Supporting information

General methods

All reactions were performed under nitrogen atmosphere (using standard Schlenk technique or glove box). All reagents were used as received unless otherwise stated. Tetrahydrofuran was distilled from benzophenone/sodium under nitrogen and stored over sodium in a glove box. Dissolving the substrate to be defluorinated in THF is not necessary. Same results are obtained when used neat. The dilute reaction mixtures described for the defluorination reactions originate from the use of stock solution used to facilitate the addition of the accurate amount of substrate. Column chromatography was performed using Silica Gel 60, 0.04–0.06 mm. ¹H, ¹³C and ¹⁹F NMR spectra were recorded at a 400 MHz JEOL Eclipse 400 instrument, operating at 400 MHz for ¹H nuclei. An 800 MHz Varian instrument was used as complement for menthyl-2,3,3,3-tetrafluoropropanoate. Samples were dissolved in CDCl₃ and chemical shifts are given in ppm (parts per million) relative to residual CHCl₃ (7.26 ppm), α, α, α trifluorotoluene (-63.6 ppm) was used as internal standard for ¹⁹F NMR. Gas chromatography/mass spectrometry analyses were performed on a DB-5 equivalent capillary column (length 30m, i.d. 25 µm) using helium as carrier gas. Injector temperature 300 °C. Temperature program: 40 to 330 °C (12 °C/min) with 4 minutes hold time. The MS detector consisted of an ion trap with 70 eV ionization.

Preparation of SmI₂ in THF

Diiodoethane (23 mmol, 6.58 g) was added to dry THF (194 ml). Samarium metal (19 mmol, 4.21 g, powder) was added. The mixture was allowed to stir at room temperature in the glove box. This yields a deep-blue 0.12 M solution of SmI₂.

Decyl-2,2,2,-trifluoroacetate. Decanol (0.48 ml, 2.5 mmol) was solvated in DCM (15 ml) and cooled to 0 °C. Triethylamine (0.45 ml, 3.3 mmol) was added, followed by trifluoro aceticanhydride (0.45 ml, 3.25 mmol). Cooling bath was removed and the reaction was stirred over night. The reaction mixture was washed with 1) 50 ml H₂O, 2) 50 ml NH₄Cl (aq), 3) brine. Organic layer was dried using Na₂SO₄ and concentrated under reduced pressure yielding a pale yellow liquid. The crude mixture was purified by column chromatography (4:1, pentane-diethyl ether) and afforded the product as a colorless liquid, 80% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 4.34 (CH₂O, t, ³*J* = 6.7 Hz, 2H), 1.81 – 1.67 (CH₂CH₂O, m, 2H), 1.46 – 1.18 (7*CH₂, br m, 14H), 0.88 (CH₃, t, ³*J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 157.8 (CO, q, ²*J* = 42.1 Hz), 114.7 (CF₃, q, ¹*J* = 285.7 Hz), 68.5 (CH₂O), 32.0 (CH₂), 29.6 (CH₂), 29.57 (CH₂), 29.4 (CH₂), 29.2 (CH₂), 28.3 (CH₂), 25.7 (CH₂), 22.8 (CH₂), 14.2 (CH₃). ¹⁹F NMR (376 MHz) -75.0. HRMS (CI, NH₃) Calculated for C₁₂H₂₅NO₂F₃ [M + NH₄]⁺: 272.1837, found: 272.1825.

1-Adamantyl-2,2,2-trifluoroacetamide. 1-adamantylamine (342 mg, 2,3 mmol) was dissolved in DCM (50 ml) and cooled to 0 °C. Triethylamine (0.35 ml, 2.5 mmol) was added, followed by trifluororacetic anhydride (0.38 ml, 2.7 mmol). Cooling bath was removed and the reaction was stirred over night. The reaction mixture was washed with 1) 50 ml H₂O 2) 50 ml NH₄Cl (aq) 3) brine. Organic layer was dried using Na₂SO₄ and concentrated under reduced pressure yielding a yellow solid. The crude mixture was purified

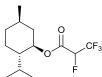
by column chromatography (5:1, heptane-diethyl ether) and afforded the desired product as a white solid in 84 % yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 5.86 (br s, 1H), 2.13 (m, 3H), 2.03 (m, 6H), 1.70 (m, 6H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 155.8 (CO, d, ${}^{2}J$ = 35.7 Hz), 115.7 (CF₃, d, ${}^{1}J$ = 289.7 Hz), 53.5 (CNH), 41.1 (3*CH₂), 36.1 (3*CH₂), 29.4 (3*CH). ¹⁹F NMR (376 MHz) - 76.1 (CF₃). HRMS (ESI) Calculated for C₁₂H₁₅NO₂F₃ [M -H]: 246.1106, found: 246.1103.

Menthyl-2,2,3,3,3-pentafluoropropanoate. (-)-Menthol (588 mg, 3.8 mmol) was dissolved in DCM (25 ml) and cooled to 0 °C. Triethylamine (0.63 ml, 4.5 mmol) was added, followed by 2,2,3,3,3-pentafluoropropionic anhydride (0.88 ml, 4.5 mmol). Cooling bath was removed and the reaction was stirred over night. The reaction mixture was washed with 1) 50 ml H_2O 2) 50 ml NH_4Cl (aq) 3) brine. Organic layer was dried using Na_2SO_4 and concentrated under reduced pressure yielding a yellow solid. The crude mixture was purified by column chromatography (4:1, pentane-diethyl ether) and afforded the desired product as a white solid in 75 % yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 4.91 (CHO, ddd (appear as an dt), J = 11.0, 5.5, 5.5 Hz, 1H), 2.06 - 2.03 (m, 1H), 1.88 - 1.80 (m, 1H), 1.75-1.71 (m, 2H), 1.57 - 1.48 (m, 2H), 1.18 - 1.01 (m, 2H), 0.94 (CH₃CH, d, J = 6.6 Hz, 3H), 0.91 (CH₃, d, J = 7.0 Hz, 3H), 0.77 (CH₃, d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 158.2 (CO, t, ²J = 29.0 Hz), 117.9 (CF₃, dt, ¹J = 286.3, ²J = 34.2 Hz), 106.1 (CF₂, td, ¹J = 264.6, ²J = 39.7 Hz), 79.9 (C-O), 46.8 (<u>C</u>HCH-O), 40.1 (<u>C</u>H₂CH-O), 34.0 (CH₂), 31.6 (CHCH₃), 26.2 (CH(CH₃)₂, 23.3 (CH₂CH), 22.0 (CH₃), 20.7 (CH₃), 16.0 (CH₃). ¹⁹F NMR (376 MHz) -83.7 (CF₃), -122.6 (CF₂). HRMS (CI, NH₃) Calculated for $C_{13}H_{23}NO_{2}F_{5}[M + NH_{4}]^{+}$: 320.1649, found: 320.1634.

