Communication:

Supporting Information

Novel helical foldamers: Organized heterogeneous backbone folding in 1:1 α/Nucleoside-derived-β-amino acid sequences

Srivari Chandrasekhar,*^{*a*} Nayani Kiranmai,^{*a*} Marelli Udaya Kiran,^{*b*} Ambure Sharada Devi,^{*b,c*} Gangireddy Pavan Kumar Reddy,^{*a*} Mohammed Idris^{*c*} and Bharatam Jagadeesh*^{*b*}

^a Organic Division-I, Indian Institute of Chemical Technology (CSIR) Uppal Road, Tarnaka, Hyderabad-500 607 (AP), INDIA.

^b Centre for Nuclear Magnetic Resonance, Indian Institute of Chemical Technology (CSIR), Uppal Road, Tarnaka, Hyderabad-500 607 (AP), INDIA.

> ^c Centre Cellular and Molecular Biology (CSIR), Uppal Road, Tarnaka, Hyderabad-500 607 (AP), INDIA.

Supporting Figure-01: Monomer units used.

Supporting Figure-02: Oligomers that are characterized.

Boc-NDA-Ala-NDA-OMe; Boc-Phe-NDA-Ala-NDA-OMe; Boc-NDA-Ala-NDA-Phe-OMe; Boc-NDA-Ala-NDA-Phe-NDA-Val-OMe;

SYNTHESIS

Our synthetic efforts culminated in preparation of four oligomers viz., trimer 2 (Boc-NDA-Ala-NDA-OMe); tetramer 3 (Boc-Phe-NDA-Ala-NDA-OMe); tetramer 4 (Boc-NDA-Ala-NDA-Phe) and hexamer 5 (Boc-NDA-Ala-NDA-Phe-NDA-Val-OMe). Interestingly all the oligomers were synthesized with excellent purity in solution phase which is generally a tough challenge in nucleoside synthesis.

NDA was obtained from the commercially available drug, AZT (for synthesis of NDA, please refer to S. Chandrasekhar, G. P. K. Reddy, M. U. Kiran, Ch. Nagesh and B. Jagadeesh, *Tetrahedron Letters*, 2008, **49**, 2969). AZT was oxidized in CH₃CN/H₂O with BAIB and TEMPO to afford the acid which was immediately esterified to azido methyl ester. This was reduced via hydrogenation to give amino ester monomer (H₂N-NDA-OMe) **10**. The other monomer (Boc-NDA acid) **7** was obtained from **10** in two steps involving protection of the amino group as *tert*-butyl carbamate followed by mild ester hydrolysis using LiOH.

Dimer **8a** was synthesized by straight forward peptidation between NDA acid **7** and L-Alanine methyl ester **6a** using EDCI-HOBt as coupling reagent in 72 % yield. The other dimer **8b** was prepared using similar conditions by reaction between NDA acid **7** and L-Phenylalanine methyl ester **6b** with 90% yield. Dimer **8a** was treated with LiOH in THF/H₂O to afford dimer acid **9** which when coupled with H₂N-NDA-OMe **10** gave trimer **2** (Boc-NDA-Ala-NDA-OMe). The second dimer **8b** was treated with trifluoroacetic acid in CH₂Cl₂ to give **11** with free amino functionality. Finally tetramer **4** was obtained from coupling of **9** and **11** in 65 % yield. The NDA acid **7** was coupled with L-Valine methyl ester **6c** to give another dimer **8c**. Tetramer **4** was treated with LiOH to give tetramer acid **13** which was coupled with **12** using EDCI and HOBt protocol to get hexamer **5**. The required amine functionality in **12** was obtained from **8c** by treatment with TFA (Supporting scheme 1). Similarly, tetramer **3** was synthesized using the similar reaction conditions (Supporting scheme 2).

Supporting scheme 1: Reagents and conditions: (a) EDCI, HOBt, DIPEA, DMF, rt; (b) LiOH, THF/H₂O, 0°C, 3 h; (c) TFA, CH₂Cl₂,0°C, 3h.

Supporting scheme 2: Reagents and conditions: (a) EDCI, HOBt, DIPEA, DMF, rt; (b) LiOH, THF/H₂O, 0°C, 3 h; (c) TFA, CH₂Cl₂, 0°C, 3h.

NMR EXPERIMENTS

The NMR data for all the compounds in the present study were obtained on Bruker Avance-II 600 MHz NMR spectrometer equipped with cryoprobe and by using standard pulse sequences. The pulse widths and power levels are properly calibrated for all the experiments.

The samples were studied at the temperature 300K.

Concentration of the samples: ~5 mM

Solvent medium: CDCl₃ for **2** and **3**; mixture of CDCl₃+DMSO- d_6 (10 µL for **4** or 90 µL for **5**).

EXPERIMENTAL DATA & STRUCTURAL INFERENCES OF TRIMER 2

Supporting Figure-03: Concentration Dependency Studies of 2

Stacked plot of the expanded regions from the ¹H-NMR spectra (64 scans) of **2** acquired at different concentrations (ranging from 0.15 mM – 10 mM) in CDCl₃ is shown. The backbone NHs are indicated with their corresponding residue number in the oligomer and NHs in thymidine bases are denoted as NH_b .

The experimental results show complete independency of the NH chemical shifts of **2** on the variation of sample concentration, which suggest that the compound is not aggregating in the concentration range 0.15 mM - 10 mM. The structural characterization of the trimer **2** is carried out at a concentration of ~5 mM in CDCl₃. Similar information has been obtained for other peptides, as shown in the following.

	Supporting Table-01 : ¹ H-Chemical shift assignment for trimer 2 in $CDCl_3$ (concentration ~5 mM) at 300 K. (600 MHz)											
Residue	NH	C1H (α)	С2Н (β)	C3H (γ) (pro- <i>R</i>)	C3'Η (γ') (pro-S)	С4Н (δ)	H _b	Me _b	NH _b			
1	 (exchanged with residual water)	4.43 (d) $J_{\rm H1, H2}$ =2.0	4.05 (m) $J_{H1, H2}=2.0$	2.57(dd) $J_{\rm H3, H3'}$ =13.5 $J_{\rm H3, H4}$ =5.3	2.13(m) $J_{\text{H3, H3}}=13.5$ $J_{\text{H3, H4}}=10.2$	$6.53 (dd) J_{H3', H4}=10.2 J_{H3, H4}=5.3$	8.01 (s)	1.98 (s)	10.6 (s)			
2	6.66 (d) J _{NH, H1} =7.0	4.73 (dq) J _{NH, H1} =7.0 J _{H1, H2} =7.5	1.52 (d) $J_{\rm H1, H2}$ =7.5									
3	7.78 (d) J _{NH, H2} =5.0	4.57 (bs)	4.49 (dd) $J_{\rm NH, H2}=5.0$ $J_{\rm H2, H3}=6.9$	2.45 (dd) $J_{\rm H3, H3'}=13.5$ $J_{\rm H3, H4}=5.3$	2.28 (ddd) $J_{H3, H3'}=13.5$ $J_{H3, H4'}=10.2$ $J_{H2, H3'}=6.9$	$\begin{array}{c} 6.49 \ (\text{dd}) \\ J_{\text{H3', H4}} = 10.2 \\ J_{\text{H3, H4}} = 5.3 \end{array}$	8.14 (s)	1.98 (s)	11.0 (s)			
М	ultiplicity of the r	acononaca is indi	noted as multiplat	(m) doublat of (loublat (dd) doub	lat (d) singlat (s)) and br	and sing	lat (ba)			

Multiplicity of the resonances is indicated as: multiplet (m), doublet of doublet (dd), doublet (d), singlet (s), and broad singlet (bs) etc.

