data_publication_text _journal_name_full Chem.Commun. _journal_coden_cambridge 0182 #TrackingRef '- 1-2crystaldata-new.CIF' _publ_contact_author_name 'Christoph Janiak' _publ_contact_author_address ;Institut f\"ur Anorganische und Analytische Chemie Universit\"at Freiburg Albertstr. 21 79104 Freiburg Germany ; _publ_contact_author_email janiak@uni-freiburg.de _publ_contact_author_phone +49-761-2036127 loop_ _publ_author_name _publ_author_address B.Gil-Hernandez ;Departamento de Qu\'imica Inorg\'anica Universidad de La Laguna 38206 La Laguna, Tenerife Spain ; H.Hoppe ;Institut f\"ur Anorganische und Analytische Chemie Universit\"at Freiburg Albertstr. 21 79104 Freiburg Germany ; J.K.Vieth ;Institut f\"ur Anorganische und Analytische Chemie Universit\"at Freiburg Albertstr. 21 79104 Freiburg Germany ; J.Sanchiz ;Departamento de Qu\'imica Inorg\'anica Universidad de La Laguna 38206 La Laguna, Tenerife Spain ; C.Janiak ;Institut f\"ur Anorganische und Analytische Chemie Universit\"at Freiburg Albertstr. 21 79104 Freiburg Germany ; _publ_section_title ; Spontaneous/Self-resolution upon crystallization of chiral La(III) and Gd(III) MOFs from achiral dihydroxymalonate ; #============================================================================== data_2Laketo_c _database_code_depnum_ccdc_archive 'CCDC 780266' #TrackingRef '- 1-2crystaldata-new.CIF' _audit_creation_method SHELXL-97 _chemical_name_systematic ; catena-\L-[triaqua-1.5(\m-dihydroxymalonato- \kO,O'':O''',O'''')lanthanum(III)] ; _chemical_name_common ; catena-clambda-(triaqua-1.5(mu-dihydroxymalonato- kappaO,O'':O''',O'''')lanthanum(iii)) ; _chemical_melting_point ? _chemical_formula_moiety 'C9 H18 La2 O24' _chemical_formula_sum 'C9 H18 La2 O24' _chemical_formula_weight 788.05 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' La La -0.2871 2.4523 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting trigonal _symmetry_space_group_name_H-M ' R 3 2' _symmetry_space_group_name_Hall ' R 3 2" ' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-y, x-y, z' '-x+y, -x, z' 'y, x, -z' 'x-y, -y, -z' '-x, -x+y, -z' 'x+2/3, y+1/3, z+1/3' '-y+2/3, x-y+1/3, z+1/3' '-x+y+2/3, -x+1/3, z+1/3' 'y+2/3, x+1/3, -z+1/3' 'x-y+2/3, -y+1/3, -z+1/3' '-x+2/3, -x+y+1/3, -z+1/3' 'x+1/3, y+2/3, z+2/3' '-y+1/3, x-y+2/3, z+2/3' '-x+y+1/3, -x+2/3, z+2/3' 'y+1/3, x+2/3, -z+2/3' 'x-y+1/3, -y+2/3, -z+2/3' '-x+1/3, -x+y+2/3, -z+2/3' _cell_length_a 9.75040(10) _cell_length_b 9.75040(10) _cell_length_c 21.2854(15) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 120.00 _cell_volume 1752.50(13) _cell_formula_units_Z 3 _cell_measurement_temperature 123(2) _cell_measurement_reflns_used 87519 _cell_measurement_theta_min 3.1 _cell_measurement_theta_max 69.4 _exptl_crystal_description prism _exptl_crystal_colour colorless _exptl_crystal_size_max 0.38 _exptl_crystal_size_mid 0.29 _exptl_crystal_size_min 0.28 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.240 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1134 _exptl_absorpt_coefficient_mu 3.714 _exptl_absorpt_correction_type Multi-scan _exptl_absorpt_correction_T_min 0.3327 _exptl_absorpt_correction_T_max 0.4228 _exptl_absorpt_process_details '(ABSCOR; Higashi, 1995)' _exptl_special_details ; ? ; _diffrn_ambient_temperature 123(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type ; Rigaku RAXIS conversion ; _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 46805 _diffrn_reflns_av_R_equivalents 0.0145 _diffrn_reflns_av_sigmaI/netI 0.0077 _diffrn_reflns_limit_h_min -17 _diffrn_reflns_limit_h_max 17 _diffrn_reflns_limit_k_min -17 _diffrn_reflns_limit_k_max 17 _diffrn_reflns_limit_l_min -35 _diffrn_reflns_limit_l_max 37 _diffrn_reflns_theta_min 4.18 _diffrn_reflns_theta_max 39.99 _reflns_number_total 2409 _reflns_number_gt 2401 _reflns_threshold_expression >2sigma(I) _computing_data_collection ; CrystalClear-SM Expert 2.0 r1 (Rigaku, 2009) ; _computing_cell_refinement ; CrystalClear-SM Expert 2.0 r1 (Rigaku, 2009) ; _computing_data_reduction ; CrystalClear-SM Expert 2.0 r1 (Rigaku, 2009) ; _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics 'DIAMOND (Crystal Impact, 2009)' _computing_publication_material ? _publ_section_references ; Crystal Impact (2009). DIAMOND. Version 3.2. Crystal Impact GbR, Bonn, Germany. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Rigaku (2009). Spider and CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112--122. ; _publ_section_exptl_refinement ; Hydrogen atoms for aromatic CH, aliphatic CH, CH~2~ and methyl groups were positioned geometrically (C---H = 0.94 \%A for aromatic CH, C---H = 0.99 \%A for aliphatic CH, C---H = 0.98 \%A for CH~2~, C---H = 0.97 \%A for CH~3~) and refined using a riding model (AFIX 43 for aromatic CH, AFIX 13 for aliphatic CH, AFIX 23 for CH~2~, AFIX 33 or rotating group refinement 137 for CH~3~), with U~iso~(H) = 1.2U~eq~(CH) and U~iso~(H) = 1.5U~eq~(CH~3~). H atoms on crystal water oxygen / on nitrogen atoms have been found and refined with U~iso~(H) = 1.5U~eq~(O). ; _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. For data set 2Laket_c the protons of the aqua ligand (HW1 and HW2) and the C-OH group (H1) were found at a sensible position for a water ligand molecule and C-OH group, respectively. In subsequent refinement the protons were unstable due to their close proximity to the lanthanide atom. Therefore the restraints DFIX 0.9 0.02 O1 H1 OW HW1 OW HW2, DANG 1.11 0.04 HW1 HW2 and SADI La HW1 La HW2 were used to keep the protons of the water molecule stable. The structure contains solvent accessible VOIDS of 42.00 \%A. This space would be sufficient to host one crystal water molecule. The total potential solvent area volume calculated with Platon is 234.4 \%A^3^ per unit cell volume of 1752.5 \%A^3^ [13.4%]. An electron density map of the void was generated using JANA2006 to search for a water molecule which was not found. SQUEEZE was only used on a trial dataset and not on the submitted dataset. SQUEEZE was not used as the overall residue electron density total positive electron count in Voids/Cell (taken from a trial SQUEEZE calculation) of 26 distributed over 234.4 \%A^3^ was negligible small. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0099P)^2^+3.5048P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack -0.004(11) _refine_ls_number_reflns 2409 _refine_ls_number_parameters 63 _refine_ls_number_restraints 5 _refine_ls_R_factor_all 0.0126 _refine_ls_R_factor_gt 0.0125 _refine_ls_wR_factor_ref 0.0297 _refine_ls_wR_factor_gt 0.0296 _refine_ls_goodness_of_fit_ref 1.189 _refine_ls_restrained_S_all 1.205 _refine_ls_shift/su_max 0.005 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group La La 1.0000 1.0000 0.769562(4) 0.00553(2) Uani 1 3 d SD . . C1 C 0.79455(15) 0.6667 0.6667 0.00660(19) Uani 1 2 d S . . C2 C 0.68631(13) 0.64257(13) 0.72454(5) 0.00945(16) Uani 1 1 d . . . O1 O 0.94084(10) 0.79971(10) 0.68037(4) 0.00893(12) Uani 1 1 d D . . H1 H 1.011(2) 0.820(3) 0.6520(8) 0.013 Uiso 1 1 d D . . O2 O 0.72774(12) 0.76096(12) 0.75950(5) 0.01595(17) Uani 1 1 d . . . O3 O 0.56344(12) 0.51131(12) 0.73054(5) 0.01682(18) Uani 1 1 d . . . OW O 0.99194(15) 0.81868(16) 0.85431(6) 0.0236(2) Uani 1 1 d D . . HW2 H 0.911(2) 0.738(2) 0.8665(11) 0.035 Uiso 1 1 d D . . HW1 H 1.071(2) 0.834(3) 0.8782(11) 0.035 Uiso 1 1 d D . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 La 0.00591(2) 0.00591(2) 0.00479(3) 0.000 0.000 0.00295(1) C1 0.0070(3) 0.0058(5) 0.0065(5) -0.0008(4) -0.00041(19) 0.0029(2) C2 0.0090(4) 0.0077(4) 0.0085(4) -0.0013(3) 0.0020(3) 0.0019(3) O1 0.0059(3) 0.0079(3) 0.0095(3) -0.0020(2) 0.0015(2) 0.0009(2) O2 0.0144(4) 0.0106(3) 0.0142(4) -0.0057(3) 0.0063(3) -0.0003(3) O3 0.0134(3) 0.0099(3) 0.0170(4) -0.0046(3) 0.0071(3) -0.0017(3) OW 0.0220(5) 0.0299(6) 0.0245(5) 0.0187(5) 0.0109(4) 0.0172(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag La OW 2.4994(11) . ? La OW 2.4995(11) 3_675 ? La OW 2.4996(11) 2_765 ? La O2 2.5175(10) 3_675 ? La O2 2.5175(10) 2_765 ? La O2 2.5175(10) . ? La O1 2.5738(8) 3_675 ? La O1 2.5738(8) 2_765 ? La O1 2.5739(8) . ? C1 O1 1.3971(12) 11_566 ? C1 O1 1.3972(12) . ? C1 C2 1.5615(14) 11_566 ? C1 C2 1.5616(14) . ? C2 O3 1.2475(14) . ? C2 O2 1.2582(14) . ? O1 H1 0.860(15) . ? OW HW2 0.825(16) . ? OW HW1 0.871(15) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag OW La OW 73.66(5) . 3_675 ? OW La OW 73.66(5) . 2_765 ? OW La OW 73.65(5) 3_675 2_765 ? OW La O2 138.52(4) . 3_675 ? OW La O2 76.17(4) 3_675 3_675 ? OW La O2 70.98(3) 2_765 3_675 ? OW La O2 70.98(3) . 2_765 ? OW La O2 138.52(4) 3_675 2_765 ? OW La O2 76.17(4) 2_765 2_765 ? O2 La O2 119.284(7) 3_675 2_765 ? OW La O2 76.17(4) . . ? OW La O2 70.98(3) 3_675 . ? OW La O2 138.52(4) 2_765 . ? O2 La O2 119.285(7) 3_675 . ? O2 La O2 119.284(7) 2_765 . ? OW La O1 149.28(4) . 3_675 ? OW La O1 94.58(4) 3_675 3_675 ? OW La O1 131.12(3) 2_765 3_675 ? O2 La O1 60.15(3) 3_675 3_675 ? O2 La O1 126.81(3) 2_765 3_675 ? O2 La O1 73.16(3) . 3_675 ? OW La O1 131.12(3) . 2_765 ? OW La O1 149.28(4) 3_675 2_765 ? OW La O1 94.58(4) 2_765 2_765 ? O2 La O1 73.16(3) 3_675 2_765 ? O2 La O1 60.15(3) 2_765 2_765 ? O2 La O1 126.81(3) . 2_765 ? O1 La O1 71.57(3) 3_675 2_765 ? OW La O1 94.58(4) . . ? OW La O1 131.12(3) 3_675 . ? OW La O1 149.28(4) 2_765 . ? O2 La O1 126.81(3) 3_675 . ? O2 La O1 73.16(3) 2_765 . ? O2 La O1 60.15(3) . . ? O1 La O1 71.57(3) 3_675 . ? O1 La O1 71.57(3) 2_765 . ? O1 C1 O1 112.34(13) 11_566 . ? O1 C1 C2 105.94(5) 11_566 11_566 ? O1 C1 C2 113.22(6) . 11_566 ? O1 C1 C2 113.21(6) 11_566 . ? O1 C1 C2 105.93(5) . . ? C2 C1 C2 106.18(12) 11_566 . ? O3 C2 O2 125.73(11) . . ? O3 C2 C1 117.72(9) . . ? O2 C2 C1 116.46(9) . . ? C1 O1 La 126.57(6) . . ? C1 O1 H1 113.4(15) . . ? La O1 H1 119.4(15) . . ? C2 O2 La 127.30(8) . . ? La OW HW2 125.1(15) . . ? La OW HW1 125.9(15) . . ? HW2 OW HW1 109(2) . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A O1 H1 O3 0.860(15) 1.755(16) 2.6038(13) 169(2) 10_556 OW HW2 O3 0.825(16) 1.974(18) 2.7153(15) 149(2) 18_656 OW HW1 O2 0.871(15) 2.073(17) 2.9095(17) 161(2) 17_666 _diffrn_measured_fraction_theta_max 0.988 _diffrn_reflns_theta_full 39.99 _diffrn_measured_fraction_theta_full 0.988 _refine_diff_density_max 1.263 _refine_diff_density_min -1.246 _refine_diff_density_rms 0.093 #===END data_ketb _database_code_depnum_ccdc_archive 'CCDC 780267' #TrackingRef '- 1-2crystaldata-new.CIF' _audit_creation_method SHELXL-97 _chemical_name_systematic ; catena-\D-[triaqua-1.5(\m-dihydroxymalonato- \kO,O'':O''',O'''')lanthanum(III)] ; _chemical_name_common ; catena-cdelta-(triaqua-1.5(mu-dihydroxymalonato- kappaO,O'':O''',O'''')lanthanum(iii)) ; _chemical_melting_point ? _chemical_formula_moiety 'C9 H18 La2 O24' _chemical_formula_sum 'C9 H18 La2 O24' _chemical_formula_weight 788.05 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' La La -0.2871 2.4523 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting trigonal _symmetry_space_group_name_H-M ' R 3 2' _symmetry_space_group_name_Hall ' R 3 2" ' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-y, x-y, z' '-x+y, -x, z' 'y, x, -z' 'x-y, -y, -z' '-x, -x+y, -z' 'x+2/3, y+1/3, z+1/3' '-y+2/3, x-y+1/3, z+1/3' '-x+y+2/3, -x+1/3, z+1/3' 'y+2/3, x+1/3, -z+1/3' 'x-y+2/3, -y+1/3, -z+1/3' '-x+2/3, -x+y+1/3, -z+1/3' 'x+1/3, y+2/3, z+2/3' '-y+1/3, x-y+2/3, z+2/3' '-x+y+1/3, -x+2/3, z+2/3' 'y+1/3, x+2/3, -z+2/3' 'x-y+1/3, -y+2/3, -z+2/3' '-x+1/3, -x+y+2/3, -z+2/3' _cell_length_a 9.7580(3) _cell_length_b 9.7580(3) _cell_length_c 21.2982(15) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 120.00 _cell_volume 1756.29(15) _cell_formula_units_Z 3 _cell_measurement_temperature 203(2) _cell_measurement_reflns_used 32425 _cell_measurement_theta_min 3.1 _cell_measurement_theta_max 69.2 _exptl_crystal_description prism _exptl_crystal_colour colorless _exptl_crystal_size_max 0.62 _exptl_crystal_size_mid 0.47 _exptl_crystal_size_min 0.28 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.235 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1134 _exptl_absorpt_coefficient_mu 3.706 _exptl_absorpt_correction_type Multi-scan _exptl_absorpt_correction_T_min 0.2072 _exptl_absorpt_correction_T_max 0.4235 _exptl_absorpt_process_details '(ABSCOR; Higashi, 1995)' _exptl_special_details ; ? ; _diffrn_ambient_temperature 203(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type ; Rigaku RAXIS conversion ; _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 20627 _diffrn_reflns_av_R_equivalents 0.0338 _diffrn_reflns_av_sigmaI/netI 0.0256 _diffrn_reflns_limit_h_min -17 _diffrn_reflns_limit_h_max 17 _diffrn_reflns_limit_k_min -17 _diffrn_reflns_limit_k_max 17 _diffrn_reflns_limit_l_min -38 _diffrn_reflns_limit_l_max 32 _diffrn_reflns_theta_min 3.08 _diffrn_reflns_theta_max 39.98 _reflns_number_total 2432 _reflns_number_gt 2295 _reflns_threshold_expression >2sigma(I) _computing_data_collection ; CrystalClear-SM Expert 2.0 r1 (Rigaku, 2009) ; _computing_cell_refinement ; CrystalClear-SM Expert 2.0 r1 (Rigaku, 2009) ; _computing_data_reduction ; CrystalClear-SM Expert 2.0 r1 (Rigaku, 2009) ; _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics 'DIAMOND (Crystal Impact, 2009)' _computing_publication_material ? _publ_section_references ; Crystal Impact (2009). DIAMOND. Version 3.2. Crystal Impact GbR, Bonn, Germany. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Rigaku (2009). Spider and CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112--122. ; _publ_section_exptl_refinement ; Hydrogen atoms for aromatic CH, aliphatic CH, CH~2~ and methyl groups were positioned geometrically (C---H = 0.94 \%A for aromatic CH, C---H = 0.99 \%A for aliphatic CH, C---H = 0.98 \%A for CH~2~, C---H = 0.97 \%A for CH~3~) and refined using a riding model (AFIX 43 for aromatic CH, AFIX 13 for aliphatic CH, AFIX 23 for CH~2~, AFIX 33 or rotating group refinement 137 for CH~3~), with U~iso~(H) = 1.2U~eq~(CH) and U~iso~(H) = 1.5U~eq~(CH~3~). H atoms on crystal water oxygen / on nitrogen atoms