H $_{\mathsf{F}}$ **F 1-Adamantyl-2,2,3,3,3-pentafluoropropionamide**. 1-adamantylamine (400 mg, 2,6 mmol) was dissolved in DCM (50 ml) and cooled to 0 °C. Triethylamine (0.44 ml, 3.2 mmol) was added, followed by pentafluoropropionic anhydride (0.56 ml, 2.9 mmol). Cooling bath was removed and the reaction was stirred over night. The reaction mixture was washed with 1) 50 ml H₂O, 2) 50 ml NH₄Cl (aq), 3) brine. Organic layer was dried using Na₂SO₄ and concentrated under reduced pressure yielding a yellow solid. The crude mixture was purified by column chromatography (5:1, heptane-ditheyl ether) and afforded the desired product as a white solid in 88 % yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 5.96 (NH, s, 1H), 2.14-2.09 (3*CH, m, 3H), 2.05-2.02 (3*CH₂, m, 6H), 1.70 (3*CH₂, t, *J* = 2.8 Hz, 6H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 156.3 (CO, t, *J* = 24.5 Hz), 118.0 (CF₃, q of t, ¹*J* = 236.1 Hz, ²*J* = 34.9 Hz), 106.5 (CF₂, t of q, ¹*J* = 268.7 Hz, ²*J* = 34.9 Hz), 53.7 (CNH), 40.9 (3*CH₂), 36.1 (3*CH₂), 29.4 (3*CH). ¹⁹F NMR (376 MHz) -83.7 (CF₃), -123.5 (CF₂). HRMS (ESI) Calculated for C₁₃H₁₅NOF₅ [M - H]⁻: 296.1074, found: 296.1075.

2,2,2,3,3-Pentafluorophenylethylpropanamide. Phenylethylamine (0.52 mL, 4.1 mmol) was dissolved in DCM (25 ml) and cooled to 0 °C. Triethylamine (0.7 ml, 5.0 mmol) was added, followed by pentafluoropropionic anhydride (0.97 ml, 5.0 mmol). Cooling bath was removed and the reaction was stirred for two hours. The reaction mixture


was washed with 1) 50 ml H₂O, 2) 50 ml NH₄Cl (aq), 3) brine. Organic layer was dried using Na₂SO₄ and concentrated under reduced pressure yielding a yellow solid. The crude mixture was purified by column chromatography (2:1, pentane-diethyl ether) and afforded the desired product as a white solid in 90 % yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.36-7.32 (m, 2*Ar-H) 7.29-7.27 (m, Ar-H) 7.20-7.17 (m, 2*Ar-H), 6.36 (br s, NH), 3.65 (CH₂, td, *J* = 6.9, 6.2 Hz, 2H), 2.89 (CH₂, t, J = 6.9 Hz). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 157.8 (CO), 137.6 (C), 129.0 (2*CH), 128.8 (2*CH), 127.1 (CH), 41.3 (CH₂NH), 35.1 (CH₂Ar). ¹⁹F NMR (376 MHz) -83.7 (CF₃), -124.0 (CF₂). HRMS (ESI) Calculated for C₁₁H₉NOF₅ [M - H]⁻ : 266.0604, found: 266.0593.

H F F **1-Adamantyl-2,2,3,3,3-pentafluoropropanthioamide** . 1-adamantyl-2,2,3,3,3-pentafluoropropanamide (354.7 mg, 1.19 mmol) and Lawesson reagent (287.9 mg, 0.71 mmol) were mixed in the reaction vessel and toluene (10 mL) was added. The mixture was heated using microwave irradiation at 180 °C for 75 min. Chromatography (20:1, heptane-diethyl ether) afforded a bright orange solid in 84% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.44 (NH, br s, 1H), 2.31 – 2.25 (3*CH₂, m, 6H), 2.21 – 2.12 (3*CH, m, 3H), 1.76 – 1.69 (3*CH₂, m, 6H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 180.2 (CO, t, ²J = 23.6 Hz), 118.0 (CF₃, appear as a dt, ¹J = 287.5, ²J = 37.4 Hz), 108.0 (CF₂), 57.9 (CNH), 39.5 (3*CH₂), 36.2 (3*CH₂), 29.5 (3*CH). ¹⁹F NMR (376 MHz) -82.3 (CF₃), -114.9 (CF₂). HRMS (ESI) Calculated for C₁₃H₁₅NF₅S [M - H]⁻: 312.0833, found: 312.0847.

Decyl-2,2,2,-difluoroacetate, (Table 1, entry1). The decyl-trifluoroacetate (91.5 mg, 0.3 mmol) was solvated in dry THF (21.5 mL). The solution was cooled to -78 °C. A mixture of SmI₂ (20 ml, 2.4 mmol) and H₂O (130 µL, 7.2 mmol) was also cooled to -78 °C and then added dropwise to the ester solution. The reaction mixture was stirred for 45 minutes before it was quenched with air until colorless, followed by 1 mL Na₂S₂O₃ (aq). The crude mixture was concentrated under reduced pressure. Column chromatography, pentane: diethyl ether (1:1) as eluent to yield the decyl fluoroacetate as a colorless liquid (21 mg, 30% yield). ¹H NMR (400 MHz, CHLOROFORM-D) δ 5.90 (CHF₂, t, ²*J* = 53.4 Hz, 1H), 4.28 (CH₂O, t, ³*J* = 6.7 Hz, 2H), 1.70 (CH₂CH₂O, quintet, 2H), 1.27 (m, 1.44-1.20, 15 H), 0.88 (CH₃CH₂, t, ³*J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 162.8 (CO), 106.9 (CHF₂, t, ¹*J* = 249.3 Hz), 67.2 (CH₂O), 32.0, 29.6, 29.6, 29.4, 29.3, 28.4, 25.8, 22.8, 14.3. ¹⁹F NMR (376 MHz) -127.5 (CF₂H, d, ²*J* = 53.4 Hz). HRMS (CI, NH₃) Calculated for C₁₂H₂₆NO₂F₂ [M + NH₄] ⁺: 254.1932, found: 254.1923.