Supporting Figure-04: ¹H NMR spectrum of **2** in CDCl₃ (concentration ~5 mM) at 300 K. (600MHz)

Supporting Figure-05: (a) Expanded region from ROESY spectrum of trimer 2 showing the characteristic ROEs that support a ${}^{i}NH_{n}-{}^{(i-3)}CO_{\alpha}$ 11-membered hydrogen bonded turn. (b) Schematic representation of characteristic ROEs (solid curves) and hydrogen bonding for 2 (11-mr and 8-mr hydrogen bonds are shown in dotted blue and orange curves, respectively).

Supporting Table-02: DMSO-Titration: NH chemical shifts of trimer **2** observed at different volumes of DMSO- d_6 added to a 500 µL solution of **2** in CDCl₃ at 300 K.

Volume of DMSO- d_6	NH chemical shifts in (ppm).						
added (µL)	1NH	2NH	3NH				
0		6.68	7.80				
20	7.62	6.71	8.31				
50	7.76	6.92	8.50				
100	7.88	7.19	8.57				
150	7.98	7.33	8.60				
200	8.06	7.41	8.62				
250	8.11	7.45	8.63				
300	8.16	7.48	8.63				
$\Delta\delta$ over 250 µL DMSO- d_6 addition		0.8	0.8				

Supporting Figure-06: Variation of NH chemical shifts of **2** with respect to the sequential addition of DMSO- d_6 fractions (in aliquots of 50 µL) at 300 K to an initial 500 µL solution of **2** in CDCl₃. The data suggest that the 2NH and 3NH are participating in h-bonding of moderate strength.

EXPERIMENTAL DATA & STRUCTURAL INFERENCES OF TETRAMER 3

Supporting Figure-07: Concentration Dependency Studies of 3

Stacked plot of the expanded regions from the ¹H-NMR spectra (64 scans) of tetramer **3** acquired at different concentrations (ranging from 0.15 mM – 10 mM) in CDCl₃ is shown. The backbone NHs are indicated with their corresponding residue number in the oligomer and NHs in thymidine bases are denoted as NH_b .

The experimental results show complete independency of the NH chemical shifts of **3** on the variation of concentration, which suggests that the compound is not aggregating in the concentration range 0.15 mM - 10 mM. The structural characterization of the tetramer **3** is carried out at a concentration of ~5 mM in CDCl₃.

	Supporting Table-03 : ¹ H-Chemical shift assignment for tetramer 3 in CDCl ₃ (concentration ~5 mM) at 300 K. (600 MHz)												
Residue	NH	C1H (α)	С2Н (β)	C3H (γ) (pro- <i>R</i>)	C3'Η (γ') (pro- <i>S</i>)	С4Н (δ)	H _b	Me _b	NH _b				
1	5.20 (d) J _{NH, H1} =8.4	4.61 (ddd) $J_{\rm NH, H1}$ =8.4 $J_{\rm H1, H2}$ =6.4 $J_{\rm H1, H2}$ =8.7	$\begin{array}{c} 3.24 \ (\text{dd}) \ J_{\text{H1},} \\ \text{H2}=6.4 \\ J_{\text{H2}, \text{H2}'}=13.7 \\ 2.79 \ (\text{dd}) \\ J_{\text{H1}, \text{H2}'}=8.7 \\ J_{\text{H2}, \text{H2}'}=13.5 \end{array}$										
2	9.37 (d) (bs)	4.14 J _{H1, H2} =2.0	4.12 (m) J _{H1, H2} =2.0	2.58 (dd) $J_{\rm H3, H3'}=13.7$ $J_{\rm H3, H4}=4.8$	2.06 (m) J _{H3, H3} =13.7 J _{H3', H4} =9.8	6.39 (dd) $J_{H4, H3}=9.8$ $J_{H4, H3}=4.8$	8.17 (s)	1.99 (s)	10.4 (s)				
3	6.62 (d) $J_{\rm NH, H1}$ =10.3	4.78 (qd) J _{NH, H1} =10.3 J _{H1, H2} =7.2	1.53 (d) J _{H1, H2} =7.2										
4	8.18 (d) J _{NH,H2} =5.2	4.52 (bs)	$ \begin{array}{c} 4.48 (dd) \\ J_{\rm NH, H2} = 5.2 \\ J_{\rm H2, H3} = 7.0 \end{array} $	$2.39 (dd) J_{H3, H3'}=13.7 J_{H3, H4}=5.2$	2.27 (ddd) $J_{\rm H3, H3'}=13.7$ $J_{\rm H3', H4}=9.7$ $J_{\rm H2, H3'}=7.0$	$6.31 (dd) J_{H4, H3} = 9.7 J_{H4, H3} = 5.2$	8.15 (s)	1.98 (s)	10.4 (s)				

Supporting Figure-08: ¹H-NMR spectrum of tetramer **3** recorded in CDCl₃ (concentration ~5 mM) at 300 K. (600 MHz)

Supporting Figure-09: Expanded regions (a, b and c) of ROESY spectrum of tetramer **3** showing the characteristic ROEs that support 11/8-membered hydrogen bonded turn. (d) Schematic representation of observed ROEs (solid curves) and hydrogen bonding for **3** (11-mr and 8-mr hydrogen bonds are shown in dotted blue and orange curves, respectively).

at different volumes of DMSO- d_6 added to a 500 µL solution of 3 in CDCl ₃ at 300 K.									
Volume of DMSO- <i>d</i> ₆		NH chemical shifts in (ppm).							
added (µL)	1NH	2NH	3NH	4NH					
0	5.20	9.37	6.62	8.18					
20	5.61	8.96	7.25	8.33					
50	5.92	8.60	7.77	8.47					
100	6.09	8.62	8.01	8.55					
150	6.21	8.67	8.13	8.57					
200	6.31	8.68	8.19	8.59					
250	6.40	8.71	8.24	8.61					
Δδ over 250 μL DMSO- d_6 addition	1.2	-0.7	1.62	0.43					

Supporting Table-04: DMSO-Titration: NH chemical shifts of tetramer **3** observed at different volumes of DMSO- d_6 added to a 500 µL solution of **3** in CDCl₃ at 300 K.

Supporting Figure-10: Variation of NH chemical shifts of **3** with respect to the sequential addition of DMSO- d_6 fractions (in aliquots of 50 µL) at 300 K to an initial 500 µL solution of **3** in CDCl₃.

A $\Delta\delta$ shift of 0.43 ppm for 4NH indicates very strong hydrogen bonding for it. The $\Delta\delta$ of 1.62 ppm for 3NH is against its participation in h-bonding. However, the presence of 3NH–4NH and 3NH–2H2 ROEs (Supporting Figure-09) from 3NH support its non-exchangeable behaviour unlike 2NH and further indicate the possibility of an 8mr h-bonded turn involving 3NH. Such contradictions can be expected when the conformation of the molecule is affected during the coarse of titration. In support of this, analysis of the data obtained for **3** in pure DMSO and in the presence of large % of DMSO have not shown any long range ROEs, which can be a result of conformation alteration into an extended fold.

EXPERIMENTAL DATA & STRUCTURAL INFERENCES OF TETRAMER 4

Supporting Figure-11: Concentration Dependency Studies of 4

Stacked plot of the expanded regions from the ¹H-NMR spectra (64 scans) of tetramer **4** acquired at different concentrations (ranging from 0.15 mM – 10 mM) in (500 μ l CDCl₃ + 10 μ L DMSO-*d*₆) is shown. The backbone NHs are indicated with their corresponding residue number in the oligomer and NHs in thymidine bases are denoted as NH_b.

