Supporting Information

for

Synthesis, Structure, and Theoretical Investigation of Amidinato Supported 1,4-disilabenzene

Sakya S. Sen, Herbert W. Roesky,* Kathrin Meindl, Daniel Stern, Julian Henn, A. Claudia Stückl, and Dietmar Stalke*

Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany

Author to whom correspondence should be addressed: E mail: <u>hroesky@gwdg.de;</u> dstalke@chemie.uni-goettingen.de

Content:

- S1. Synthesis and experimental details of **2**
- S2. Crystallographic data for the structural analysis of **2**
- S3. Theoretical calculations of **2** and **3**
- S4. Complete list of reference no 19

S1. Synthesis and experimental details of 2

2: Toluene (20 mL) was added to a mixture of **1** (0.1 g, 0.19 mmol) and diphenyl alkine (0.07 g, 0.39 mmol) at ambient temperature. The mixture was stirred overnight. The volatiles were removed *in vacuo* and cyclopentane (10 mL) was added to the residue. The reaction mixture once again was stirred overnight. The cyclopentane was removed in vacuum and THF (2 mL) and toluene (10 mL) was added to the reaction mixture. The solution was concentrated and stored at room temperature for two days to yield dark red crystals of **2** (0.05 g, 29.41%). Mp 154-158 °C. Anal. calcd for **2**, $C_{58}H_{66}N_4Si_2$ (874.34) C, 79.58; H, 7.60; N, 6.40; found: C, 80.51; H, 7.29; N, 6.55; Due to the high sensitivity of the crystals the reported values deviated from the calculated one. ¹H NMR (200 MHz, C_6D_6 , 25 °C): δ 1.31 (s, 36 H, *t*Bu), 6.86-6.96 (m, 10 H, Ph); 7.92-8.19 ppm (m, 20 H, Ph) ¹³C {¹H} NMR (125.75 MHz, C₆D₆, 25 °C): δ 30.8(C*Me*₃), 57.2 (*C*Me₃), 125.6, 126.4, 127.0, 127.8, 127.9, 128.5, 128.9, 129.4, 129.9, 130.2, 133.0, 136.4, 138.9, 139.0, 140.2, 141.5 (Ph), 171.37 ppm (NCN); ²⁹Si {¹H} NMR (99.36 MHz, C₆D₆, 25 °C): δ -18.05 ppm. EI-MS: *m/z*: 874 [M⁺] (30%).

S2. Crystallographic data for the structural analysis of 2

Figure 1: The solid state structure of **2**; anisotropic displacement parameters are depicted at the 50% probability level; the disordered phenyl group (C18 to C23), the solvent molecules (THF and cyclopentane) and H atoms are omitted for clarity reasons.

Empirical formula	C65.84 H81.67 N4 O0.36 Si2	
Formula weight	991.00	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Trigonal	
Space group	P 3 ₁ 2 1	
Unit cell dimensions	a = 14.0399(8) Å	α=90°.
	b = 14.0399(8) Å	β= 90°.
	c = 28.1188(16) Å	$\gamma = 120^{\circ}$.
Volume	4800.2(5) Å ³	
Ζ	3	
Density (calculated)	1.028 Mg/m ³	
Absorption coefficient	0.095 mm ⁻¹	
F(000)	1607	
Crystal size	0.18 x 0.12 x 0.11 mm	
Theta range for data collection	1.67 to 26.37°.	
Index ranges	-17<=h<=17, -17<=k<=17, -35<=l<=35	
Reflections collected	93952	
Independent reflections	6572 [R(int) = 0.0278]	
Completeness to theta = 26.37°	99.8 %	
Absorption correction	Semi-empirical from equivaler	its
Max. and min. transmission	0.9896 and 0.9831	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6572 / 306 / 441	
Goodness-of-fit on F ²	1.134	
Final R indices [I>2sigma(I)]	R1 = 0.0685, $wR2 = 0.1932$	
R indices (all data)	R1 = 0.0708, $wR2 = 0.1961$	
Absolute structure parameter	0.08(17)	
Largest diff. peak and hole	0.768 and -0.507 e.Å ⁻³	