1-Adamantyl-fluororacetamide (table 1, entry 2). 1-adamantyl-trifluororacetamide (75.6 mg, 0.3 mmol) was solvated in dry THF (21.5 mL) and triethylamine (670 μ L, 4.8 mmol) was added. The solution was cooled to -78 °C. A mixture

of SmI₂ (20.5 ml, 2.46 mmol) and H₂O (133 µL, 7.4 mmol) was also cooled to -78 °C and then added dropwise to the amide solution. The reaction was stirred for 30 min and quenched by removing the lid and let air into the vessel, followed by adding 1 mL Na₂S₂O₃ (aq). The crude mixture was purified by column chromatography (1:2, heptane-diethyl ether) and afforded the desired product as a white solid in 28 % yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 5.92 (NH, br s, 1H), 4.65 (CH₂F, d, ²J = 47.7 Hz, 2H), 2.14-2.06 (3*CH, m, 3H), 2.06-2.01 (3*CH₂, m, 6H), 1.72-1.67 (3*CH₂, m, 6H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 166.4 (CO), 80.3 (CH₂F, d, ¹J=187.7 Hz), 52.3 (CNH), 41.7 (3*CH₂), 36.4 (3*CH₂), 29.5 (3*CH). ¹⁹F NMR (376 MHz) -220.9 (CFH₂, t, ²J = 47.7 Hz). HRMS (ESI) Calculated for C₁₂H₁₉NO₂F [M + H]⁺: 212.1451, found: 212.1447.

Menthyl-2,3,3,3-tetrafluoropropanoate, table 1 entry 3. Menthyl-2,2,3,3,3pentafluoropropanoate (92.2 mg, 0.31 mmol) was dissolved in dry THF (21.5 mL) and cooled to -78 °C. A mixture of SmI₂ (20.5 ml, 2.46 mmol) and H₂O (130 μ L, 7.4 mmol) was also cooled to -78 °C and then added dropwise to the amide solution. The reaction was stirred for 45 min and quenched by removing the lid and let air into the vessel, followed by adding 1 mL Na₂S₂O₃. The crude mixture was purified by column chromatography (pure diethyl ether) and afforded the desired product as a pale yellow solid in 82 % yield, diastereomeric mixture 2:1. The mixture could not be separated using column chromatography.

¹H NMR (800 MHz, CDCl₃) δ 5.09 (dq, J = 13.1, 6.5 Hz, 1H), 5.04 (dq, J = 13.1, 6.5 Hz, 1H), 4.93 – 4.85 (m, 2H), 2.09 – 2.04 (m, 2H), 2.04 – 1.98 (m, 1H), 1.90 – 1.81 (m, 2H), 1.76 – 1.68 (m, 5H), 1.55 – 1.45 (m, 5H), 1.12 – 1.02 (m, 5H), 0.97-0.86 (m, 15H), 0.77 (d, J = 6.9 Hz, 2H), 0.75 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 161.7 (COCFH, dq, ²J = 23.3 Hz, 2.0 Hz), 120.6 (qd, CF₃, ¹J = 283.8 Hz, ²J = 26.0 Hz), 84.21 (dq, CFH, ¹J = 200.4 Hz, ²J = 35.4 Hz), 84.11 (dq, CFH, ¹J = 200.4 Hz, ²J = 35.4 Hz), 78.3 (C-O), 78.1 (C-O), 46.8 (CH), 40.5 (CH₂), 40.3 (CH₂), 34.1 (CH₂), 34.1 (CH₂), 31.6 (CH), 31.5 (CH), 26.3 (CH(CH₃)₂), 25.9 (CH(CH₃)₂), 23.4 (CH₂), 23.1 (CH₂), 22.0 (CH(CH₃)₂), 22.0 (CH(CH₃)₂), 20.8 (CH(CH₃)₂), 16.2 (CH₃CH), 15.8 (CH₃CH). ¹⁹F NMR (376 MHz) -76.6 (CF₃), -204.5- (-205.0) (m, CFH). HRMS (CI, NH₃) Calculated for C₁₃H₂₄NO₂F₄ [M + NH₄]⁺: 302.1743, found: 302.1719.

1-Adamantyl-2,3,3,3-tetrafluoropropionamide, table 1, entry 4. 1adamantyl-2,2,3,3,3-pentafluoropropionamide (108.3 mg, 0.36 mmol)) was solvated in dry THF (23 mL) and dry triethylamine (600 μ L, 4.3 mmol) was added. The solution was cooled to -78 °C. A mixture of SmI₂ (18 ml, 2.16 mmol) and H₂O (115 μ L, 6.4 mmol) was also cooled to -78 °C and then added dropwise to the amide solution. The reaction was stirred for 30 min and quenched by removing the lid and let air into the vessel followed by adding 1 mL sat. Na₂S₂O₃ (aq). The crude mixture was purified by column chromatography (95:5, pentanediethyl ether) and afforded the desired product as a white solid in 75 % yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 5.96 (NH, s, 1H), δ 4.93 (CHF, dq, *J* = 46.8, 6.5 Hz, 1H) 2.15-2.08 (3*CH, m, 3H), 2.05-2.01 (3*CH₂, m, 6H), 1.70 (3*CH₂, t, *J* = 3.2 Hz, 6H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 159.9 (CO, d, ²*J* = 18.6 Hz), 120.8 (CHF, qd, ¹*J* = 282.2, ²*J* = 25.5 Hz), 85.5 (CF₃, dq, ¹*J* = 204.8, ²*J* = 33.0 Hz), 53.2 (CNH), 41.3 (3*CH₂), 36.2 $(3*CH_2)$, 29.5 (3*CH). ¹⁹F NMR (376 MHz) -76.9 (CF₃), -199.3 (CFH, d, ²*J* = 46.8 Hz). HRMS (ESI) Calculated for C₁₃H₁₆NOF₄ [M - H]⁻: 278.1168, found: 278.1164.