The experimental results show complete independency of the NH chemical shifts of **4** on the variation of concentration, which suggests that the compound is not aggregating in the concentration range 0.15 mM – 10 mM. The structural characterization of the tetramer **4** is carried out at a concentration of ~5 mM in (500 μ l CDCl₃ + 10 μ L DMSO- d_6).

	Supporting Table-05 : Chemical shift assignment for 4 in $(500 \ \mu l \ \text{CDCl}_3 + 10 \ \mu L \ \text{DMSO-}d_6)$ (concentration ~5 mM) at 300 K.												
	(600 MHz)												
Residue	NH	C1H (α)	С2Н (β)	C3H (γ) (pro- <i>R</i>)	C3' (Hץ') (pro-S)	С4Η (δ)	H _b	Me _b	NH _b				
1	7.62 (d) J _{NH, H2} =7.0	4.44 (d) <i>J</i> _{H1, H2} =5.0	4.09 (m) $J_{\rm NH, H2}$ =7.0 $J_{\rm H1, H2}$ =5.0	$2.52 (dd) J_{H3, H3'}=13.7 J_{H3, H4}=6.0$	2.19 (m) $J_{\rm H3, H3'}=13.7$ $J_{\rm H3', H4}=8.7$	6.50 (dd) J _{H4, H3} =8.7 J _{H4, H3} =6.0	7.95 (s)	1.95 (s)	10.4 (s)				
2	7.15 (d) J _{NH, H1} =8.1	4.64 (qd) <i>J</i> _{NH, H1} =8.1 <i>J</i> _{H1, H2} =5.1	1.50 (d) J _{H1, H2} =5.1										
3	8.13 (d) J _{NH, H2} =3.9	4.44 (bs)	4.40 (dd) $J_{\rm NH, H2}=3.9$ $J_{\rm H2, H3}=7.0$	$2.45 (dd) J_{H3, H3'}=13.7 J_{H3, H4}=5.1$	2.10 (ddd) $J_{\rm H3, H3'}=13.7$ $J_{\rm H3', H4}=9.7$ $J_{\rm H2, H3'}=7.0$	6.38 (dd) $J_{H4, H3}=9.7$ $J_{H4, H3}=5.1$	8.17 (s)	1.94 (s)	10.4 (s)				
4	7.44 (d) J _{NH, H1} =8.2	4.81 (ddd) $J_{\rm NH, H1}$ =8.2 $J_{\rm H1, H2}$ =8.0 $J_{\rm H1, H2}$ =5.1	$\begin{array}{c} 3.26 \text{ (dd)} \\ J_{\text{H1, H2}}=5.1 \\ J_{\text{H2, H2'}}=14.0 \\ 3.07 \text{ (dd)} \\ J_{\text{H1, H2'}}=8.0 \\ J_{\text{H2, H2'}}=14.0 \end{array}$										

Supporting Figure-12: (a) ¹H-NMR spectrum of tetramer **4** recorded in (500 μ l CDCl₃ + 10 μ L DMSO-*d*₆) (concentration ~5 mM) at 300 K.

Supporting Figure-13: Expanded regions (a to c) of ROESY spectrum of **4** showing the characteristic ROEs that support 11/8-membered hydrogen bonded helix. (d) Schematic representation of all the observed ROEs (solid curves) and hydrogen bonding for **4** (11-mr and 8-mr hydrogen bonds are shown in dotted blue and orange curves, respectively).

Supporting Table-06: DMSO-Titration: NH chemical shifts of tetramer 4 observed									
at different volumes of DMSO- d_6 added to a 500 µL solution of 4 in CDCl ₃ at 300 K.									
Volume of DMSO- <i>d</i> ₆	NH chemical shifts in (ppm).								
added (µL)	1NH	2NH	3NH	4NH					
0		7.34	8.08	7.48					
20	6.93	7.60	8.23	7.64					
50	6.80	7.67	8.33	7.73					
100	6.86	7.77	8.43	7.80					
150	7.11	7.92	8.52	7.92					
200	7.23	8.04	8.54	7.96					
250	7.32	8.14	8.56	8.01					
300	7.37	8.20	8.58	8.06					
$\Delta\delta$ over 250 µL DMSO- d_6 addition		0.92	0.50	0.60					

Supporting Figure-14: Variation of NH chemical shifts of **4** with respect to the sequential addition of DMSO- d_6 fractions (in aliquots of 50 µL) at 300 K to an initial 500 µL solution of **4** in CDCl₃. The $\Delta\delta$ shifts of <1 ppm for all the NH's except for the 1NH indicates their participation in h-bonding. However, 2NH is involved in 8mr h-bond of moderate strength in 11/8 bifurcated h-bonding compared to the 4NH, which is participating in a stronger h-bonding, in the isolated 8mr ring at the C-terminus.

EXPERIMENTAL DATA & STRUCTURAL INFERENCES OF HEXAMER 5

Supporting Table-07 : Chemical shift assignment for hexamer 5 in $(500 \ \mu L \ CDCl_3 + 90 \ \mu L \ DMSO-d_6)$ (concentration ~5 mM) at												
300 K. (600 MHz)												
Residue	NH	C1H (α)	С2Н (β)	C3H (γ) (pro- <i>R</i>)	C3'Η (γ') (pro-S)	C4H (δ)	H_b	Me _b	NH_b			
1	7.15 (d) J _{NH, H2} =7.0	4.48 (d) J _{H1, H2} =5.0	$\begin{array}{c} 4.31 \ (\text{dt}) \\ J_{\text{NH, H2}} = 7.0 \\ J_{\text{H1, H2}} = 5.0 \\ J_{\text{H2, H3}} = 7.0 \end{array}$	2.36 (dd) $J_{\rm H3, H3'}=13.7$ $J_{\rm H4, H3}=6.6$	$\begin{array}{c} 2.31 \text{ (ddd)} \\ J_{\text{H3, H3}}=13.7 \\ J_{\text{H4, H3}}=6.6 \\ J_{\text{H2, H3}}=7.0 \end{array}$	$\begin{array}{c} 6.33 \ (t) \\ J_{\rm H4, \ H3} = 6.6 \\ J_{\rm H4, \ H3'} = 6.6 \end{array}$	7.99 (s)	1.85 (s)	11.9 (s)			
2	8.04 (d) J _{NH, H1} =6.8	4.46 (qd) <i>J</i> _{NH, H1} =6.8 <i>J</i> _{H1, H2} =7.0	1.35 (d) J _{H1, H2} =7.0									
3	8.69 (d) J _{NH, H2} =6.6	4.28 (d) $J_{\rm H1, H2}$ =5.0	4.49 (ddd) $J_{\rm NH, H2}$ =6.6 $J_{\rm H1, H2}$ =5.0 $J_{\rm H2, H3}$ =7.0	2.45 (dd) $J_{\rm H3, H3'}=13.7$ $J_{\rm H4, H3}=6.6$	2.28 (ddd) $J_{\rm H3, H3}$ =13.7 $J_{\rm H4, H3}$ =6.6 $J_{\rm H2, H3}$ =7.0	6.37 (t) J _{H4, H3} =6.6 J _{H4, H3} =6.6	7.94 (s)	1.86 (s)	10.9 (s)			
4	8.10 (d) J _{NH,H1} =7.5	4.69 (ddd) $J_{\rm NH,H2}$ =7.5 $J_{\rm H1, H2}$ =5.0 $J_{\rm H1, H2}$ =8.0	$\begin{array}{c} 3.24 \ (dd) \\ J_{\rm H1, \ H2} = 5.0 \\ J_{\rm H2, \ H2'} = 14.2 \\ 3.01 \ (dd) \\ J_{\rm H1, \ H2'} = 8.0 \\ J_{\rm H2, \ H2'} = 14.2 \end{array}$									
5	8.61 (d) $J_{\rm NH, H2}$ = (broad)	4.49 overlap	4.49 (m) J _{H2, H3} =7.0	2.52 (dd) $J_{\rm H3, H3'}=13.7$ $J_{\rm H3, H4}=5.7$	2.12 (ddd) $J_{\rm H3, H3'}=13.7$ $J_{\rm H3', H4}=8.8$ $J_{\rm H2, H3}=7.0$	$\begin{array}{c} 6.41 \ (\mathrm{dd}) \\ J_{\mathrm{H4, H3}'} = 8.8 \\ J_{\mathrm{H4, H3}} = 5.7 \end{array}$	8.22 (s)	1.90 (s)	10.9 (s)			
6	7.98 (d) $J_{\rm NH, H1}$ =8.6	4.46 (dd) J _{NH, H1} =8.6	$\begin{array}{c} \hline 2.24 \\ (m) \\ J_{H2, H3} = 7.0 \\ J_{H2, H3'} = 7.0 \end{array}$	$\begin{array}{c} \hline 0.98 (d) \\ J_{\rm H2, H3} = 7.0 \\ 0.97 (d) \\ J_{\rm H2, H3} = 7.0 \end{array}$								