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for p3121. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
C(1)	4699(2)	7971(2)	150(1)	40(1)
C(2)	4103(2)	8598(2)	184(1)	45(1)
C(3)	3875(3)	8870(3)	626(1)	55(1)
C(4)	3310(3)	9455(3)	652(2)	66(1)
C(5)	2979(3)	9741(3)	246(2)	69(1)
C(6)	3214(3)	9476(3)	-193(2)	66(1)
C(7)	3784(3)	8906(3)	-228(1)	52(1)
C(8)	3116(2)	5985(2)	239(1)	45(1)
C(9)	3130(3)	4940(3)	126(2)	88(2)
C(10)	2326(3)	6107(4)	-80(1)	65(1)
C(11)	2795(3)	5977(4)	757(1)	74(1)
C(12)	6697(2)	9544(2)	25(1)	48(1)
C(13)	7738(3)	9467(3)	-5(2)	70(1)
C(14)	6768(3)	10240(3)	459(1)	60(1)
C(15)	6573(3)	10056(3)	-432(1)	55(1)
C(16)	6057(2)	6494(2)	565(1)	39(1)
C(17)	5980(2)	6696(2)	-504(1)	36(1)
C(18)	5718(12)	6632(11)	1048(4)	39(2)
C(19)	5716(15)	7560(14)	1206(3)	52(3)
C(20)	5260(20)	7620(20)	1636(4)	90(6)
C(21)	4790(20)	6700(20)	1932(4)	103(7)
C(22)	4788(14)	5760(18)	1784(3)	68(4)
C(23)	5221(11)	5712(14)	1343(4)	51(3)
C(18')	5429(13)	6309(14)	1026(5)	40(3)
C(19')	5353(12)	7165(15)	1231(5)	56(3)
C(20')	4785(12)	7021(18)	1654(4)	72(4)
C(21')	4302(11)	6004(18)	1874(4)	75(4)
C(22')	4388(13)	5158(19)	1676(5)	69(4)
C(23')	4973(12)	5299(14)	1259(5)	51(3)
C(24)	5824(2)	7255(2)	-922(1)	36(1)
C(25)	6691(3)	7864(2)	-1237(1)	45(1)
C(26)	6555(3)	8432(3)	-1613(1)	52(1)
C(27)	5584(3)	8420(3)	-1686(1)	56(1)
C(28)	4717(3)	7800(3)	-1392(1)	56(1)

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2010

C(29)	4830(2)	7224(2)	-1010(1)	45(1)
N(1)	4264(2)	6889(2)	165(1)	38(1)
N(2)	5782(2)	8396(2)	86(1)	39(1)
Si(1)	5629(1)	7002(1)	69(1)	35(1)
O(70)	199(13)	2179(13)	1383(7)	89(5)
C(71)	877(16)	3219(18)	1609(8)	74(5)
C(72)	283(16)	3821(16)	1723(6)	77(6)
C(73)	-905(16)	2930(20)	1669(10)	94(7)
C(74)	-901(15)	1960(18)	1436(11)	100(7)
C(81)	720(20)	1530(20)	823(8)	297(10)
C(82)	557(17)	362(16)	932(8)	279(9)
C(83)	1689(16)	785(14)	1174(5)	222(8)
C(84)	2502(16)	1877(15)	925(7)	257(8)
C(85)	1770(20)	1792(18)	497(6)	289(10)

Table 3. Selected bond lengths [Å] and angles [°] for p3121.

