	0.0201
R _{all} , R _{obs}	0.0761, 0.0448	0.0421, 0.0350	0.0334, 0.0259
wR _{all} , wR _{obs}	0.0732, 0.0687	0.1070, 0.1043	0.0699, 0.0679

Table S1. Crystal data and structure refinement details for compound 2-4.

Flack	_	-0.017(9)	_
Measured reflections: total, unique	9441, 4543	19101, 8921	26771, 8816
Goodness-of-fit on F^2	0.906	1.086	1.050

Table S2. Selected bond lengths (Å) and angles (°) of compounds **2-4**.

2					
Ru(1) - N(3)	1.903(3)	Ru(1) - N(1)	2.145(3)		
N(3) – C(1)	1.344(5)	Ru(1) - N(2)	2.098(3)		
N(5) - C(2)	1.150(6)	Ru(1) - O(1)	2.063(2)		
N(4) – C(3)	1.149(5)	Ru(1) - O(2)	2.012(3)		
C(1) - N(3) - Ru(1)	139.1(3)	C(2) - C(1) - C(3)	116.1(4)		
N(4) - C(3) - C(1)	177.4(5)	N(5) - C(2) - C(1)	175.5(4)		
3					
Ru(1) - N(3)	2.063(4)	Ru(1) - N(1)	2.055(5)		
Ru(1) - N(4)	1.922(4)	Ru(1) - N(2)	2.037(5)		
N(3) – C(20)	1.284(7)	Ru(1) - O(1)	2.056(4)		
N(4) - C(21)	1.326(8)	Ru(1) - O(2)	2.085(3)		
N(5) – C(22)	1.149(8)	C(21) – C(22)	1.410(7)		

Ru(1) - N(3) - C(20)	114.3(4)	N(5) – C(22) – C(21)	179.7(9)			
Ru(1) - N(4) - C(21)	118.6(4)	C(20) – O(3) – C(19)	116.5(5)			
N(4)-Ru(1)-N(3)	78.5(2)					
4						
Ru(1) - N(3)	2.050(2)	O(5) – C(22)	1.381(4)			
Ru(1) - N(4)	1.947(2)	O(5) – C(23)	1.460(3)			
N(3) – C(20)	1.281(3)	Ru(1) - N(1)	2.055(2)			
N(4) – C(21)	1.325(3)	Ru(1) - N(2)	2.056(2)			
N(4) – C(23)	1.495(4)	Ru(1) - O(1)	2.035(2)			
O(4) – C(22)	1.190(3)	Ru(1) - O(2)	2.067(2)			
Ru(1) - N(3) - C(20)	115.8(2)	N(4) - C(21) - C(22)	113.1(2)			
Ru(1) - N(4) - C(21)	117.4(2)	C(21) - N(4) - C(23)	107.3(2)			
N(3) - Ru(1) - N(4)	78.0(1)	C(22) - O(5) - C(23)	110.5(2)			
O(5) - C(23) - N(4)	103.7(2)	C(20) – O(3) – C(19)	115.9(2)			
O(4) – C(22) – C(21)	133.7(3)					

Figure S1. ESI-MS obtained at 0.5 h after the dissolution of **1a** in acetonitrile at 23 0 C. Inset: isotopic pattern of peaks at m/z = 431 and 472 (top) and simulated patterns (bottom).

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Figure S2. ¹H NMR spectrum of **2** in CD₂Cl₂.

Figure S3. ESI-MS of **1a** in methanol obtained immediately after addition of NaTCNE at 0°C. Inset: isotopic patterns of peak at m/z = 566 and 502 (top) and simulated pattern (bottom).

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Figure S4. ESI-MS of reaction of **3** with piperidine in acetone after 24 h. Inset:

isotopic pattern of peaks at m/z = 560 and 582 and simulated patterns

Figure S2. UV/Vis spectrum of compounds 2-4 in acetonitrile.

References:

- 1. Ganesan, S. V. Rosokha, J. L. K. Kochi J. Am. Chem. Soc. 2003, 125, 2559-2571.
- 2. W. P. Griffith, D. Pawson, J. Chem. Soc. 1973, 1315. V.
- 3. CrysAlis, Oxford Diffraction Ltd., Version 1.171.33.46, 2009.
- 4. G. M. Sheldrick *SHELXS97* and *SHELXL97*, Program for Crystal Structure Solution and Refinements; University of Göttingen: Germany, 1997.
- 5. L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837-838.