have been found and refined with U~iso~(H) = 1.5U~eq~(O) ; _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. For data set ketb the protons of the aqua ligand (HW1 and HW2) and the C-OH group (H1) were found at a sensible position for a water ligand molecule and C-OH group, respectively. In subsequent refinement the protons were unstable due to their close proximity to the lanthanide atom. Therefore the restraints DFIX 0.9 0.02 O1 H1 OW HW1 OW HW2, DANG 1.41 0.04 HW1 HW2 and SADI La HW1 La HW2 were used to keep the protons of the water molecule stable. The structure contains solvent accessible VOIDS of 43.00 \%A. This space would be sufficient to host one crystal water molecule. The total potential solvent area volume calculated with Platon is 240.5 \%A^3^ per unit cell volume of 1756.3 \%A^3^ [13.7%]. An electron density map of the void was generated using JANA2006 to search for a water molecule which was not found. SQUEEZE was only used on a trial dataset and not on the submitted dataset. SQUEEZE was not used as the overall residue electron density total positive electron count in Voids/Cell (taken from a trial SQUEEZE calculation) of 28 distributed over 240.5 \%A^3^ was negligible small. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0171P)^2^+0.6499P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack -0.002(13) _refine_ls_number_reflns 2432 _refine_ls_number_parameters 63 _refine_ls_number_restraints 5 _refine_ls_R_factor_all 0.0200 _refine_ls_R_factor_gt 0.0178 _refine_ls_wR_factor_ref 0.0381 _refine_ls_wR_factor_gt 0.0378 _refine_ls_goodness_of_fit_ref 1.101 _refine_ls_restrained_S_all 1.104 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group La La 0.0000 0.0000 0.230512(4) 0.00866(3) Uani 1 3 d SD . . C1 C 0.20519(18) 0.3333 0.3333 0.0097(3) Uani 1 2 d S . . C2 C 0.31353(17) 0.35766(17) 0.27540(7) 0.0136(2) Uani 1 1 d . . . O1 O 0.05915(12) 0.20025(13) 0.31960(5) 0.01288(17) Uani 1 1 d D . . H1 H -0.002(3) 0.186(3) 0.3498(9) 0.019 Uiso 1 1 d D . . O2 O 0.27200(15) 0.23930(15) 0.24054(6) 0.0208(2) Uani 1 1 d . . . O3 O 0.43616(15) 0.48807(15) 0.26958(6) 0.0244(3) Uani 1 1 d . . . OW O 0.00922(18) 0.1821(2) 0.14594(8) 0.0322(3) Uani 1 1 d D . . HW1 H 0.094(2) 0.256(3) 0.1300(12) 0.048 Uiso 1 1 d D . . HW2 H -0.072(2) 0.163(3) 0.1207(12) 0.048 Uiso 1 1 d D . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 La 0.00942(3) 0.00942(3) 0.00714(4) 0.000 0.000 0.00471(2) C1 0.0106(5) 0.0091(7) 0.0090(7) -0.0021(5) -0.0010(3) 0.0046(3) C2 0.0135(5) 0.0131(5) 0.0115(6) -0.0014(4) 0.0018(4) 0.0047(5) O1 0.0092(4) 0.0120(4) 0.0129(4) -0.0029(3) 0.0020(3) 0.0019(3) O2 0.0182(5) 0.0161(5) 0.0176(5) -0.0065(4) 0.0078(4) 0.0007(4) O3 0.0204(5) 0.0151(5) 0.0240(6) -0.0069(4) 0.0102(4) -0.0014(4) OW 0.0303(7) 0.0402(8) 0.0341(8) 0.0260(7) 0.0155(6) 0.0236(7) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag La OW 2.5003(13) . ? La OW 2.5003(13) 2 ? La OW 2.5003(13) 3 ? La O2 2.5189(12) 3 ? La O2 2.5189(12) 2 ? La O2 2.5190(12) . ? La O1 2.5737(10) . ? La O1 2.5738(10) 2 ? La O1 2.5738(10) 3 ? C1 O1 1.3971(14) 17 ? C1 O1 1.3972(14) . ? C1 C2 1.5638(18) 17 ? C1 C2 1.5639(18) . ? C2 O3 1.2425(18) . ? C2 O2 1.2574(18) . ? O1 H1 0.838(16) . ? OW HW1 0.851(15) . ? OW HW2 0.900(16) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag OW La OW 73.83(7) . 2 ? OW La OW 73.83(7) . 3 ? OW La OW 73.83(7) 2 3 ? OW La O2 138.65(5) . 3 ? OW La O2 71.17(4) 2 3 ? OW La O2 75.85(5) 3 3 ? OW La O2 71.17(4) . 