C(1)-N(1)	1.325(4)
C(1)-N(2)	1.339(4)
C(1)-C(2)	1.490(4)
C(8)-N(1)	1.486(4)
C(12)-N(2)	1.485(4)
C(16)-C(17)#1	1.415(4)
C(16)-C(18)	1.484(11)
C(16)-Si(1)	1.800(3)
C(17)-C(16)#1	1.415(4)
C(17)-C(24)	1.490(3)
C(17)-Si(1)	1.799(2)
N(1)-Si(1)	1.861(2)
N(2)-Si(1)	1.859(2)
N(1)-C(1)-N(2)	106.5(2)
N(1)-C(1)-C(2)	127.1(3)
N(2)-C(1)-C(2)	126.4(2)
N(1)-C(1)-Si(1)	53.29(13)
N(2)-C(1)-Si(1)	53.23(13)
C(2)-C(1)-Si(1)	178.2(2)
C(17)#1-C(16)-C(18')	118.6(6)
C(18)-C(16)-Si(1)	117.6(5)
C(16)#1-C(17)-C(24)	119.6(2)
C(16)#1-C(17)-Si(1)	123.18(17)
C(24)-C(17)-Si(1)	116.88(18)
C(1)-N(1)-C(8)	131.7(2)
C(1)-N(1)-Si(1)	91.89(17)
C(8)-N(1)-Si(1)	136.42(19)
C(1)-N(2)-C(12)	132.2(2)
C(1)-N(2)-Si(1)	91.51(16)
C(12)-N(2)-Si(1)	136.18(18)
C(17)-Si(1)-C(16)	114.36(12)
C(17)-Si(1)-N(2)	111.85(11)
C(16)-Si(1)-N(2)	120.84(12)
C(17)-Si(1)-N(1)	120.16(11)
C(16)-Si(1)-N(1)	112.83(11)
N(2)-Si(1)-N(1)	70.07(10)

Symmetry transformations used to generate equivalent atoms:

#1 y,x,-z

Selected bond lengths [Å] and angles [°] for 2 .		
C(1)-N(1)	1.325(4)	N(1)-C(1)-N(2)	106.5(2)
C(1)-N(2)	1.339(4)	N(1)-C(1)-C(2)	127.1(3)
C(1)-C(2)	1.490(4)	N(2)-C(1)-C(2)	126.4(2)
C(8)-N(1)	1.486(4)	N(1)-C(1)-Si(1)	53.29(13)
C(12)-N(2)	1.485(4)	N(2)-C(1)-Si(1)	53.23(13)
C(16)-C(17)#1	1.415(4)	C(2)-C(1)-Si(1)	178.2(2)
C(16)-C(18)	1.484(11)	C(17)#1-C(16)-	118.6(6)
C(16)-Si(1)	1.800(3)	C(18)-C(16)-Si(1)	117.6(5)
C(17)-C(16)#1	1.415(4)	C(16)#1-C(17)-C(24)	119.6(2)
C(17)-C(24)	1.490(3)	C(16)#1-C(17)-Si(1)	123.18(17)
C(17)-Si(1)	1.799(2)	C(24)-C(17)-Si(1)	116.88(18)
N(1)-Si(1)	1.861(2)	C(1)-N(1)-C(8)	131.7(2)
N(2)-Si(1)	1.859(2)	C(1)-N(1)-Si(1)	91.89(17)
		C(8)-N(1)-Si(1)	136.42(19)
		C(1)-N(2)-C(12)	132.2(2)
		C(1)-N(2)-Si(1)	91.51(16)
		C(12)-N(2)-Si(1)	136.18(18)
		C(17)-Si(1)-C(16)	114.36(12)
		C(17)-Si(1)-N(2)	111.85(11)
		C(16)-Si(1)-N(2)	120.84(12)
		C(17)-Si(1)-N(1)	120.16(11)
		C(16)-Si(1)-N(1)	112.83(11)
		N(2)-Si(1)-N(1)	70.07(10)

S3. Theoretical Calculations of 2 and 3

All theoretical calculations were performed with Gaussian 09 (Rev. A.02) on the UB3LYP/6-