Supporting Figure-15: ¹H NMR spectrum of 5 in (500 µL CDCl₃ + 90 µL DMSO-*d*₆) (concentration ~5 mM) at 300 K. (600MHz)

Supporting Figure-16: Expanded regions (a and b) from ROESY spectrum of **5** showing the characteristic ROEs that support 11/8 hydrogen-bonded helix. (c) Schematic representation of the characteristic ROEs (solid curves) and hydrogen bonding for **5** (11-mr and 8-mr hydrogen bonds are shown in dotted blue and orange curves, respectively), which depict an overall 11/8 helical fold.

MOLECULAR DYNAMICS

The cvff force field with default parameters was used throughout the simulations on insight II discover program (on Silicon Graphics-Fuel). Minimization's were done first with steepest decent, followed by conjugate gradient methods for a maximum of 100000 iterations each or RMS deviation of 0.001 kcal/mol, whichever was earlier. The energy-minimized structures were then subjected to MD simulations. A number of inter atomic distance and torsion angle constraints obtained from NMR data were used as restraints in the minimization as well as MD runs. The molecules were initially equilibrated for 50 ps and subsequently subjected to a 1000 ps dynamics with a step size of 1 fs, sampling the trajectory at equal intervals of 20 ps. In the trajectory, 100 samples were generated and were again energy minimized with above protocol. Among them 15 lower energy structures are aligned and shown below.

Minimum energy structures for compounds 2–5, have all converged to structures displaying 11/8 helical fold. In these helical folds, the 11mr h-bonding distance is found to be shorter relative to the corresponding 8mr h-bond and the corresponding \angle NHO angles are found to be more linear for 11mr h-bonds than 8mr h-bonds. However, dynamics pathway has shown the presence of 8mr h-bonds as depicted in the supporting figures 20 and 21. The data show the variation of h-bonding distances and \angle NHO angles during the dynamics trajectory for the observed 11mr and 8mr h-bonds.

Molecular Dynamics Figures

Supporting Figure-17: Overlay of minimum energy structures obtained from Molecular Dynamics studies showing (a) side view for trimer 2; (b) and (c) side views for tetramer 3; and (d) side view for tetramer 4. (11-mr and 8-mr hydrogen bonds are shown in dotted blue and orange lines, respectively).

Supporting Figure-18: Overlay of minimum energy structures obtained from Molecular Dynamics studies showing side view for hexamer **5** (11-mr and 8-mr hydrogen bonds are shown in dotted blue and orange lines, respectively). Thymidine bases of NDA residues and side-chains of L-amino acids are removed for a better view.

Supporting Figure-19: Overlay of minimum energy structures obtained from Molecular Dynamics studies showing the top view along the helical axis ($C \rightarrow N$) for (a) tetramer 3; (b) tetramer 4 and (c) hexamer 5. A regular positioning of the nucleobases (at ~90° angular distance of each consecutive base from the previous one) around the helical axis can be noticed.

Supporting Figure-20: MD Trajectory Diagrams for compounds 2–5 with respect to the hydrogen bonding distances in the possible bifurcated 11-mr and 8-mr h-bondings (hb). It can be easily seen in 4 and 5 that the 11-mr hb and C-terminal 8-mr hb have shorter bond lengths compared to the 8-mr hb in 11/8 bifurcated bonds.

Supporting Figure-21: MD Trajectory Diagrams for compounds 2–5 with respect to the hydrogen bonding angles (\angle NHO) measured for the possible 11-mr and 8-mr h-bonds. It can be seen that \angle NHO angles for 11-mr hb are relatively linear than those of 8-mr hb in bifurcated 11/8-mr hb rings.

DFT CALCULATIONS

Supporting Figure-22: Minimum energy structures obtained from DFT calculations on (a) trimer **2** and (b) tetramer **3** show the formation of bifurcated 11/8 bifurcated h-bonded turns (11-mr and 8-mr hydrogen bonds are shown in dotted blue and orange lines, respectively). It is evident from these studies that the 8-mr h-bond distances in 11/8 bifurcated h-bonds are relatively longer than the corresponding 11-mr h-bond distances. The conformations are consistent with the ROE based structures.

Reference 18 cited in the manuscript: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, *Gaussian, Inc., Wallingford CT, 2004*.

Supporting Table-08: Comparison of the least five minimum energy structures obtained for **2** from DFT calculations.

Structure	RMSD (Å) (with protection	Zero point	Hydrogen bond distances (Å)			
Structure	thymidine bases removed)	(kcal.mol ⁻¹)	11 hb (3NH)	8 hb (2NH)		
Higher energy structure IV	0.70	4.1	2.3	2.7		
Higher energy structure III	0.77	2.3	2.2	2.5		
Higher energy structure II	0.66	1.4	2.2	2.6		
Higher energy structure I	0.60	0.6	2.3	2.5		
Stationary point	0.00	0.0	2.2	2.4		

Supporting Table-09: Comparison of the least six minimum energy structures obtained for **3** from DFT calculations.

Structure	RMSD (Å) (with protection	Zero point	Hydrogen bond distances (Å)			
Structure	thymidine bases removed)	(kcal.mol ⁻¹)	11 hb (4NH)	8 hb (3NH)		
Higher energy structure V	1.95	3.3	2.3	2.6		
Higher energy structure IV	1.93	2.4	2.3	2.7		
Higher energy structure III	1.62	1.2	2.1	2.9		
Higher energy structure II	0.13	0.6	2.3	2.9		
Higher energy structure I	0.08	0.2	2.4	2.9		
Stationary point	0.00	0.0	2.4	2.8		

ATOMIC COORDINATE FILES

Below given are the atomic coordinates (in .pdb format) of one of the minimum energy structures obtained for compounds 2–4 in restrained molecular dynamics studies.