2 ? OW La O2 75.85(5) 2 2 ? OW La O2 138.65(5) 3 2 ? O2 La O2 119.287(8) 3 2 ? OW La O2 75.84(5) . . ? OW La O2 138.65(5) 2 . ? OW La O2 71.17(4) 3 . ? O2 La O2 119.288(8) 3 . ? O2 La O2 119.288(8) 2 . ? OW La O1 94.40(5) . . ? OW La O1 149.03(5) 2 . ? OW La O1 131.24(4) 3 . ? O2 La O1 126.84(4) 3 . ? O2 La O1 73.23(4) 2 . ? O2 La O1 60.09(3) . . ? OW La O1 131.24(4) . 2 ? OW La O1 94.40(5) 2 2 ? OW La O1 149.02(5) 3 2 ? O2 La O1 73.23(4) 3 2 ? O2 La O1 60.08(3) 2 2 ? O2 La O1 126.84(4) . 2 ? O1 La O1 71.62(4) . 2 ? OW La O1 149.03(5) . 3 ? OW La O1 131.24(4) 2 3 ? OW La O1 94.40(5) 3 3 ? O2 La O1 60.08(3) 3 3 ? O2 La O1 126.84(4) 2 3 ? O2 La O1 73.23(4) . 3 ? O1 La O1 71.62(4) . 3 ? O1 La O1 71.62(4) 2 3 ? O1 C1 O1 112.55(15) 17 . ? O1 C1 C2 105.90(7) 17 17 ? O1 C1 C2 113.11(7) . 17 ? O1 C1 C2 113.11(7) 17 . ? O1 C1 C2 105.89(7) . . ? C2 C1 C2 106.24(15) 17 . ? O3 C2 O2 125.80(14) . . ? O3 C2 C1 117.77(12) . . ? O2 C2 C1 116.32(11) . . ? C1 O1 La 126.68(7) . . ? C1 O1 H1 107.4(16) . . ? La O1 H1 124.8(16) . . ? C2 O2 La 127.43(10) . . ? La OW HW1 124.6(16) . . ? La OW HW2 124.9(15) . . ? HW1 OW HW2 108(2) . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A O1 H1 O3 0.838(16) 1.804(17) 2.6083(16) 160(2) 16_445 OW HW1 O3 0.851(15) 1.916(17) 2.7158(18) 156(2) 12 OW HW2 O2 0.900(16) 2.066(18) 2.926(2) 160(2) 11_455 _diffrn_measured_fraction_theta_max 0.998 _diffrn_reflns_theta_full 39.98 _diffrn_measured_fraction_theta_full 0.998 _refine_diff_density_max 0.964 _refine_diff_density_min -1.058 _refine_diff_density_rms 0.107 #===END data_gdketo _database_code_depnum_ccdc_archive 'CCDC 780268' #TrackingRef '- 1-2crystaldata-new.CIF' _audit_creation_method SHELXL-97 _chemical_name_systematic ; catena-\L-[triaqua-1.5(\m-dihydroxymalonato- \kO,O'':O''',O'''')gadolinium(III)] ; _chemical_name_common ; catena-clambda-(triaqua-1.5(mu-dihydroxymalonato- kappaO,O'':O''',O'''')gadolinium(iii)) ; _chemical_melting_point ? _chemical_formula_moiety 'C9 H18 Gd2 O24' _chemical_formula_sum 'C9 H18 Gd2 O24' _chemical_formula_weight 824.73 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Gd Gd -0.1653 3.9035 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting trigonal _symmetry_space_group_name_H-M ' R 3 2' _symmetry_space_group_name_Hall ' R 3 2" ' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-y, x-y, z' '-x+y, -x, z' 'y, x, -z' 'x-y, -y, -z' '-x, -x+y, -z' 'x+2/3, y+1/3, z+1/3' '-y+2/3, x-y+1/3, z+1/3' '-x+y+2/3, -x+1/3, z+1/3' 'y+2/3, x+1/3, -z+1/3' 'x-y+2/3, -y+1/3, -z+1/3' '-x+2/3, -x+y+1/3, -z+1/3' 'x+1/3, y+2/3, z+2/3' '-y+1/3, x-y+2/3, z+2/3' '-x+y+1/3, -x+2/3, z+2/3' 'y+1/3, x+2/3, -z+2/3' 'x-y+1/3, -y+2/3, -z+2/3' '-x+1/3, -x+y+2/3, -z+2/3' _cell_length_a 9.6396(8) _cell_length_b 9.6396(8) _cell_length_c 20.7433(16) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 120.00 _cell_volume 1669.3(2) _cell_formula_units_Z 3 _cell_measurement_temperature 294(2) _cell_measurement_reflns_used 9845 _cell_measurement_theta_min 3.1 _cell_measurement_theta_max 40.3 _exptl_crystal_description block _exptl_crystal_colour colourless _exptl_crystal_size_max 0.19 _exptl_crystal_size_mid 0.10 _exptl_crystal_size_min 0.08 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.461 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1176 _exptl_absorpt_coefficient_mu 6.020 _exptl_absorpt_correction_type Multi-scan _exptl_absorpt_correction_T_min 0.3942 _exptl_absorpt_correction_T_max 0.6445 _exptl_absorpt_process_details '(ABSCOR; Higashi, 1995)' _exptl_special_details ; ? ; _diffrn_ambient_temperature 294(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type ; Rigaku RAXIS conversion ; _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 10186 _diffrn_reflns_av_R_equivalents 0.0345 _diffrn_reflns_av_sigmaI/netI 0.0309 _diffrn_reflns_limit_h_min -14 _diffrn_reflns_limit_h_max 14 _diffrn_reflns_limit_k_min -13 _diffrn_reflns_limit_k_max 12 _diffrn_reflns_limit_l_min -31 _diffrn_reflns_limit_l_max 29 _diffrn_reflns_theta_min 3.13 _diffrn_reflns_theta_max 33.14 _reflns_number_total 1427 _reflns_number_gt 1391 _reflns_threshold_expression >2sigma(I) _computing_data_collection ; CrystalClear-SM Expert 2.0 r1 (Rigaku, 2009) ; _computing_cell_refinement ; CrystalClear-SM Expert 2.0 r1 (Rigaku, 2009) ; _computing_data_reduction ; CrystalClear-SM Expert 2.0 r1 (Rigaku, 2009) ; _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics 'DIAMOND (Crystal Impact, 2009)' _computing_publication_material ? _publ_section_references ; Crystal Impact (2009). DIAMOND. Version 3.2. Crystal Impact GbR, Bonn, Germany. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Rigaku (2009). Spider and CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112--122. ; _publ_section_exptl_refinement ; Hydrogen atoms for aromatic CH, aliphatic CH, CH~2~ and methyl groups were positioned geometrically (C---H = 0.94 \%A for aromatic CH, C---H = 0.99 \%A for aliphatic CH, C---H = 0.98 \%A for CH~2~, C---H = 0.97 \%A for CH~3~) and refined using a riding model (AFIX 43 for aromatic CH, AFIX 13 for aliphatic CH, AFIX 23 for CH~2~, AFIX 33 or rotating group refinement 137 for CH~3~), with U~iso~(H) = 1.2U~eq~(CH) and U~iso~(H) = 1.5U~eq~(CH~3~). H atoms on crystal water oxygen / on nitrogen atoms have been found and refined with U~iso~(H) = 1.5U~eq~(O) ; _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. For data set gdketo the protons of the aqua ligand (HW1 and HW2) and the C-OH group (H1) were found at a sensible position for a water ligand molecule and C-OH group, respectively. In subsequent refinement the protons were unstable due to their close proximity to the lanthanide atom. Therefore the restraints DFIX 0.9 0.02 O1 H1 OW HW1 OW HW2, DANG 1.46 0.04 HW1 HW2 and SADI Gd HW1 Gd HW2 were used to keep the protons of the water molecule stable. The structure contains solvent accessible VOIDS of 45.00 \%A. This space would be sufficient to host one crystal water molecule. The total potential solvent area volume calculated with Platon is 240.7 \%A^3^ per unit cell volume of 1669.3 \%A^3^ [14.4%]. An electron density map of the void was generated using JANA2006 to search for a water molecule which was not found. SQUEEZE was only used on a trial dataset and not on the submitted dataset. SQUEEZE was not used as the overall residue electron density total positive electron count in Voids/Cell (taken from a trial SQUEEZE calculation) of 35 distributed over 240.5 \%A^3^ was negligible small. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0102P)^2^+1.7470P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack -0.026(16) _refine_ls_number_reflns 1427 _refine_ls_number_parameters 63 _refine_ls_number_restraints 5 _refine_ls_R_factor_all 0.0190 _refine_ls_R_factor_gt 0.0182 _refine_ls_wR_factor_ref 0.0411 _refine_ls_wR_factor_gt 0.0408 _refine_ls_goodness_of_fit_ref 1.209 _refine_ls_restrained_S_all 1.213 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Gd Gd 1.0000 1.0000 0.766162(7) 0.00878(5) Uani 1 3 d SD . . C1 C 