311G* level of theory.¹⁹

e containates of the single			
Si	-1.694411	0.000002	0.000040
Ν	-3.271482	0.111432	1.071280
Ν	-3.271532	-0.111428	-1.071120
С	-0.714705	1.523803	0.028913
С	-4.065913	0.000002	0.000098
С	-0.714707	-1.523799	-0.028886
С	-1.439315	2.805814	0.257711
C	-5 554397	-0.000002	0.000133
Ċ	-1 439327	-2.805809	-0 257653
C	-6.261098	1 204415	-0.100145
н Н	-5 719409	2 140359	-0 179749
C	-3 214583	4 397786	-0 289400
е Н	-4.036508	4 686518	-0.939292
II C	-4.050508	1 762065	2 700225
Н	-3 563802	2 533706	2.700223
и и	4 302773	1 072574	2.202450
	-4.502775	1.972374	2 252404
П	-3.190203	1.051052	2.233404
	-0.201084	-1.204420	0.100445
H C	-5./19385	-2.140304	0.180021
U U	-1./65549	4.841034	1.5/2986
H	-1.458694	5.470832	2.403097
C .	-7.653415	1.2011/0	-0.099542
H	-8.190988	2.140542	-0.1//158
C	-8.353500	-0.000014	0.000197
Н	-9.438505	-0.000018	0.000221
C	-3.584830	-0.363298	-2.503619
C	-2.523496	3.213315	-0.539698
Н	-2.809576	2.600466	-1.386264
C	-3.584713	0.363303	2.503792
C	-2.843003	5.220769	0.771004
Н	-3.375703	6.146378	0.964938
С	-4.531302	-0.704987	3.081295
Н	-5.522922	-0.666400	2.630725
Н	-4.651529	-0.542229	4.156032
Н	-4.127888	-1.710341	2.940777
С	-1.078474	3.659530	1.320308
Н	-0.245012	3.380950	1.955283
С	-7.653401	-1.201192	0.099904
Н	-8.190963	-2.140568	0.177544
С	-1.078533	-3.659523	-1.320268
Н	-0.245099	-3.380941	-1.955280
С	-4,197596	-1.762062	-2.700025
Н	-3.563995	-2.533703	-2.262288
Н	-4.302943	-1.972569	-3.768446
Н	-5.190308	-1.831051	-2.253160
C	-4 531449	0 704989	-3.081076
- H	-5 523049	0.666395	-2.630463
H H	-4 651722	0 542235	-4 155808
H H	-4 128034	1 710345	-2 940572
C	_2 523472	_3 213313	0 530802
С Н	-2.323+72	-2 600465	1 386387
C	-2.009515	_1 207781	0 280522
	-5.214570		0.207552
11	-4.030407	-4.000310	0.939439

Coordinates of the singlet state of **2**

Si N C C C C C C C C C

H C H C H H H C H C H C H C

H C H C C H C C H C

Н Н Н С Н C H С Н С Н Н Н С Н Η Η С

-2.247191	-0.293246	-3.260657
-1.776539	0.686177	-3.150862
-2.418414	-0.470726	-4.325543
-1.546432	-1.046652	-2.898413
-1.765618	-4.841027	-1.572919
-1.458800	-5.470823	-2.403045
-2.843037	-5.220764	-0.770891
-3.375745	-6.146373	-0.964803
-2.247039	0.293255	3.260769
-1.7/6389	-0.686166	3.150954
-2.418214	0.4/0/35	4.325662
-1.546300	1.046664	2.898493
1.094411	0.000001	-0.000040
3 271485	0.111460	-1 071275
0 714706	-1 523800	0.028839
4 065913	0.00000	-0.000094
0.714705	1.523803	-0.028881
1.439326	-2.805817	0.257572
5.554397	-0.000004	-0.000124
1.439315	2.805820	-0.257645
6.261085	-1.204424	-0.100471
5.719384	-2.140361	-0.180081
3.214569	-4.397777	-0.289654
4.036466	-4.686494	-0.939588
4.197583	-1.762139	2.699983
3.563980	-2.533766	2.262224
4.302927	-1.972675	3.768398
5.190296	-1.831120	2.253119
6.261098	1.204410	0.100195
5.719408	2.140351	0.1/982/
1./00014	-4.841070	1.5/2/84
1.438/93	-3.470887	0.000027
8 190965	-1.201190	-0.033327
8.150505	-0.000015	-0.000178
9 438505	-0.000019	-0.000199
3.584722	0.363372	-2.503780
2.523472	-3.213300	-0.539893
2.809516	-2.600428	-1.386456
3.584822	-0.363369	2.503611
2.843033	-5.220786	0.770746
3.375741	-6.146401	0.964635
4.531442	0.704901	3.081100
5.523044	0.666316	2.630489
4.651712	0.542118	4.155828
4.128031	1.710261	2.940619
1.0/8530	-3.659559	1.320164
0.245096	-3.380993	1.955183
/.053415	1.201103	0.099397
0.190988 1.078475	2.140355	-1 320219
0.245013	3 381000	-1.920219
4 197477	1 762143	-2 700171
3 563891	2 533769	-2 262386
4.302780	1.972681	-3.768590
5.190207	1.831122	-2.253345
4.531318	-0.704897	-3.081307
5.522936	-0.666317	-2.630732
4.651549	-0.542110	-4.156039
4.127909	-1.710257	-2.940817
2.523496	3.213300	0.539774