Atomic coordinates for trimer 2

ATOM	1	C1	FRAG	1	1.464	3.606	1.638	0.00	0.00	С
ATOM	2	C2	FRAG	1	1.102	2.131	1.844	0.00	0.00	С
ATOM	3	C3	FRAG	1	0.611	2.097	3.320	0.00	0.00	С
ATOM	4	04	FRAG	1	0.629	3.451	3.813	0.00	0.00	0
ATOM	5	C5	FRAG	1	0.611	4.331	2.685	0.00	0.00	С
ATOM	6	NG	FRAG	1	1.103	5.692	3.050	0.00	0.00	Ν
ATOM	7	С7	FRAG	1	0.371	6.823	2.711	0.00	0.00	С
ATOM	8	N8	FRAG	1	0.823	8.067	3.037	0.00	0.00	Ν
ATOM	9	С9	FRAG	1	1.982	8.314	3.709	0.00	0.00	С
ATOM	10	C10	FRAG	1	2.833	7.080	4.140	0.00	0.00	С
ATOM	11	C11	FRAG	1	2.382	5.845	3.801	0.00	0.00	С
ATOM	12	012	FRAG	1	-0.703	6.768	2.111	0.00	0.00	0
ATOM	13	013	FRAG	1	2.315	9.474	3.952	0.00	0.00	0
ATOM	14	C14	FRAG	1	4.143	7.272	4.876	0.00	0.00	С
ATOM	15	N15	FRAG	1	0.040	1.715	0.893	0.00	0.00	Ν
ATOM	16	C16	FRAG	1	1.436	1.170	4.225	0.00	0.00	С
ATOM	17	017	FRAG	1	2.701	1.689	4.482	0.00	0.00	0
ATOM	18	C18	FRAG	1	3.590	0.918	5.319	0.00	0.00	С
ATOM	19	019	FRAG	1	0.993	0.098	4.648	0.00	0.00	0
ATOM	20	Hl	FRAG	1	-0.779	2.298	0.655	1.00	0.00	Н
ATOM	21	H2	FRAG	1	1.295	3.979	0.612	0.00	0.00	Н
ATOM	22	HЗ	FRAG	1	2.542	3.747	1.846	0.00	0.00	Н
ATOM	23	H4	FRAG	1	2.018	1.524	1.686	0.00	0.00	Н
ATOM	24	H5	FRAG	1	-0.445	1.765	3.371	0.00	0.00	Н
ATOM	25	НG	FRAG	1	-0.434	4.350	2.310	0.00	0.00	Н
ATOM	26	H7	FRAG	1	0.251	8.870	2.760	0.00	0.00	Н
ATOM	27	H8	FRAG	1	2.950	4.952	4.073	0.00	0.00	Н
ATOM	28	Н9	FRAG	1	4.983	7.390	4.167	0.00	0.00	Н
ATOM	29	0H1	FRAG	1	4.126	8.175	5.515	0.00	0.00	Н
ATOM	30	1H1	FRAG	1	4.386	6.420	5.538	0.00	0.00	Н
ATOM	31	2H1	FRAG	1	3.168	0.765	6.330	0.00	0.00	Н
ATOM	32	3H1	FRAG	1	4.554	1.444	5.439	0.00	0.00	Н
ATOM	33	4H1	FRAG	1	3.807	-0.074	4.879	0.00	0.00	Н
ATOM	34	C1	FRAG	1C	-4.634	4.422	1.866	0.00	0.00	С
ATOM	35	C2	FRAG	1C	-3.408	4.049	1.024	0.00	0.00	С

ATOM	36	C3	FRAG	1C	-3.950	2.892	0.132	0.00	0.00	С
ATOM	37	04	FRAG	1C	-5.356	2.748	0.401	0.00	0.00	0
ATOM	38	C5	FRAG	1C	-5.817	3.960	1.006	0.00	0.00	С
ATOM	39	NG	FRAG	1C	-7.077	3.767	1.782	0.00	0.00	N
ATOM	40	С7	FRAG	1C	-8.037	4.771	1.816	0.00	0.00	С
ATOM	41	N8	FRAG	1C	-9.187	4.608	2.531	0.00	0.00	N
ATOM	42	С9	FRAG	1C	-9.492	3.496	3.257	0.00	0.00	С
ATOM	43	C10	FRAG	1C	-8.448	2.337	3.259	0.00	0.00	С
ATOM	44	C11	FRAG	1C	-7.302	2.509	2.551	0.00	0.00	С
ATOM	45	012	FRAG	1C	-7.900	5.839	1.217	0.00	0.00	0
ATOM	46	013	FRAG	1C	-10.554	3.441	3.876	0.00	0.00	0
ATOM	47	C14	FRAG	1C	-8.698	1.083	4.070	0.00	0.00	С
ATOM	48	N15	FRAG	1C	-2.933	5.232	0.259	0.00	0.00	N
ATOM	49	C16	FRAG	1C	-3.229	1.553	0.369	0.00	0.00	С
ATOM	50	019	FRAG	1C	-3.374	0.946	1.433	0.00	0.00	0
ATOM	51	C20	FRAG	1C	-1.801	5.229	-0.450	0.00	0.00	С
ATOM	52	021	FRAG	1C	-1.601	6.478	-1.034	0.00	0.00	0
ATOM	53	C22	FRAG	1C	-0.475	6.806	-1.913	0.00	0.00	С
ATOM	54	C23	FRAG	1C	-0.699	8.275	-2.324	0.00	0.00	С
ATOM	55	C24	FRAG	1C	-0.471	5.940	-3.196	0.00	0.00	С
ATOM	56	C25	FRAG	1C	0.882	6.716	-1.175	0.00	0.00	С
ATOM	57	026	FRAG	1C	-1.057	4.251	-0.572	0.00	0.00	0
ATOM	58	H1	FRAG	1C	-4.700	5.493	2.141	0.00	0.00	Н
ATOM	59	H2	FRAG	1C	-4.605	3.857	2.818	0.00	0.00	Н
ATOM	60	ΗЗ	FRAG	1C	-2.598	3.712	1.703	0.00	0.00	Н
ATOM	61	H4	FRAG	1C	-3.850	3.179	-0.929	0.00	0.00	Н
ATOM	62	Н5	FRAG	1C	-5.962	4.680	0.175	0.00	0.00	Н
ATOM	63	НG	FRAG	1C	-9.864	5.377	2.526	0.00	0.00	Н
ATOM	64	H7	FRAG	1C	-6.536	1.731	2.538	0.00	0.00	Н
ATOM	65	Н8	FRAG	1C	-8.204	0.192	3.638	0.00	0.00	Н
ATOM	66	Н9	FRAG	1C	-8.324	1.198	5.104	0.00	0.00	Н
ATOM	67	H10	FRAG	1C	-9.776	0.846	4.137	0.00	0.00	Н
ATOM	68	H11	FRAG	1C	-3.423	6.132	0.276	0.00	0.00	Н
ATOM	69	2H1	FRAG	1C	-1.663	8.410	-2.849	0.00	0.00	Н
ATOM	70	3H1	FRAG	1C	0.093	8.652	-2.998	0.00	0.00	Н
ATOM	71	4H1	FRAG	1C	-0.723	8.946	-1.444	0.00	0.00	Н
ATOM	72	5H1	FRAG	1C	-1.442	5.987	-3.723	0.00	0.00	Н
ATOM	73	6H1	FRAG	1C	0.308	6.259	-3.914	0.00	0.00	Н
ATOM	74	7H1	FRAG	1C	-0.281	4.874	-2.974	0.00	0.00	Н
ATOM	75	8H1	FRAG	1C	1.124	5.679	-0.888	0.00	0.00	Н
ATOM	76	9H1	FRAG	1C	0.881	7.314	-0.245	0.00	0.00	Н
ATOM	77	H20	FRAG	1C	1.722	7.077	-1.797	0.00	0.00	Н