^b **Decyl-2-fluoroacetate**, Table 2 entry 1. The decyltrifluoroacetate (91.5 mg, 0.3 mmol) was solvated in dry THF (21.5 mL). The solution was cooled to -78 °C. A mixture of SmI₂ (20 ml, 2.4 mmol) and H₂O (130 µL, 7.2 mmol) was also cooled to -78 °C and then added dropwise to the ester solution. The reaction mixture was stirred for 45 minutes before it was quenched using air until colorless, followed by 1 mL Na₂S₂O₃(aq). The crude mixture was concentrated under reduced pressure. The crude mixture was purified by column chromatography (pentane: diethyl ether, 1:1) as eluent, to yield the decyl fluoroacetate as a colorless liquid in 30% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 4.84 (CFH₂, d, *J* = 47.1 Hz, 2H), 4.21 (CH₂O, t, *J* = 6.8 Hz, 2H), 1.67 (CH₂-CH₂O, quintet, *J* = 6.8 Hz, 2H), 1.40-1.20 (m, 16 H), 0.88 (t, ³*J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 168.1 (CO, d, ²*J* = 21.7 Hz), 78.6 (CH₂F), 65.8 (CH₂O), 32.0, 29.6, 29.6, 29.4, 29.3, 28.6, 25.9, 22.8, 14.3. ¹⁹F NMR (376 MHz) -230.6 (CFH₂, d, ²*J* = 47.1 Hz). HRMS (CI, NH₃) Calculated for C₁₂H₂₇NO₂F [M + NH₄] ⁺: 236.2026, found: 236.2023.

(-)-**Me**

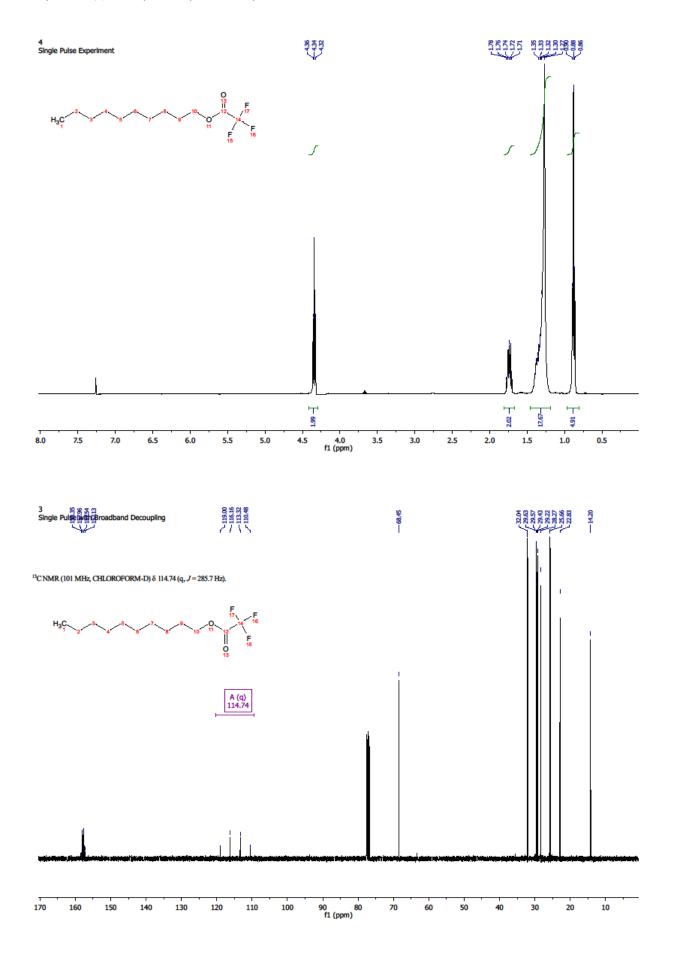
(-)-Menthyl-3,3,3-trifluoropropanoate, Table 2 entry 2. The menthyl 2,2,3,3,3,-pentafluoropropanoate (91.5 mg, 0.3 mmol) was solvated in dry THF (21.5 mL) and triethylamine (670 µL, 4.8 mmol) was added. The solution was cooled to -78 °C. A mixture of SmI₂ (20 ml, 2.4 mmol) and H₂O (130 µL, 7.2 mmol) was also cooled to -78 °C and then added dropwise to the ester solution. The reaction mixture was stirred for 45 minutes before it was quenched using air until colorless, followed by 1 mL Na₂S₂O₃. The crude mixture was concentrated under reduced pressure. The mixture was purified using column chromatography, Et₂O as eluent, to yield the product as a pale yellow oil (66 mg, 83% yield). ¹H NMR (400 MHz, CHLOROFORM-D) δ 4.76 (C<u>H</u>-O, td, *J* = 10.9, 4.4 Hz, 1H), 3.47 (q, *J* = 7.0 Hz, 1H), 3.14 (CH₂CF₃, q, J = 10.2 Hz, 2H), 2.05 – 1.97 (CHCHO, m, 1H), 1.91-1.79 (CH, m, 1H), 1.74 – 1.63 (CH₂CHO, m, 2H), 1.55 – 1.35 (m, 3H), 0.91 (CH₃CH, d, J = 6.1 Hz, 3H), 0.89 (CH(CH₃)₂, d, J = 6.8 Hz, 3H), 0.75 ((CH(CH₃)₂, d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 163.8 (CO, q, J = 4.2 Hz), 123.6 (q, J = 276.3 Hz) 76.3 (CH-O), 46.9 (CH), 40.2 (CH₂CF₃, q, J = 30.8 Hz), 34.2, 31.5, 26.2, 23.4, 22.1, 20.8, 16.2. ¹⁹F NMR (376 MHz) -64.3 (CF₃). HRMS (ESI) Calculated for C₁₃H₂₀O₂F₃ [M - H]⁻: 265.1415, found: 265.1469.

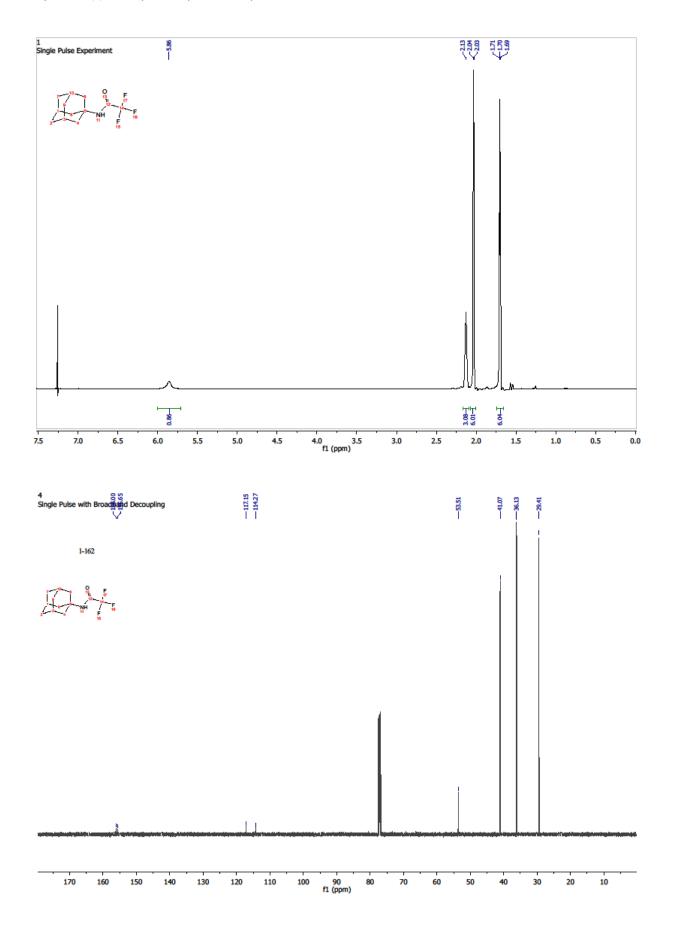
1-Adamantyl-3,3,3-trifluoropropanamide, table 2 entry 3. 1-adamantyl-2,2,3,3,3-pentafluoropropionamide (89.2 mg, 0.30 mmol)) was solvated in dry THF (21.5 mL) and dry triethylamine (670 μ L, 4.8 mmol) was added. A mixture of SmI₂ (18 ml, 2.16 mmol) and H₂O (115 μ L, 6.4 mmol) was added dropwise to the amide solution at room temperature. The reaction was stirred for 15 min and quenched by removing the lid and let air