Н	2.809576	2.600428	1.386325
С	3.214583	4.397778	0.289509
Н	4.036508	4.686493	0.939408
С	2.247052	0.293341	-3.260764
Н	1.776406	-0.686086	-3.150980
Н	2.418231	0.470852	-4.325652
Н	1.546308	1.046736	-2.898469
С	1.765549	4.841075	-1.572867
Н	1.458694	5.470895	-2.402961
С	2.843002	5.220789	-0.770874
Н	3.375703	6.146404	-0.964783
С	2.247181	-0.293333	3.260646
Н	1.776533	0.686095	3.150878
Н	2.418400	-0.470843	4.325528
Н	1.546421	-1.046726	2.898379

Coordinates of the triplet state of 2			
Si	-1.666043	0.000015	0.000043
Ν	-3.211776	0.014538	1.076981
Ν	-3.211826	-0.014499	-1.076822
С	-0.711702	1.548694	0.122242
С	-4.008565	0.000017	0.000098
С	-0.711727	-1.548674	-0.122207
С	-1.376629	2.793133	0.565800
С	-5.499351	0.000007	0.000133
С	-1.376695	-2.793100	-0.565742
С	-6.204350	1.207606	0.037428
Н	-5.662880	2.146190	0.070178
С	-3.229888	4.396396	0.498690
Н	-4.174828	4.706226	0.059227
С	-4.207834	1.384607	2.916901
Н	-3.638069	2.247095	2.570267
Н	-4.299517	1.449317	4.004940
Н	-5.214244	1.442201	2.499680
С	-6.204333	-1.207602	-0.037128
Н	-5.662850	-2.146178	-0.069902
С	-1.400592	4.774443	2.005264
Н	-0.915337	5.371245	2.772622
С	-7.596994	1.204854	0.035549
Н	-8.134628	2.146795	0.063822
С	-8.295985	-0.000014	0.000195
Н	-9.380976	-0.000022	0.000219
С	-3.505475	-0.069608	-2.535288
С	-2.615073	3.229398	0.051038
Н	-3.082547	2.658179	-0.742222
С	-3.505358	0.069631	2.535461
С	-2.632314	5.179045	1.484109
Н	-3.106956	6.091469	1.830668
C	-4.354808	-1.132633	2.984933
Н	-5.344735	-1.130261	2.527688
Н	-4.493050	-1.097508	4.068989
Н	-3.862977	-2.077708	2.743945
C	-0.786102	3.614134	1.553845
Н	0.171379	3.320059	1.969065
С	-7.596977	-1.204872	-0.035188
Н	-8.134599	-2.146821	-0.063437
C	-0.786216	-3.614116	-1.553802

