Supporting Information

Amine-Catalyzed (3+n) Annulations of

2-(Acetoxymethyl)buta-2,3-dienoates with 1,n-Bisnucleophiles (n = 3-5)

Chaolong Li, Qiongmei Zhang and Xiaofeng Tong* Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China <u>tongxf@ecust.edu.cn</u>

Contents

I.	General Information	 S2
II.	Optimization for DABCO-Catalyzed (3+n) Annulations	 S3
III.	The procedure for (3+n) annulations and the data for compounds 3 and 5	 S4
IV.	Data for the Compounds 3, 5 and 6	 S4

I. General information

Unless otherwise noted, all reagents were obtained commercially and used without further purification.

NMR spectrum: ¹H and ¹³C spectra were recorded on a Bruker AVANCE 400 spectrometer, operating at 400 MHz for ¹H NMR, 100 MHz for ¹³C NMR. For ¹H NMR, chemical shifts were reported downfield from CDCl₃ (δ : 7.27 ppm). For ¹³C NMR, chemical shifts were reported in the scale relative to the solvent of CDCl₃ (δ : 77.0 ppm) used as an internal reference.

Mass spectroscopy: Mass spectra were in general recorded on Micromass GCT.

Chromatography: Column chromatography was performed with silica gel (200-300 mesh ASTM).

II.Optimization for DABCO-catalyzed (3+3) Annulations

=C= CO ₂ Bn	+ Ph	CN 20 mol CN 1.3 ec solve	% DABCO juiv.Base ent, t, rt	NC CO ₂ Ph O	Bn
	2a				
Entry	Base	Solvent	t (h)	$\mathbf{Yield} (\%)^{\circ}$	
1	Cs_2CO_3	benzene	18	34	
2	Cs ₂ CO ₃	toluene	18	96	
3	Cs_2CO_3	CH_2Cl_2	24	68	
4	Cs_2CO_3	acetone	12	96	
5	Cs ₂ CO ₃	THF	8	84	
6	Cs_2CO_3	MeCN	4	97	
7	Cs_2CO_3	DMF	0.5	94	
8	K ₂ CO ₃	DMF	0.5	99	
9	Na ₂ CO ₃	DMF	1	95	
10 ^c	K ₂ CO ₃	DMF	0.5	91	

Table S1: Optimization for DABCO-catalyzed (3+3) Annulations of 1a and 2a^{*a*}

^{*a*}Reaction conditions: to the solution of **2a** (26.1 mg, 0.18 mmol, 1.2 equiv.), base (0.195 mmol, 1.3 equiv.), DABCO (0.03 mmol, 20 mol%) in DMF (2 mL), was slowly added the solution of **1a** (36.9 mg, 0.15 mmol) in DMF (2 mL) over 20 minutes. ^{*b*}Isolated yield. ^{*c*}10% catalyst was used.

Optimization was conducted with the model reaction between **1a** and **2a** in the presence of 20 mol% DABCO (Table S1). When 1.3 equivalents of Cs_2CO_3 were used as the base, compound **3aa** could be isolated in 34% yield (entry 1, Table S1). This transformation seemed to be strongly dependent on the solvent (entries 1-7, Table S1) and solvent DMF was found out to be the optimal one. To our delight, the yield reached as high as 99% when K_2CO_3 was used and the reaction time could be shortened to 0.5 h (entry 8, Table S1).

III. The procedure for (3+n) annulations and the data for compounds 3 and 5

In a 25 mL Schlenk tube, the mixture of **2** (0.18 mmol, 1.2 equiv.), DABCO (3.4 mg, 20 mol %) and K_2CO_3 (26.9 mg, 0.195 mmol, 1.3 equiv.) was introduced with DMF (2 mL). The mixture was stirred at room temperature. To this reaction mixture the solution of **1** (0.15 mmol) in DMF (2 mL) was slowly added over 20 minutes. The reaction mixture was monitored by TLC. When the reaction was finished, water (20 mL) was added to quench the reaction. The resulted mixture was extracted with EtOAc (3x20 mL), and then the organic phase was dried with Na₂SO₄. After remove of organic solvent, the residue was subjected to silica gel column chromatography (petroleum ether: EtOAc 30:1 to 10:1 gradient) to give the product.