ATOM	78	Ν	ALA	1B	-2.394	1.150	-0.603	1.00	0.00	Ν
ATOM	79	CA	ALA	1B	-1.373	0.086	-0.384	1.00	0.00	С
ATOM	80	С	ALA	1B	-0.108	0.450	0.463	1.00	0.00	С
ATOM	81	0	ALA	1B	0.700	-0.438	0.752	1.00	0.00	0
ATOM	82	СВ	ALA	1B	-0.982	-0.466	-1.769	1.00	0.00	С
ATOM	83	Н	ALA	1B	-2.363	1.765	-1.423	1.00	0.00	Η
ATOM	84	HA	ALA	1B	-1.856	-0.728	0.178	1.00	0.00	Η
ATOM	85	2HB	ALA	1B	-0.472	0.293	-2.392	1.00	0.00	Η
ATOM	86	3HB	ALA	1B	-0.295	-1.328	-1.682	1.00	0.00	Η
ATOM	87	1HB	ALA	1B	-1.861	-0.825	-2.337	1.00	0.00	Η
END										

Atomic coordinates for tetramer 3

ATOM	1	C1	FRAG	1	-3.626	2.035	0.074	0.00	0.00	С
ATOM	2	C2	FRAG	1	-4.798	2.053	1.067	0.00	0.00	С
ATOM	3	C3	FRAG	1	-4.283	1.129	2.209	0.00	0.00	С
ATOM	4	04	FRAG	1	-2.875	0.889	1.988	0.00	0.00	0
ATOM	5	C5	FRAG	1	-2.398	1.764	0.958	0.00	0.00	С
ATOM	6	N6	FRAG	1	-1.233	1.173	0.237	0.00	0.00	Ν
ATOM	7	С7	FRAG	1	-0.049	1.890	0.104	0.00	0.00	С
ATOM	8	N8	FRAG	1	1.013	1.357	-0.562	0.00	0.00	Ν
ATOM	9	С9	FRAG	1	1.026	0.120	-1.131	0.00	0.00	С
ATOM	10	C10	FRAG	1	-0.264	-0.745	-0.982	0.00	0.00	С
ATOM	11	C11	FRAG	1	-1.323	-0.204	-0.327	0.00	0.00	С
ATOM	12	012	FRAG	1	0.105	3.019	0.571	0.00	0.00	0
ATOM	13	013	FRAG	1	2.029	-0.268	-1.729	0.00	0.00	0
ATOM	14	C14	FRAG	1	-0.331	-2.128	-1.595	0.00	0.00	С
ATOM	15	N15	FRAG	1	-5.057	3.443	1.519	0.00	0.00	Ν
ATOM	16	C16	FRAG	1	-5.040	-0.207	2.300	0.00	0.00	С
ATOM	17	017	FRAG	1	-4.736	-1.050	1.235	0.00	0.00	0
ATOM	18	C18	FRAG	1	-5.373	-2.345	1.194	0.00	0.00	С
ATOM	19	019	FRAG	1	-5.821	-0.460	3.222	0.00	0.00	0
ATOM	20	Hl	FRAG	1	-4.338	4.169	1.588	1.00	0.00	Н
ATOM	21	H2	FRAG	1	-3.521	2.956	-0.530	0.00	0.00	Н
ATOM	22	HЗ	FRAG	1	-3.782	1.209	-0.646	0.00	0.00	Н
ATOM	23	H4	FRAG	1	-5.705	1.655	0.569	0.00	0.00	Н
ATOM	24	Н5	FRAG	1	-4.383	1.629	3.193	0.00	0.00	Н
ATOM	25	НG	FRAG	1	-2.117	2.715	1.452	0.00	0.00	Н
ATOM	26	H7	FRAG	1	1.859	1.930	-0.643	0.00	0.00	Н
ATOM	27	Н8	FRAG	1	-2.249	-0.769	-0.207	0.00	0.00	Н
ATOM	28	Н9	FRAG	1	0.658	-2.621	-1.605	0.00	0.00	Н
ATOM	29	0H1	FRAG	1	-1.016	-2.802	-1.046	0.00	0.00	Н

ATOM	30	1H1	FRAG	1	-0.684	-2.082	-2.642	0.00	0.00	Η
ATOM	31	2H1	FRAG	1	-5.041	-2.906	0.302	0.00	0.00	Η
ATOM	32	3H1	FRAG	1	-6.475	-2.256	1.139	0.00	0.00	Η
ATOM	33	4H1	FRAG	1	-5.117	-2.954	2.082	0.00	0.00	Η
ATOM	34	Ν	ALA	1D	-4.951	5.976	3.010	1.00	0.00	Ν
ATOM	35	CA	ALA	1D	-6.239	5.294	2.686	1.00	0.00	С
ATOM	36	С	ALA	1D	-6.179	3.829	2.141	1.00	0.00	С
ATOM	37	0	ALA	1D	-7.140	3.073	2.304	1.00	0.00	0
ATOM	38	СВ	ALA	1D	-7.027	6.209	1.730	1.00	0.00	С
ATOM	39	Н	ALA	1D	-4.517	6.647	2.366	1.00	0.00	Η
ATOM	40	HA	ALA	1D	-6.810	5.222	3.621	1.00	0.00	Η
ATOM	41	2HB	ALA	1D	-8.037	5.807	1.525	1.00	0.00	Η
ATOM	42	ЗНВ	ALA	1D	-7.172	7.222	2.151	1.00	0.00	Η
ATOM	43	1HB	ALA	1D	-6.520	6.327	0.753	1.00	0.00	Η
ATOM	44	Ν	ALA	1C	-0.364	5.690	-1.105	1.00	0.00	Ν
ATOM	45	CA	ALA	1C	-0.890	6.644	-0.094	1.00	0.00	С
ATOM	46	CN1	ALA	1C	0.914	5.663	-1.492	1.00	0.00	С
ATOM	47	ON1	ALA	1C	1.780	6.454	-1.106	1.00	0.00	0
ATOM	48	ON13	ALA	1C	1.118	4.615	-2.388	1.00	0.00	0
ATOM	49	CN13	ALA	1C	2.402	4.331	-3.037	1.00	0.00	С
ATOM	50	C4	ALA	1C	3.505	3.966	-2.013	1.00	0.00	С
ATOM	51	C5	ALA	1C	2.144	3.098	-3.927	1.00	0.00	С
ATOM	52	C6	ALA	1C	2.855	5.496	-3.950	1.00	0.00	С
ATOM	53	С	ALA	1C	-1.599	5.829	1.026	1.00	0.00	С
ATOM	54	0	ALA	1C	-2.645	5.218	0.785	1.00	0.00	0
ATOM	55	СВ	ALA	1C	-1.831	7.669	-0.793	1.00	0.00	С
ATOM	56	C1	ALA	1C	-2.455	8.726	0.140	1.00	0.00	С
ATOM	57	C2	ALA	1C	-1.709	9.831	0.564	1.00	0.00	С
ATOM	58	C3	ALA	1C	-2.260	10.750	1.455	1.00	0.00	С
ATOM	59	C7	ALA	1C	-3.558	10.571	1.927	1.00	0.00	С
ATOM	60	C8	ALA	1C	-4.309	9.477	1.507	1.00	0.00	С
ATOM	61	С9	ALA	1C	-3.762	8.559	0.615	1.00	0.00	С
ATOM	62	1H4	ALA	1C	4.443	3.646	-2.505	1.00	0.00	Η
ATOM	63	2H4	ALA	1C	3.764	4.821	-1.363	1.00	0.00	Η
ATOM	64	3H4	ALA	1C	3.189	3.144	-1.346	1.00	0.00	Η
ATOM	65	1H5	ALA	1C	3.048	2.778	-4.481	1.00	0.00	Η
ATOM	66	2H5	ALA	1C	1.805	2.228	-3.334	1.00	0.00	Η
ATOM	67	3H5	ALA	1C	1.356	3.292	-4.677	1.00	0.00	Η
ATOM	68	1H6	ALA	1C	3.765	5.248	-4.527	1.00	0.00	Η
ATOM	69	2H6	ALA	1C	2.069	5.772	-4.678	1.00	0.00	Η
ATOM	70	3H6	ALA	1C	3.085	6.409	-3.370	1.00	0.00	Η
ATOM	71	Н	ALA	1C	-0.944	4.944	-1.504	1.00	0.00	Η