Н С Н Н Н С Н Н Н С Н С Н С Н Н Н С Н С Н С Η Η Η Si

N N C C C C C C C H C

H C H H H C H C H C H C H

C H C C H

C C H C H H H H C H

0.171262	-3.320066	-1.969046
-4.207962	-1.384592	-2.916677
-3.638180	-2.247073	-2.570052
-4.299690	-1.449321	-4.004712
-5.214354	-1.442183	-2.499413
-4.354947	1.132648	-2.984740
-5.34485/	1.1302/6	-2.52/45/
-4.493230	1.09/511	-4.068/90
-3.803111	2.0///28	-2./43/80
-2.013141	-3.229327	-0.030933
-3.230000	-4 396307	-0.498590
-4 174939	-4 706109	-0.059106
-2.143419	-0.009070	-3.245992
-1.599281	0.901431	-2.984020
-2.290161	-0.016813	-4.328653
-1.524140	-0.868043	-2.982039
-1.400750	-4.774409	-2.005205
-0.915529	-5.371224	-2.772575
-2.632471	-5.178976	-1.484021
-3.107146	-6.091386	-1.830568
-2.1432/2	0.009086	3.246105
-1.599143	-0.901410	2.984094
-2.289907	0.010812	4.526/72
-1.524000	-0.000004	-0.000037
3 211825	-0.014583	1 076830
3.211023	0.014556	-1.076971
0.711709	-1.548687	0.122159
4.008567	-0.000012	-0.000087
0.711722	1.548686	-0.122193
1.376657	-2.793133	0.565671
5.499353	-0.000012	-0.000117
1.376664	2.793121	-0.565746
6.204343	-1.207620	0.037057
5.662866	-2.146202	0.069/55
3.229942	-4.390303	0.498501
4.174882	-4.700107	2 916652
3 638104	-2.247210	2.569993
4 299622	-1 449524	4 004686
5.214306	-1.442370	2.499400
6.204343	1.207594	-0.037315
5.662866	2.146177	-0.069992
1.400667	-4.774480	2.005083
0.915429	-5.371309	2.772430
7.596987	-1.204879	0.035121
8.134615	-2.146827	0.063299
8.295986	-0.000014	-0.000166
9.380978	-0.000014	-0.000185
5.505505 2.615103	-3 229364	-2.333448
3 082562	-2 658116	-0 742363
3 505472	-0 069740	2 535295
2.632390	-5.179049	1.483904
3.107049	-6.091475	1.830433
4.354991	1.132473	2.984773
5.344891	1.130088	2.527468
4.493296	1.097292	4.068819
3.863179	2.077577	2.743860
0.786155	-3.614167	1.553702
-0.171326	-3.320116	1.968941

С	7.596987	1.204852	-0.035429
Н	8.134615	2.146800	-0.063625
С	0.786117	3.614161	-1.553745
Н	-0.171393	3.320126	-1.968925
С	4.207793	1.384718	-2.916843
Н	3.638008	2.247172	-2.570158
Н	4.299451	1.449480	-4.004881
Н	5.214209	1.442324	-2.499640
С	4.354859	-1.132516	-2.984957
Н	5.344778	-1.130134	-2.527693
Н	4.493121	-1.097339	-4.069009
Н	3.863052	-2.077616	-2.744020
С	2.615149	3.229331	-0.051037
Н	3.082645	2.658076	0.742184
С	3.229982	4.396317	-0.498693
Н	4.174954	4.706105	-0.059271
С	2.143282	0.009133	-3.246097
Н	1.599180	-0.901385	-2.984109
Н	2.289981	0.016888	-4.328764
Н	1.523990	0.868087	-2.982114
С	1.400623	4.774461	-2.005166
Н	0.915349	5.371297	-2.772487
С	2.632384	5.179011	-1.484063
Н	3.107039	6.091426	-1.830624
С	2.143419	-0.009168	3.246002
Н	1.599311	0.901355	2.984043
Н	2.290163	-0.016932	4.328662
Н	1.524112	-0.868117	2.982037

Coordinates of the singlet state of 3			
Si	1.701518	0.000001	0.000033
Ν	3.292469	1.075130	-0.000184
Ν	3.292468	-1.075129	0.000301
С	0.706554	0.000017	1.486159
С	4.089022	0.000000	0.000045
С	0.706585	-0.000013	-1.486113
Н	1.194329	0.000202	2.462956
С	5.575931	-0.000001	-0.000004
Н	1.194370	-0.000198	-2.462878
С	6.288384	-0.000462	1.207632
Н	5.750103	-0.000762	2.149067
С	4.370826	2.933905	1.264220
Н	3.832896	2.619977	2.162300
Н	4.482086	4.021569	1.300888
Н	5.370314	2.498261	1.288894
С	6.288304	0.000456	-1.207686
Н	5.749960	0.000758	-2.149085
С	7.679884	-0.000428	1.204769
Н	8.216626	-0.000748	2.147955
С	8.382121	-0.000006	-0.000097
Н	9.466964	-0.000008	-0.000133
С	3.592236	-2.525739	-0.000017
С	3.592238	2.525741	0.000118
С	4.370126	2.934439	-1.264242
Н	5.369497	2.498576	-1.289730
Н	4.481626	4.022097	-1.300386
Н	3.831573	2.621096	-2.162153