IV. Data for the compounds 3, 5 and 6

BnO₂C CN Ph **3aa** Light yellow solid, M.p.106-108°C (49.2 mg, 99%). ¹H NMR (400 MHz, CDCl₃): δ 7.79-7.78 (m, 2H), 7.50-7.37 (m, 8H), 5.24 (s, 2H), 3.33 (s, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 159.8, 159.5, 135.7, 131.2, 130.6, 128.6, 128.5, 128.3, 128.1, 127.4, 118.5, 101.2, 85.1, 66.5, 24.5, 18.5. MS (m/z): 331; HRMS (EI⁺) Calcd for C₂₁H₁₇NO₃ 331.1208, Found 331.1205.

BnO₂C CN S

3ab White solid, M.p.92-94°C (47 mg, 93%).

¹H NMR (400 MHz, CDCl₃): δ 7.94-7.93 (m, 1H), 7.51-7.50 (m, 1H), 7.43-7.36 (m, 5H), 7.14-7.12 (m, 1H), 5.23 (s, 2H), 3.30 (s, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 159.5, 153.6, 135.6, 132.9, 129.6, 129.3, 128.6, 128.3, 128.1, 127.9, 118.5, 101.3, 81.8, 66.5, 24.1, 18.5. MS (m/z): 337; HRMS (EI⁺) Calcd for C₁₉H₁₅NO₃S 337.0773, Found 337.0776.

3ac Yellow solid, M.p.114-116°C (55.7 mg, 83%).

¹H NMR (400 MHz, CDCl₃): δ 7.59-7.57 (m, 2H), 7.55-7.51 (m, 1H), 7.47-7.44 (m, 1H), 7.41-7.32 (m, 11H), 5.23 (s, 2H), 3.44 (s, 2H),2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.5, 159.0, 155.9, 140.0, 135.5, 132.7, 131.3, 129.8, 129.0, 128.4, 127.9, 127.7, 127.5, 127.3, 115.8, 102.3, 66.4, 23.8, 18.7. MS (m/z): 446; HRMS (EI⁺) Calcd for C₂₁H₁₇NO₃-Bn 355.0640, Found 355.0637.

Ö BnO₂C

3ad Colourless liquid (39.2 mg, 91%)

¹H NMR (400 MHz, CDCl₃): δ 7.38-7.32 (m, 5H), 5.22 (s, 2H), 3.20 (s, 2H), 2.26 (s, 3H), 2.24 (s, 3H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.0, 166.9, 159.3, 157.2, 136.1, 128.5, 128.1, 128.0, 110.5, 102.7, 66.1, 29.7, 23.6, 18.8, 18.6. MS (m/z): 286; HRMS (EI⁺) Calcd for $C_{17}H_{18}O_4$ -CO 258.0892, Found 258.0894.

3ae Light yellow liquid (34.5 mg, 56%).

¹H NMR (400 MHz, CDCl₃): δ 7.70-7.68 (m, 2H), 7.39-7.38 (m, 4H), 7.32-7.27 (m, 4H), 7.21-7.17 (m, 2H), 7.14-7.11 (m, 3H), 5.24 (s, 2H), 3.44 (s, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.2, 166.8, 160.6, 137.0, 136.1, 132.8, 132.5, 130.0, 129.2, 129.0, 128.5, 128.1, 128.0, 111.7, 102.0, 66.1, 25.2, 18.8. MS (m/z): 410; HRMS (EI⁺) Calcd for $C_{27}H_{22}O_4$ 410.1518, Found 410.1516.

BnO₂C Ph

3af yellow liquid (47 mg, 80%).

¹H NMR (400 MHz, CDCl₃): δ 7.41-7.39 (m, 10H), 5.69-5.62 (m, 1H), 5.25 (s, 2H), 5.10-5.02 (m, 2H), 4.47 (d, J = 5.6 Hz, 2H), 3.37 (s, 2H), 2.33 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃): δ 166.79, 166.76, 159.9, 157.0, 136.1, 134.0, 131.6, 129.6, 128.6, 128.5, 128.4, 128.0, 127.9, 117.8, 104.6, 102.4, 66.1, 65.1, 23.6, 18.6. MS (m/z): 390; HRMS (EI⁺) Calcd for C₂₄H₂₂O₅ 390.1467, Found 390.1464.