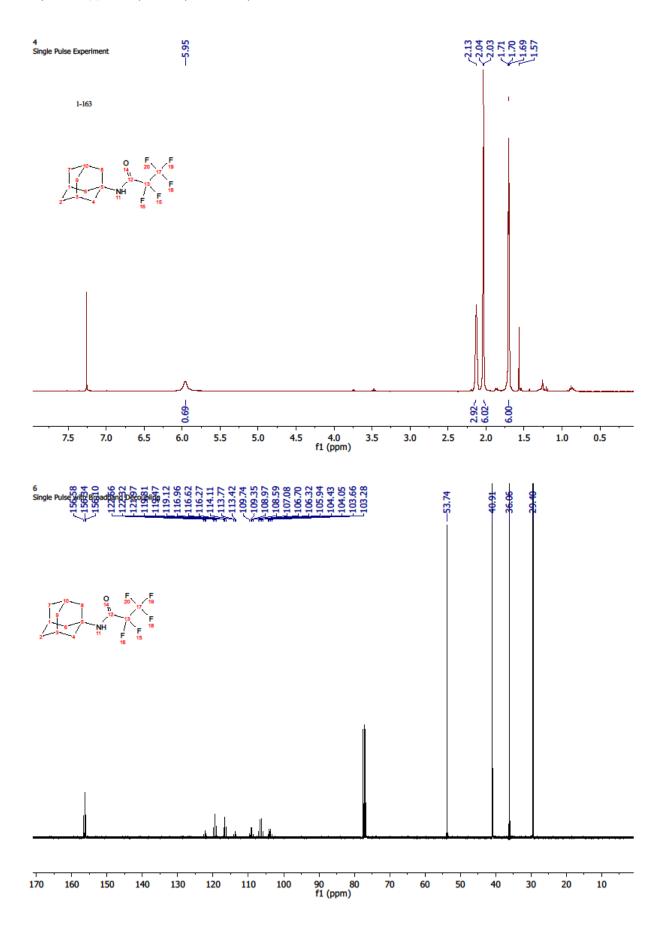
into the vessel, followed by adding 1 mL sat. Na₂S₂O₃ (aq.). The crude mixture was purified by column chromatography (1:1, pentane-diethyl ether) and afforded the desired product as a white solid in 69 % yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 5.42 (NH, s, 1H), 2.96 (CH₂CF₃, q, ³J = 10.7 Hz, 2H), 2.08 (3*CH, br s, 3H), 2.03-1.96 (3* CH₂, m, 6H), 1.72-1.63 (3*CH₂, m, 6H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 161.6 (CO, d, ³J = 3.5 Hz), 124.3 (CF₃, q, ¹J = 277.8 Hz), 52.9 (C-NH), 42.9 (CH₂CF₃, q, ²J = 28.9 Hz), 41.5 (CH₂CHNH), 36.3 (3*CH₂), 29.5 (3*CH). ¹⁹F NMR (376 MHz) -64.1 (CF₃). HRMS (ESI) Calculated for C₁₃H₁₉NOF₃ [M + H]⁺: 262.1419, found: 262.1409.