C H С Н Н Н С Н Н Η С Н Η Н С Н Н Н Si Ν

N C C C

 $\begin{array}{c} H \\ C \\ H \\ C \\ H \\ C \\ H \\ H \\ H \\ C \\ H \end{array}$

C H C H C C C H

Н Н С Н С Н Н Н С Н Н Н С Н Н Н С Η Η

7 679804	0.000417	-1 204916
8 216/82	0.000736	2 1/8120
4 270896	2 022865	-2.148159
4.570880	-2.953803	-1.204094
3.832991	-2.619924	-2.162190
4.482164	-4.021527	-1.300/80
5.370368	-2.498204	-1.288712
4.370064	-2.934475	1.264369
5.369439	-2.498626	1.289912
4.481550	-4.022135	1.300492
3.831475	-2.621146	2.162262
2.236872	-3.255279	-0.000618
1.646164	-2.994917	0.879457
2 402795	-4 336378	-0.000659
1 646822	-2.994766	-0.881096
2 236873	3 255280	0.000633
1 646207	2 994892	-0.879463
2 402705	4 336380	-0.877405
2.402/93	4.550580	0.000049
1.040/81	2.994794	0.881091
-1./01518	0.000002	-0.000003
-3.292469	1.0/5131	0.0001//
-3.292468	-1.075128	-0.000262
-0.706554	-0.000018	-1.486130
-4.089022	0.000001	0.000001
-0.706585	0.000022	1.486142
-1.194315	0.000144	-2.462900
-5.575932	-0.000001	0.000037
-1.194368	-0.000140	2.462901
-6.288374	-0.000604	-1.207606
-5.750084	-0.001020	-2.149036
-4.370775	2.933885	-1.264313
-3.832819	2 619924	-2 162366
-4 482016	4 021551	-1 301014
-5 370269	2 498258	-1 289009
6 288316	0.000597	1.207007
-0.288310	0.000357	2 1/0117
-5.749981	0.001014	2.149117
-7.079874	-0.000374	-1.204/33
-8.210007	-0.001009	-2.14/94/
-8.382122	-0.000007	0.000104
-9.466966	-0.000009	0.000130
-3.592237	-2.525738	0.000033
-3.592237	2.525742	-0.000172
-4.370173	2.934465	1.264150
-5.369541	2.498592	1.289613
-4.481685	4.022122	1.300262
-3.831650	2.621148	2.162087
-7.679816	0.000561	1.204930
-8.216504	0.000994	2.148148
-4.370776	-2.933919	1.264160
-3.832819	-2.619991	2,162223
-4 482023	-4 021585	1 300823
-5 370269	-2 498287	1 288869
-4 370176	-2 934418	-1 264303
-5 360540	_7 408536	_1 289754
-3.307340	-2.470330	-1.207/34 1 200//0
-4.401098	-4.022074	-1.300448
-3.831049	-2.021080	-2.102230
-2.2368/3	-3.255278	0.000487
-1.646243	-2.994882	-0.8/9632
-2.402795	-4.336377	0.000500
-1.646744	-2.994799	0.880922
-2.236871	3.255279	-0.000650
-1.646242	2.994910	0.879476
-2.402791	4.336378	-0.000698