Supplementary Material (ESI) for Chemical Communication
This journal is (c) The Royal Society of Chemistry 2010

ATOM	72	HA	ALA	1C	-0.058	7.229	0.353	1.00	0.00	Н
ATOM	73	1HB	ALA	1C	-2.632	7.131	-1.339	1.00	0.00	Н
ATOM	74	2HB	ALA	1C	-1.269	8.192	-1.592	1.00	0.00	Н
ATOM	75	H2	ALA	1C	-0.696	9.974	0.215	1.00	0.00	Н
ATOM	76	HЗ	ALA	1C	-1.678	11.599	1.784	1.00	0.00	Н
ATOM	77	H7	ALA	1C	-3.982	11.282	2.621	1.00	0.00	Н
ATOM	78	H8	ALA	1C	-5.314	9.337	1.878	1.00	0.00	Н
ATOM	79	Н9	ALA	1C	-4.351	7.706	0.309	1.00	0.00	Н
ATOM	80	C1	FRAG	1B	-0.697	5.021	4.568	0.00	0.00	С
ATOM	81	C2	FRAG	1B	-1.709	5.275	3.443	0.00	0.00	С
ATOM	82	C3	FRAG	1B	-2.762	6.220	4.096	0.00	0.00	С
ATOM	83	04	FRAG	1B	-2.341	6.453	5.455	0.00	0.00	0
ATOM	84	C5	FRAG	1B	-0.941	6.154	5.572	0.00	0.00	С
ATOM	85	N6	FRAG	1B	-0.561	5.793	6.971	0.00	0.00	Ν
ATOM	86	C7	FRAG	1B	0.677	6.167	7.479	0.00	0.00	С
ATOM	87	N8	FRAG	1B	1.037	5.831	8.750	0.00	0.00	Ν
ATOM	88	С9	FRAG	1B	0.255	5.120	9.610	0.00	0.00	С
ATOM	89	C10	FRAG	1B	-1.146	4.670	9.092	0.00	0.00	С
ATOM	90	C11	FRAG	1B	-1.495	5.002	7.823	0.00	0.00	С
ATOM	91	012	FRAG	1B	1.500	6.805	6.818	0.00	0.00	0
ATOM	92	013	FRAG	1B	0.666	4.859	10.740	0.00	0.00	0
ATOM	93	C14	FRAG	1B	-2.060	3.846	9.976	0.00	0.00	С
ATOM	94	N15	FRAG	1B	-1.056	5.881	2.255	0.00	0.00	Ν
ATOM	95	C16	FRAG	1B	-4.186	5.626	4.058	0.00	0.00	С
ATOM	96	019	FRAG	1B	-4.552	4.821	4.919	0.00	0.00	0
ATOM	97	H1	FRAG	1B	-0.181	6.411	2.321	1.00	0.00	Н
ATOM	98	H2	FRAG	1B	0.358	4.973	4.238	0.00	0.00	Н
ATOM	99	HЗ	FRAG	1B	-0.919	4.039	5.030	0.00	0.00	Н
ATOM	100	H4	FRAG	1B	-2.149	4.294	3.165	0.00	0.00	Н
ATOM	101	Н5	FRAG	1B	-2.768	7.212	3.597	0.00	0.00	Н
ATOM	102	H6	FRAG	1B	-0.388	7.056	5.237	0.00	0.00	Н
ATOM	103	H7	FRAG	1B	1.961	6.129	9.079	0.00	0.00	Н
ATOM	104	H8	FRAG	1B	-2.459	4.692	7.413	0.00	0.00	Н
ATOM	105	Н9	FRAG	1B	-1.927	4.091	11.046	0.00	0.00	Н
ATOM	106	0H1	FRAG	1B	-3.130	4.006	9.745	0.00	0.00	Н
ATOM	107	1H1	FRAG	1B	-1.856	2.766	9.861	0.00	0.00	Н
END										

Atomic coordinates for tetramer 4

ATOM	1	Ν	ALA	1	1.812	-3.940	4.089	1.00	0.00	N
ATOM	2	CA	ALA	1	2.600	-5.006	4.763	1.00	0.00	С
ATOM	3	С	ALA	1	1.990	-5.254	6.161	1.00	0.00	С
ATOM	4	OC	ALA	1	2.113	-4.148	7.001	1.00	0.00	0
ATOM	5	CC1	ALA	1	1.550	-4.240	8.327	1.00	0.00	С
ATOM	6	0	ALA	1	1.463	-6.330	6.461	1.00	0.00	0
ATOM	7	СВ	ALA	1	4.114	-4.643	4.839	1.00	0.00	С
ATOM	8	C1	ALA	1	4.871	-4.638	3.495	1.00	0.00	С
ATOM	9	C2	ALA	1	4.924	-3.474	2.719	1.00	0.00	С
ATOM	10	C3	ALA	1	5.598	-3.468	1.501	1.00	0.00	С
ATOM	11	С7	ALA	1	6.231	-4.624	1.052	1.00	0.00	C
ATOM	12	C8	ALA	1	6.184	-5.788	1.815	1.00	0.00	C
ATOM	13	С9	ALA	1	5.506	-5.796	3.032	1.00	0.00	C
ATOM	14	Н	ALA	1	1.559	-3.063	4.560	1.00	0.00	Н
ATOM	15	HA	ALA	1	2.507	-5.963	4.211	1.00	0.00	Н
ATOM	16	1HC1	ALA	1	0.458	-4.415	8.295	1.00	0.00	Н
ATOM	17	2HC1	ALA	1	2.017	-5.054	8.913	1.00	0.00	Н
ATOM	18	3HC1	ALA	1	1.717	-3.297	8.879	1.00	0.00	Н
ATOM	19	1HB	ALA	1	4.620	-5.353	5.523	1.00	0.00	Н
ATOM	20	2HB	ALA	1	4.242	-3.664	5.341	1.00	0.00	Н
ATOM	21	H2	ALA	1	4.432	-2.572	3.054	1.00	0.00	Н
ATOM	22	HЗ	ALA	1	5.634	-2.567	0.907	1.00	0.00	Н
ATOM	23	H7	ALA	1	6.756	-4.618	0.108	1.00	0.00	Н
ATOM	24	Н8	ALA	1	6.673	-6.684	1.463	1.00	0.00	Н
ATOM	25	Н9	ALA	1	5.474	-6.708	3.612	1.00	0.00	Н
ATOM	26	C1	FRAG	1D	-1.277	-2.543	1.223	0.00	0.00	С
ATOM	27	C2	FRAG	1D	-0.561	-2.364	2.566	0.00	0.00	С
ATOM	28	C3	FRAG	1D	0.923	-2.667	2.210	0.00	0.00	С
ATOM	29	04	FRAG	1D	1.047	-2.649	0.772	0.00	0.00	0
ATOM	30	C5	FRAG	1D	-0.199	-2.275	0.161	0.00	0.00	С
ATOM	31	NG	FRAG	1D	-0.433	-3.010	-1.118	0.00	0.00	Ν
ATOM	32	С7	FRAG	1D	-1.094	-2.389	-2.171	0.00	0.00	С
ATOM	33	N8	FRAG	1D	-1.315	-3.052	-3.342	0.00	0.00	Ν
ATOM	34	С9	FRAG	1D	-0.931	-4.337	-3.583	0.00	0.00	С
ATOM	35	C10	FRAG	1D	-0.189	-5.087	-2.434	0.00	0.00	C
ATOM	36	C11	FRAG	1D	0.020	-4.423	-1.269	0.00	0.00	С
ATOM	37	012	FRAG	1D	-1.511	-1.232	-2.100	0.00	0.00	0
ATOM	38	013	FRAG	1D	-1.178	-4.855	-4.672	0.00	0.00	0
ATOM	39	C14	FRAG	1D	0.238	-6.529	-2.612	0.00	0.00	C
ATOM	40	N15	FRAG	1D	-0.733	-0.990	3.107	0.00	0.00	Ν
ATOM	41	C16	FRAG	1D	1.461	-3.990	2.795	0.00	0.00	С