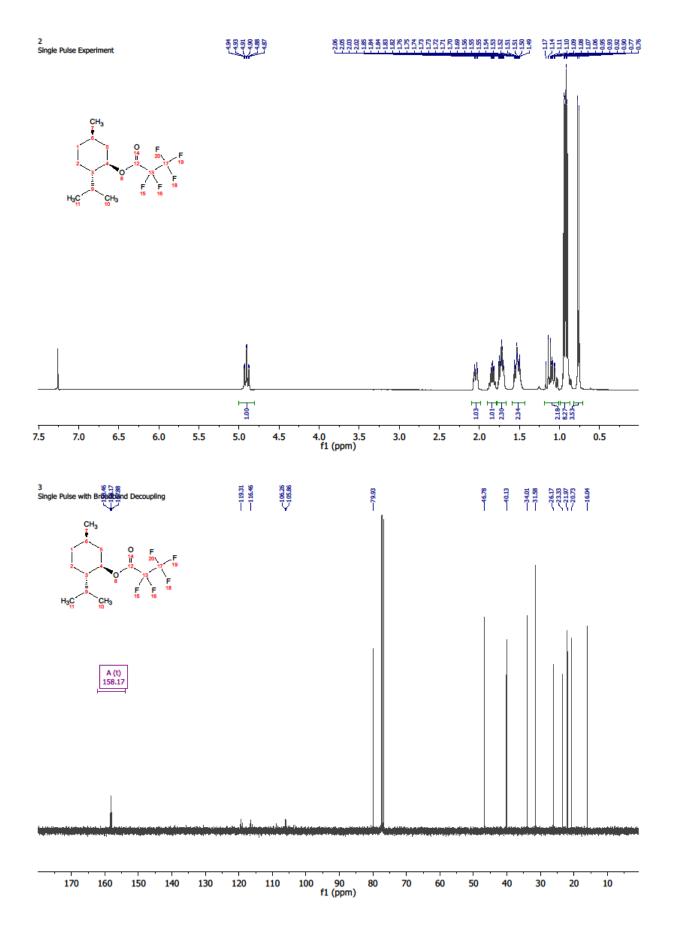
CF3

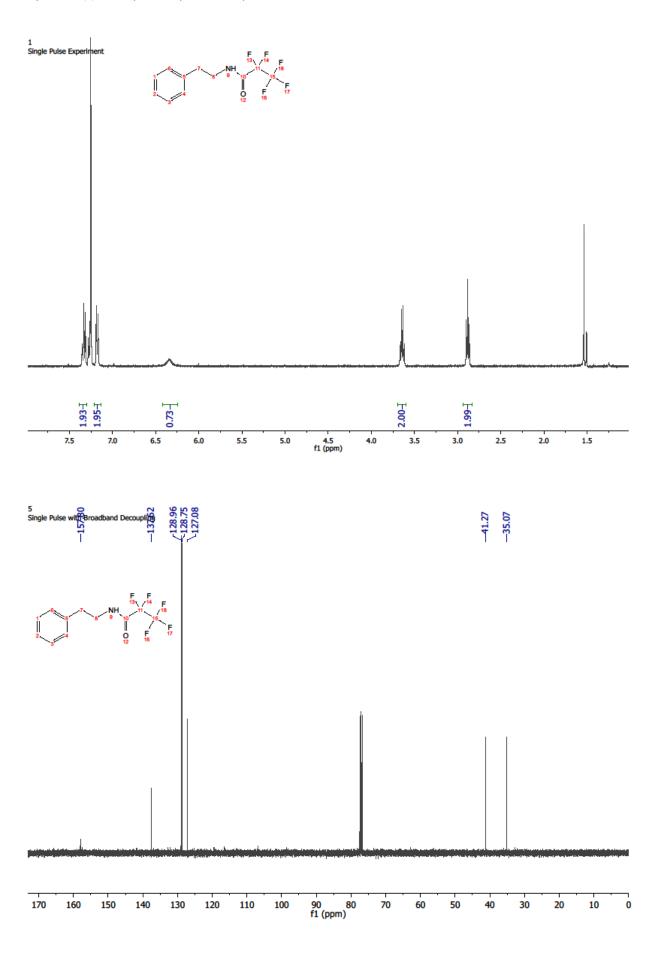
3,3,3-Trifluorophenylethylpropanamide, table 3 entry 4. The 2,2,3,3,3-pentafluorophenylethylpropanamide (81.2 mg, 0.3 mmol) was solvated in dry THF (21.5 mL) and triethylamine (670 μ L, 4.8 mmol) was added. The solution was cooled to -78 °C. A mixture of SmI₂ (20 ml, 2.4 mmol) and H₂O (130 μ L, 7.2 mmol) was also cooled to -78 °C and then added dropwise to the amide solution. The reaction mixture was stirred for 30 minutes before it was quenched using air, followed by 1 mL Na₂S₂O₃ (aq). The crude mixture was concentrated under reduced pressure. Column chromatography (2:1, pentane:ethyl acetate) to yield 3,3,3- trifluorophenylethylpropanamide as a colorless liquid (35 mg, 50% yield). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.24 (Ar-H, m, 5H), 6.06 (NH, br s, 1 H), 3.53 (CH₂NH, dd, *J* = 13.0, 6.9 Hz, 2H), 2.99 (CH₂CF₃, q, *J* = 10.6 Hz, 1H), 2.82 (ArCH₂, t, *J* = 6.9 Hz, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 162.8 (CO), 138.5 (C), 128.8 (2*CH), 128.8 (2*CH), 126.8 (CH), 124.2 (CF₃, d, ¹*J* = 276.7 Hz) 41.7 (CH₂CF₃, q, ²*J* = 29.4 Hz), 35.43 (CH₂), 21.14 (CH₂). ¹⁹F NMR (376 MHz) -63.9 (CF₃). HRMS (ESI) Calculated for C₁₁H₁₃NOF₃ [M + H]⁺: 232.0949, found: 232.0935.