Н	-1.646743	2.994770	-0.881077

Coordinates of the triplet state of 3			
Si	-1.809412	0.000016	-0.000013
N	-3.222891	-1.096323	0.162978
Ν	-3.222909	1.096331	-0.162997
С	-0.721783	0.045189	1.491677
С	-4.116258	-0.000002	-0.000004
C	-0.721781	-0.045143	-1.491700
С	-5.545502	-0.000010	0.000010
Н	-1.221508	-0.048889	-2.462345
C	-6.297558	-0.748580	0.952121
Н	-5.768633	-1.287637	1.728481
C	-4.399755	-3.305874	0.429714
Н	-4.158525	-3.259228	1.494964
Н	-4.350288	-4.353291	0.116041
Н	-5.425505	-2.969667	0.292604
С	-6.297584	0.748553	-0.952086
H	-5.768680	1.287615	-1.728456
С	-7.682818	-0.742029	0.947495
H	-8.217294	-1.307543	1.706426
C	-8.398548	-0.000024	0.000038
H	-9.483437	-0.000029	0.000049
C	-3.397914	2.468725	0.388082
C	-3.39/8//	-2.468/15	-0.388114
C	-3.849557	-2.427080	-1.860964
Н	-4.80/905	-1.914688	-1.962214
H	-3.964448	-3.440043	-2.259862
Н	-3.1162/1	-1.903051	-2.4/99/0
C II	-/.082844	0.741989	-0.94/432
H	-8.21/340	1.307498	-1./06353
	-4.399804	2 250200	-0.429/33
п u	-4.156570	A 252281	-1.493004
11 Ц	-4.550550	2 060637	-0.110092
C C	-3.849595	2.909057	1 860932
н	-4.807936	1 914692	1.000752
Н	-3 964501	3 440062	2 259820
Н	-3 116302	1 903084	2 479943
C	-2 031507	3 170723	0 285696
Ĥ	-1.271921	2.678448	0.896923
Н	-2.113900	4.205652	0.628104
Н	-1.681423	3.182992	-0.750167
С	-2.031460	-3.170693	-0.285732
Н	-1.271879	-2.678399	-0.896951
Н	-2.113835	-4.205619	-0.628152
Н	-1.681380	-3.182967	0.750133
Si	1.656425	0.000009	-0.000009
Ν	3.202666	-1.074431	0.052419
Ν	3.202678	1.074428	-0.052436
С	0.659938	-0.046231	-1.506572
С	4.002958	-0.000005	-0.000009
С	0.659936	0.046263	1.506552
Н	1.162469	-0.062677	-2.475990
С	5.489693	-0.000009	-0.000002
Н	1.162465	0.062716	2.475971
С	6.196748	-0.070196	-1.206733
Н	5.658398	-0.137033	-2.145678
С	4.524748	-3.059802	-0.703552

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Н	4.216228	-2.860817	-1.732919
Н	4.610256	-4.142965	-0.583215
Н	5.515074	-2.631818	-0.550527
С	6.196739	0.070182	1.206734
Н	5.658381	0.137026	2.145675
С	7.588639	-0.068252	-1.203633
Н	8.126292	-0.123547	-2.144275
С	8.288521	-0.000014	0.000009
Н	9.373224	-0.000016	0.000014
С	3.487151	2.513265	-0.291218
С	3.487110	-2.513269	0.291235
С	3.962488	-2.729467	1.739543
Н	4.927838	-2.253920	1.922199
Н	4.075926	-3.797488	1.944608
Н	3.235293	-2.326363	2.448451
С	7.588629	0.068231	1.203646
Н	8.126275	0.123525	2.144292
С	4.524747	3.059756	0.703637
Н	4.216148	2.860784	1.732983
Н	4.610313	4.142914	0.583305
Н	5.515065	2.631725	0.550678
С	3.962614	2.729482	-1.739495
Н	4.927969	2.253930	-1.922107
Н	4.076072	3.797506	-1.944535
Н	3.235454	2.326398	-2.448450
С	2.159836	3.259795	-0.079166
Н	1.388475	2.912928	-0.769525
Н	2.307456	4.329268	-0.247180
Н	1.787085	3.123166	0.937987
С	2.159794	-3.259781	0.079125
Н	1.388402	-2.912893	0.769439
Н	2.307389	-4.329253	0.247162
Н	1.787099	-3.123159	-0.938050
Н	-1.221511	0.048954	2.462321

Highest occupied orbitals (number and energy in a.u.) of **2**, **3** and benzene. Positive (green) and negative (red) isosurface representation at 0.02 a.u..

S4. Complete list of reference no 19

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.