0.7975(3) 0.6667 0.6667 0.0102(7) Uani 1 2 d S . . C2 C 0.6902(3) 0.6461(3) 0.72650(13) 0.0139(5) Uani 1 1 d . . . O1 O 0.9450(2) 0.8022(2) 0.67979(9) 0.0140(4) Uani 1 1 d D . . H1 H 1.005(4) 0.808(4) 0.6532(16) 0.021 Uiso 1 1 d D . . O2 O 0.7335(3) 0.7681(3) 0.76079(10) 0.0203(4) Uani 1 1 d . . . O3 O 0.5680(3) 0.5140(3) 0.73445(12) 0.0306(6) Uani 1 1 d . . . OW O 0.9858(3) 0.8185(3) 0.84797(13) 0.0318(6) Uani 1 1 d D . . HW1 H 0.907(3) 0.742(4) 0.8603(18) 0.048 Uiso 1 1 d D . . HW2 H 1.060(3) 0.823(5) 0.8671(18) 0.048 Uiso 1 1 d D . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Gd 0.00912(6) 0.00912(6) 0.00811(8) 0.000 0.000 0.00456(3) C1 0.0104(12) 0.0104(15) 0.0099(14) 0.0000(11) 0.0000(6) 0.0052(7) C2 0.0128(12) 0.0153(13) 0.0120(12) -0.0019(9) 0.0017(9) 0.0057(10) O1 0.0076(8) 0.0138(9) 0.0155(8) -0.0030(7) 0.0029(6) 0.0016(7) O2 0.0163(10) 0.0163(10) 0.0196(10) -0.0055(8) 0.0071(8) 0.0016(9) O3 0.0232(11) 0.0162(11) 0.0341(13) -0.0094(8) 0.0156(9) -0.0038(9) OW 0.0256(13) 0.0381(15) 0.0363(14) 0.0242(12) 0.0129(10) 0.0193(12) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Gd OW 2.391(2) . ? Gd OW 2.391(2) 2_765 ? Gd OW 2.391(2) 3_675 ? Gd O2 2.422(2) 2_765 ? Gd O2 2.422(2) 3_675 ? Gd O2 2.422(2) . ? Gd O1 2.473(2) 2_765 ? Gd O1 2.4727(19) 3_675 ? Gd O1 2.4727(19) . ? C1 O1 1.395(3) 11_566 ? C1 O1 1.395(3) . ? C1 C2 1.564(3) 11_566 ? C1 C2 1.564(3) . ? C2 O3 1.240(3) . ? C2 O2 1.254(3) . ? O1 H1 0.78(3) . ? OW HW1 0.79(2) . ? OW HW2 0.80(2) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag OW Gd OW 75.21(11) . 2_765 ? OW Gd OW 75.21(11) . 3_675 ? OW Gd OW 75.20(11) 2_765 3_675 ? OW Gd O2 69.59(8) . 2_765 ? OW Gd O2 73.20(9) 2_765 2_765 ? OW Gd O2 137.36(9) 3_675 2_765 ? OW Gd O2 137.36(9) . 3_675 ? OW Gd O2 69.60(8) 2_765 3_675 ? OW Gd O2 73.20(9) 3_675 3_675 ? O2 Gd O2 119.789(9) 2_765 3_675 ? OW Gd O2 73.20(9) . . ? OW Gd O2 137.36(9) 2_765 . ? OW Gd O2 69.60(8) 3_675 . ? O2 Gd O2 119.791(9) 2_765 . ? O2 Gd O2 119.790(9) 3_675 . ? OW Gd O1 131.87(7) . 2_765 ? OW Gd O1 92.21(9) 2_765 2_765 ? OW Gd O1 146.78(8) 3_675 2_765 ? O2 Gd O1 62.31(6) 2_765 2_765 ? O2 Gd O1 73.60(7) 3_675 2_765 ? O2 Gd O1 130.32(7) . 2_765 ? OW Gd O1 146.78(8) . 3_675 ? OW Gd O1 131.87(7) 2_765 3_675 ? OW Gd O1 92.21(9) 3_675 3_675 ? O2 Gd O1 130.32(7) 2_765 3_675 ? O2 Gd O1 62.31(6) 3_675 3_675 ? O2 Gd O1 73.60(7) . 3_675 ? O1 Gd O1 73.29(8) 2_765 3_675 ? OW Gd O1 92.21(9) . . ? OW Gd O1 146.78(8) 2_765 . ? OW Gd O1 131.87(7) 3_675 . ? O2 Gd O1 73.60(7) 2_765 . ? O2 Gd O1 130.32(7) 3_675 . ? O2 Gd O1 62.31(6) . . ? O1 Gd O1 73.29(8) 2_765 . ? O1 Gd O1 73.29(8) 3_675 . ? O1 C1 O1 113.2(3) 11_566 . ? O1 C1 C2 105.29(13) 11_566 11_566 ? O1 C1 C2 113.29(14) . 11_566 ? O1 C1 C2 113.28(14) 11_566 . ? O1 C1 C2 105.28(13) . . ? C2 C1 C2 106.5(3) 11_566 . ? O3 C2 O2 126.0(3) . . ? O3 C2 C1 117.7(2) . . ? O2 C2 C1 116.2(2) . . ? C1 O1 Gd 126.09(13) . . ? C1 O1 H1 108(3) . . ? Gd O1 H1 126(3) . . ? C2 O2 Gd 126.46(18) . . ? Gd OW HW1 126(2) . . ? Gd OW HW2 126(3) . . ? HW1 OW HW2 108(4) . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A O1 H1 O3 0.78(3) 1.85(3) 2.592(3) 159(4) 10_556 OW HW1 O3 0.79(2) 1.98(3) 2.700(3) 150(4) 18_656 OW HW2 O2 0.80(2) 2.19(3) 2.969(3) 165(3) 17_666 OW HW2 OW 0.80(2) 2.44(4) 2.839(5) 112(4) 16_546 _diffrn_measured_fraction_theta_max 0.998 _diffrn_reflns_theta_full 33.14 _diffrn_measured_fraction_theta_full 0.998 _refine_diff_density_max 0.977 _refine_diff_density_min -1.088 _refine_diff_density_rms 0.141 #===END