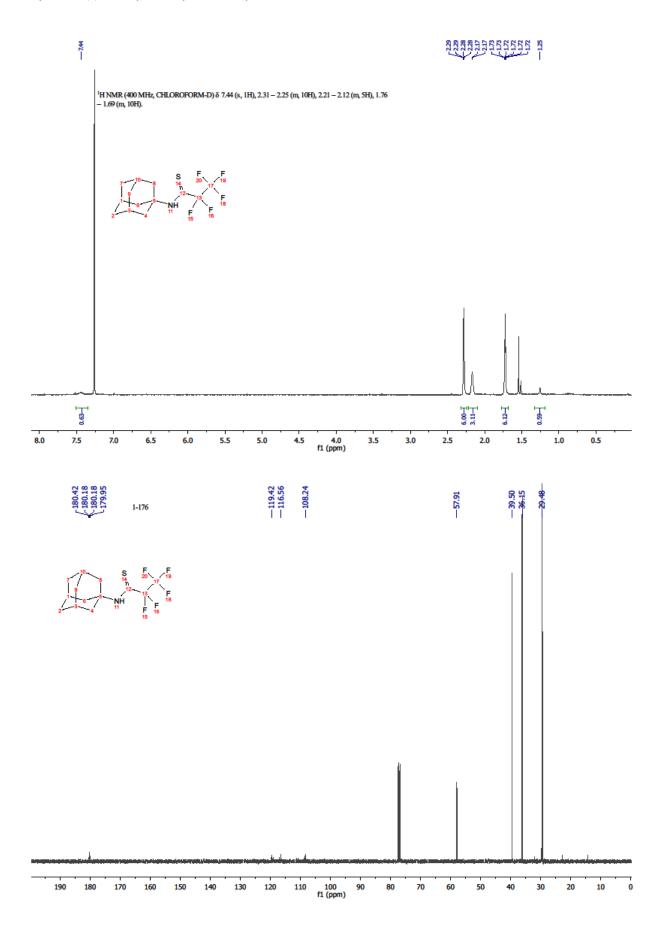

N CF3

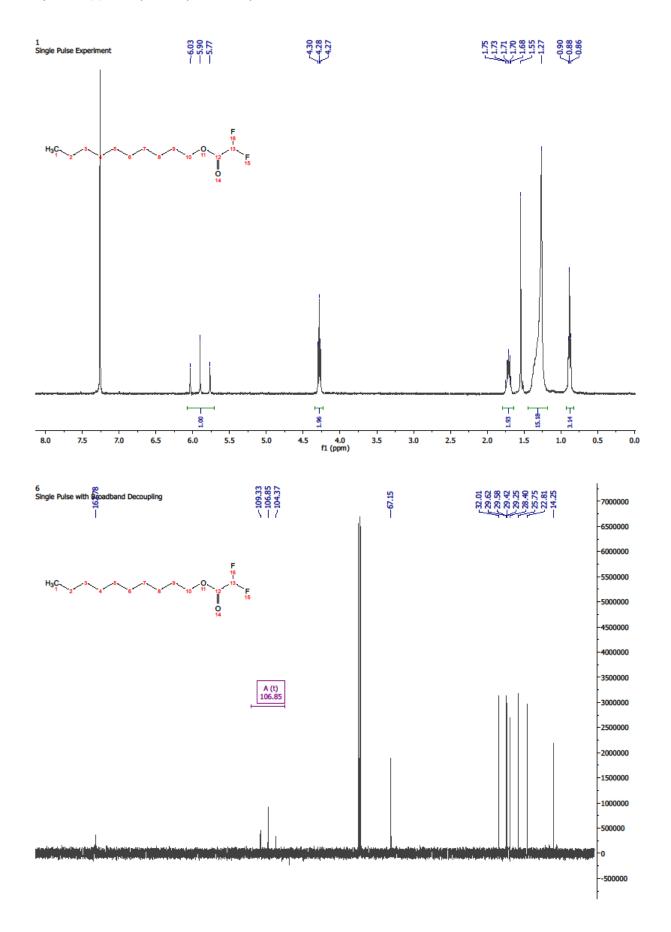

1-Adamantyl-3,3,3-trifluoropropanthioamide, table 2 entry 4. 1adamantyl-2,2,3,3,3-pentafluoropropanthioamide (93.7 mg, 0.30 mmol)) was solvated in dry THF (21.5 mL) and dry triethylamine (500 μ L, 3.6 mmol) was added. A mixture of SmI₂ (15 ml, 1.8 mmol) and H₂O (100 μ L, 5.5 mmol) was added dropwise to the thioamide solution. The reaction instantly turned green/brown and 1 mL sat. Na₂S₂O₃ (aq) was added. The crude mixture was solvated in DCM and NH₄Cl. The organic phase was dried and concentrated under reduced pressure yielding the desired product in 30% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 6.97 (NH), 3.51-3.43 (m, CH₂CF₃), 2.35-2.25(m, 3*CH₂), 2.19-2.09 (m, 3*CH), 1.76-1.69 (m, 3*CH₂). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 188.8 (CO), 123.9 (d, CF₃), 57.5(CNH), 53.8 (q, CH₂CF₃, *J* = 28.0 Hz), 39.8 (CH₂), 36.3 (CH₂), 29.5 (3*CH). ¹⁹F NMR (376 MHz) -65.3 (CF₃). HRMS (ESI) Calculated for C₁₃H₁₇NF₃S [M - H]⁻: 276.1034, found: 276.1032.

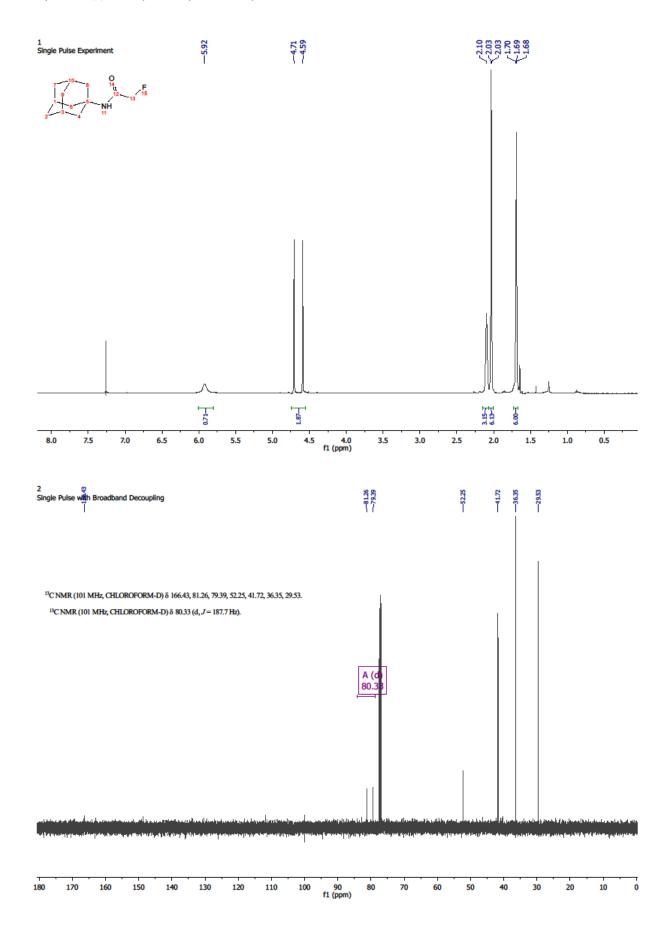

^b **Decyl acetate**, table 2, entry 5. The 2,2,2-trifluoroacetate (91.5 mg, 0.3 mmol) was solvated in dry THF (21.5 mL) and triethylamine (670 µL, 4.8 mmol) was added. The solution was cooled to -78 °C. A mixture of SmI₂ (20 ml, 2.4 mmol) and H₂O (130 µL, 7.2 mmol) was also cooled to -78 °C and then added dropwise to the ester solution. The reaction mixture was stirred for 45 minutes before it was quenched using air until colorless, followed by 1 mL Na₂S₂O₃. The crude mixture was concentrated under reduced pressure. Column chromatography, 1:1 pentane:diethyl ether as eluent to yield the product as a colorless oil in 73% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 4.34 (t, *J* = 6.7 Hz, 2H), 1.74 (dq, *J* = 13.5, 6.7 Hz, 2H), 1.43-1.19 (s, 9H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 171.3, 64.7, 32.0, 29.6, 29.4, 29.4, 28.7, 26.0, 22.8, 21.1, 14.2.