0 BnO₂C

3ag Coloueless liquid (37.6 mg, 77%).

¹H NMR (400 MHz, CDCl₃): δ 7.37-7.31 (m, 5H), 5.19 (s, 2H), 3.01 (s, 2H), 2.30 (s, 4H), 2.28 (s, 3H), 1.09 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 197.8, 166.8, 163.3, 158.8, 136.1, 128.5, 128.1, 128.0, 110.0, 104.2, 66.1, 50.5, 40.6, 32.0, 28.3, 19.0, 18.4. MS (m/z): 326; HRMS (EI⁺) Calcd for $C_{20}H_{22}O_4$ 326.1518, Found 326.1516.

С BnO₂C

3ah Red solid, M.p.133-135 °C (23.8 mg, 48%).

¹H NMR (400 MHz, CDCl₃): δ 7.45-7.43 (m, 1H), 7.39-7.37 (m, 4H), 7.36-7.33 (m, 2H), 7.30-7.27 (m, 1H), 7.14-7.16 (m, 1H), 5.22 (s, 2H), 3.15 (s, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ192.7, 167.9, 166.6, 159.9, 136.6, 135.8, 132.3, 132.1, 130.0, 128.6, 128.2, 128.1, 121.7, 117.9, 108.0, 105.0, 66.5, 18.9, 18.7. MS (m/z): 332; HRMS (EI⁺) Calcd for $C_{21}H_{16}O_4$ 332.1049, Found 332.1050.

BnO₂C .CO₂Et

3ai Coloueless liquid (33.5mg, 63%).

¹H NMR (400 MHz, CDCl₃): δ 7.38-7.32 (m, 5H), 5.89-5.79 (m, 1H), 5.21 (s, 2H), 5.08-4.98 (m, 2H), 4.202 (q, *J* = 7.2 Hz, 2H), 3.15 (s, 2H), 2.76 (t, *J* = 7.6 Hz, 2H), 2.34-2.29 (m, 2H), 2.26 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.7, 167.9, 166.6, 159.9, 136.6, 135.8, 132.3, 132.1, 130.0, 128.6, 128.2, 128.1, 121.7, 117.9, 108.0, 105.0, 66.5, 18.9, 18.7. MS (m/z): 356; HRMS (EI⁺) Calcd for C₂₁H₁₆O₄ 356.1624, Found 356.1625.

^O Ph **3ba** Light yellow liquid (18.8 mg, 53%) ¹H NMR (400 MHz, CDCl₃): δ 7.81-7.80 (m, 2H), 7.51-7.47 (m, 3H), 7.40-7.39 (m, 5H), 5.28-5.21 (m, 2H), 3.66 (t, *J* = 4.4 Hz, 1H), 2.44 (s, 3H), 1.77-1.68 (m, 2H), 0.93 (t, *J* = 7.6 Hz, 3H); ¹³C NMR(100 MHz, CDCl₃): δ 168.0, 160.4, 160.2, 135.7, 131.2, 130.7, 128.7, 128.6, 128.4, 128.2, 127.6, 118.6, 105.4, 88.8, 66.6, 35.5, 28.2, 18.7, 8.8. MS (m/z): 359; HRMS (EI⁺) Calcd for C₂₄H₂₃NO₃-Et 330.1130, Found 330.1133; HPLC: AS-H column, *n*-hexane/*i*-propanol = 96/4, Flow rate: 1.0 mL/min, UV = 254 nm, t_r = 7.90 min (minor) and t_r = 8.97 min (major).

S14

HPLC (OD-H column, $\lambda = 254$ nm, eluent: *n*-hexane/*i*-propanol = 96/4, flow rate: 1.0 mL/min)

S15

Ph 3ca White solid, M.p.125-127°C (42.1 mg, 69%).