ATOM	42	019	FRAG	1D	1.600	-4.993	2.089	0.00	0.00	0
ATOM	43	H1	FRAG	1D	-0.774	-0.153	2.515	1.00	0.00	Н
ATOM	44	H2	FRAG	1D	-2.167	-1.898	1.092	0.00	0.00	Н
ATOM	45	HЗ	FRAG	1D	-1.639	-3.588	1.152	0.00	0.00	Н
ATOM	46	H4	FRAG	1D	-0.966	-3.096	3.294	0.00	0.00	Н
ATOM	47	Н5	FRAG	1D	1.589	-1.865	2.589	0.00	0.00	Н
ATOM	48	НG	FRAG	1D	-0.141	-1.185	-0.031	0.00	0.00	Н
ATOM	49	H7	FRAG	1D	-1.806	-2.551	-4.088	0.00	0.00	Н
ATOM	50	Н8	FRAG	1D	0.519	-4.917	-0.433	0.00	0.00	Н
ATOM	51	Н9	FRAG	1D	0.494	-6.755	-3.664	0.00	0.00	Н
ATOM	52	0H1	FRAG	1D	1.129	-6.785	-2.008	0.00	0.00	Н
ATOM	53	1H1	FRAG	1D	-0.570	-7.222	-2.317	0.00	0.00	Н
ATOM	54	C1	FRAG	1C	3.819	0.269	0.947	0.00	0.00	С
ATOM	55	C2	FRAG	1C	2.461	0.898	1.268	0.00	0.00	С
ATOM	56	С3	FRAG	1C	2.735	1.763	2.533	0.00	0.00	С
ATOM	57	04	FRAG	1C	4.162	1.774	2.749	0.00	0.00	0
ATOM	58	C5	FRAG	1C	4.851	1.171	1.639	0.00	0.00	С
ATOM	59	NG	FRAG	1C	6.072	0.423	2.071	0.00	0.00	N
ATOM	60	С7	FRAG	1C	7.124	0.236	1.182	0.00	0.00	С
ATOM	61	N8	FRAG	1C	8.220	-0.490	1.544	0.00	0.00	N
ATOM	62	С9	FRAG	1C	8.382	-1.087	2.758	0.00	0.00	С
ATOM	63	C10	FRAG	1C	7.234	-0.910	3.798	0.00	0.00	С
ATOM	64	C11	FRAG	1C	6.145	-0.190	3.429	0.00	0.00	С
ATOM	65	012	FRAG	1C	7.115	0.699	0.040	0.00	0.00	0
ATOM	66	013	FRAG	1C	9.402	-1.736	2.991	0.00	0.00	0
ATOM	67	C14	FRAG	1C	7.322	-1.580	5.154	0.00	0.00	С
ATOM	68	N15	FRAG	1C	1.911	1.685	0.138	0.00	0.00	Ν
ATOM	69	C16	FRAG	1C	1.992	1.224	3.776	0.00	0.00	С
ATOM	70	019	FRAG	1C	2.553	0.461	4.568	0.00	0.00	0
ATOM	71	C20	FRAG	1C	0.597	1.893	-0.007	0.00	0.00	С
ATOM	72	021	FRAG	1C	0.358	2.713	-1.107	0.00	0.00	0
ATOM	73	C22	FRAG	1C	-0.972	3.199	-1.490	0.00	0.00	С
ATOM	74	C23	FRAG	1C	-0.737	4.089	-2.728	0.00	0.00	С
ATOM	75	C24	FRAG	1C	-1.612	4.073	-0.383	0.00	0.00	С
ATOM	76	C25	FRAG	1C	-1.912	2.042	-1.902	0.00	0.00	С
ATOM	77	026	FRAG	1C	-0.268	1.435	0.749	0.00	0.00	0
ATOM	78	H1	FRAG	1C	4.023	0.149	-0.134	0.00	0.00	Н
ATOM	79	H2	FRAG	1C	3.843	-0.751	1.377	0.00	0.00	Н
ATOM	80	HЗ	FRAG	1C	1.764	0.064	1.480	0.00	0.00	Н
ATOM	81	H4	FRAG	1C	2.427	2.816	2.373	0.00	0.00	Н
ATOM	82	Н5	FRAG	1C	5.130	1.993	0.949	0.00	0.00	Н
ATOM	83	НG	FRAG	1C	8.967	-0.605	0.852	0.00	0.00	Н

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2010

ATOM	84	H7	FRAG	1C	5.309	-0.063	4.120	0.00	0.00	Н
ATOM	85	H8	FRAG	1C	6.944	-2.618	5.107	0.00	0.00	Н
ATOM	86	Н9	FRAG	1C	8.364	-1.628	5.521	0.00	0.00	Н
ATOM	87	H10	FRAG	1C	6.736	-1.051	5.929	0.00	0.00	Н
ATOM	88	H11	FRAG	1C	2.502	2.129	-0.573	0.00	0.00	Н
ATOM	89	2H1	FRAG	1C	-0.060	4.934	-2.501	0.00	0.00	Н
ATOM	90	3H1	FRAG	1C	-1.676	4.523	-3.122	0.00	0.00	Н
ATOM	91	4H1	FRAG	1C	-0.269	3.524	-3.555	0.00	0.00	Н
ATOM	92	5H1	FRAG	1C	-1.841	3.486	0.525	0.00	0.00	Н
ATOM	93	6H1	FRAG	1C	-0.940	4.893	-0.072	0.00	0.00	Н
ATOM	94	7H1	FRAG	1C	-2.563	4.534	-0.712	0.00	0.00	Н
ATOM	95	8H1	FRAG	1C	-2.884	2.406	-2.285	0.00	0.00	Н
ATOM	96	9H1	FRAG	1C	-2.136	1.369	-1.054	0.00	0.00	Н
ATOM	97	H20	FRAG	1C	-1.462	1.415	-2.694	0.00	0.00	Н
ATOM	98	Ν	ALA	1B	0.691	1.553	3.869	1.00	0.00	N
ATOM	99	CA	ALA	1B	-0.264	0.824	4.751	1.00	0.00	С
ATOM	100	С	ALA	1B	-0.462	-0.683	4.389	1.00	0.00	С
ATOM	101	0	ALA	1B	-0.299	-1.544	5.259	1.00	0.00	0
ATOM	102	СВ	ALA	1B	-1.594	1.601	4.788	1.00	0.00	С
ATOM	103	Н	ALA	1B	0.358	2.175	3.124	1.00	0.00	Н
ATOM	104	HA	ALA	1B	0.143	0.848	5.775	1.00	0.00	Н
ATOM	105	2HB	ALA	1B	-2.079	1.650	3.794	1.00	0.00	Н
ATOM	106	ЗНВ	ALA	1B	-2.317	1.131	5.480	1.00	0.00	Н
ATOM	107	1HB	ALA	1B	-1.454	2.642	5.137	1.00	0.00	Н
END										