¹H NMR (400 MHz, CDCl₃): δ 7.81-7.79 (m, 2H), 7.50-7.46 (m, 3H), 7.35-7.27 (m, 8H), 7.13-7.11 (m, 2H), 5.14-5.04 (m, 2H), 4.64 (s, 1H), 2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.5, 159.2, 158.0, 142.5, 135.4, 131.3, 130.5, 128.8, 128.4, 128.1, 128.0, 127.9, 127.7, 118.0, 105.8, 90.6, 66.5, 40.7, 18.7. MS (m/z): 407; HRMS (EI⁺) Calcd for C₂₇H₂₁NO₃ 407.1521, Found 407.1522; HPLC: AS-H column, *n*-hexane/*i*-propanol = 95/5, Flow rate: 0.9 mL/min, UV = 254 nm, t_r = 12.07 min and t_r = 13.47 min (major).

HPLC (AS-H column, $\lambda = 254$ nm, eluent: *n*-hexane/*i*-propanol = 95/5, flow rate: 0.9 mL/min)

¹H NMR (400 MHz, CDCl₃): δ 7.40-7.39 (m, 4H), 7.36-7.32 (m, 9H), 7.25-7.23 (m, 2H), 5.11 (s, 2H), 5.00 (s, 2H), 4.23 (s, 2H), 4.27 (s, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 121.0, 137.0, 136.0, 134.2, 128.97, 128.91, 128.5, 128.3, 128.1, 127.9, 127.7, 126.5, 99.5, 66.0, 52.5, 48.7, 47.6, 17.4. MS (m/z): 462; HRMS (EI⁺) Calcd for C₂₆H₂₆N₂O₄S 462.1613, Found 462.1614.

5ab White Solid M. p. 91-93 °C (77.8 mg, 94%).

¹H NMR (400 MHz, CDCl₃): δ 7.72-7.70 (m, 2H), 7.60.7.57 (m, 2H), 7.47-7.46 (m, 2H), 7.42-7.36 (m, 4H), 7.31-7.24 (m, 4H), 5.25 (s, 2H), 4.030-4.028 (m, 2H), 3.55-3.43 (m, 4H), 2.43 (s, 6H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 153.6, 144.3, 143.6, 137.5, 135.5, 135.3, 129.98, 129.73, 128.5, 128.4, 128.3, 127.2, 127.0, 126.4, 67.1, 50.2, 49.4, 47.2, 21.5, 20.3. MS (m/z): 554; HRMS (EI⁺) Calcd for C₂₈H₃₀N₂O₆S₂ 554.1545, Found 554.1544.

5ac White solid, M.p. 128-131°C (42 mg, 74%).

¹H NMR (400 MHz, CDCl₃): δ 7.69-7.67 (m, 2H), 7.60-7.58 (m, 2H), 7.48-7.46 (m, 2H), 7.42-7.35 (m, 3H), 7.30-7.28 (m, 2H), 7.26-7.24 (m, 2H), 5.25 (s, 2H), 4.19-4.18 (m, 2H), 3.43-3.38 (m, 4H), 2.44 (s, 3H), 2.43 (s, 3H), 1.99 (s, 3H), 1.82 (t, *J* = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 147.3, 144.0, 143.2, 137.0, 136.5, 135.5, 133.1, 129.88, 129.69, 128.6, 128.5, 128.3, 127.4, 127.0, 67.3, 48.5, 48.0, 46.3, 28.5, 21.53, 21.48, 17.7. MS (m/z): 568; HRMS (EI⁺) Calcd for C₂₉H₃₂N₂O₆S₂-Ts 413.1535, Found 413.1529.

¹H NMR (400 MHz, CDCl₃): δ 7.72-7.70 (m, 2H), 7.47-7.40 (m, 3H), 7.34 (m, 5H), 5.25-5.17 (m, 2H), 4.980-4.975 (d, J = 2.0 Hz, 1H), 4.54-4.536 (d, J = 2.0 Hz, 1H), 3.65 (t, J = 5.6 Hz, 1H), 2.96 (dd, J = 4.8 Hz, J = 16.4 Hz, 1H), 2.78 (dd, J = 6.0 Hz, J = 16.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl3): δ 169.4, 162.4, 150.8, 135.1, 131.6, 130.9, 128.6, 128.5, 128.4, 127.8, 119.0, 97.1, 82.2, 67.5, 40.9, 26.5. MS (m/z): 331; HRMS (EI⁺) Calcd for C₂₁H₁₇NO₃ 331.1208, Found 331.1212.