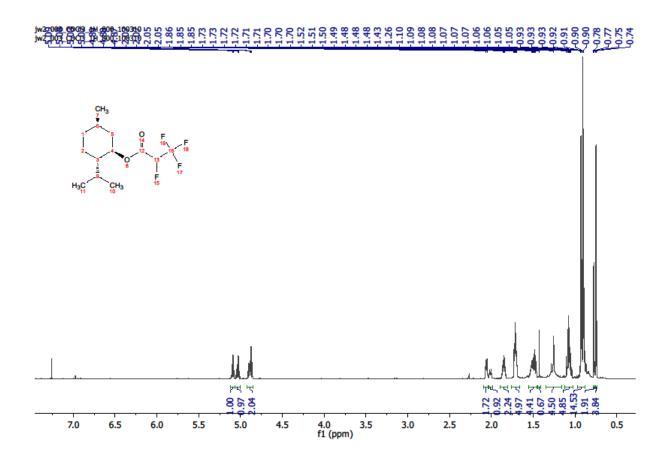

1-Adamantyl acetamide, table 2 entry 6. 1-adamantyl-2,2,2-trifluoroacetamide (76.8 mg, 0.31 mmol) was solvated in dry THF (21.5 mL) and dry triethylamine (670 μ L, 4.8 mmol) was added. A mixture of SmI₂ (20 ml, 2.4 mmol) and H₂O (130 μ L, 7.2 mmol) was added dropwise to the amide solution at room temperature. The reaction was stirred for 15 min and quenched by removing the lid and let air into the vessel, followed by adding 1 mL sat. Na₂S₂O₃ (aq.). The crude mixture was purified by column chromatography (1:2, pentane-diethyl ether) and afforded the desired product as a white solid in 89 % yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 5.23 (br s, NH), 2.04 (br s, 3*CH 3H), 1.99-1.96 (m, 3*CH₂, 6H), 1.89 (s, CH₃, 3H), 1.68-1.63 (m, 3*CH, 6H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 169.4 (CO), 51.9 (<u>C</u>NH), 41.7 (3*CH₂), 36.5 (3*CH₂), 29.5 (3*CH), 24.8 (CH₃).

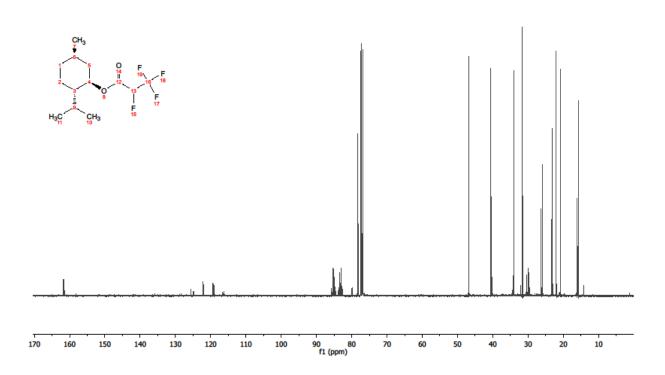

¹⁾ Analysis performed in 800 MHz showed two partially overlapping quartets and not a doublet of quartets.

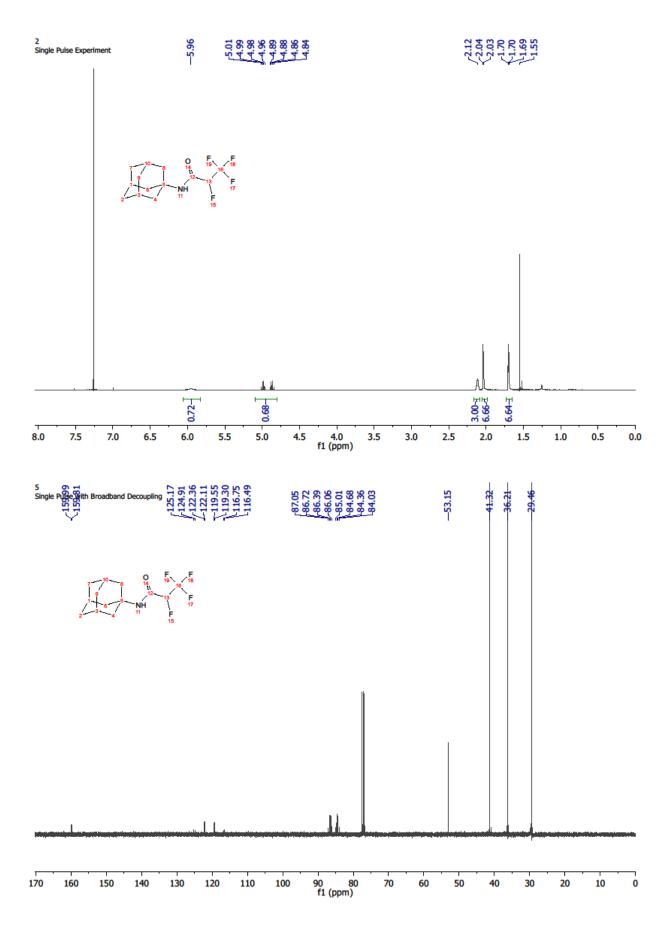


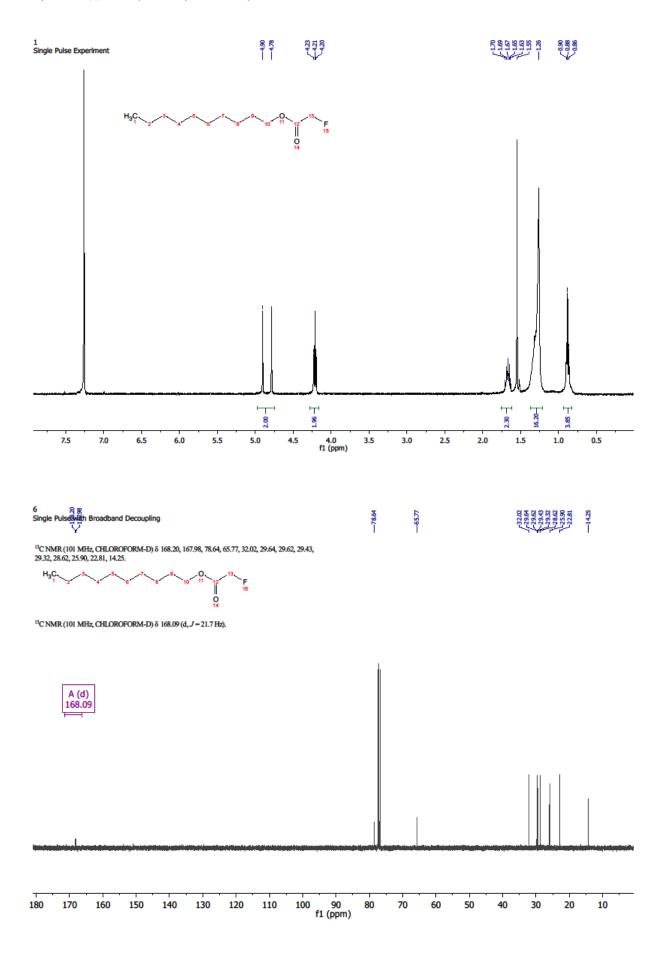


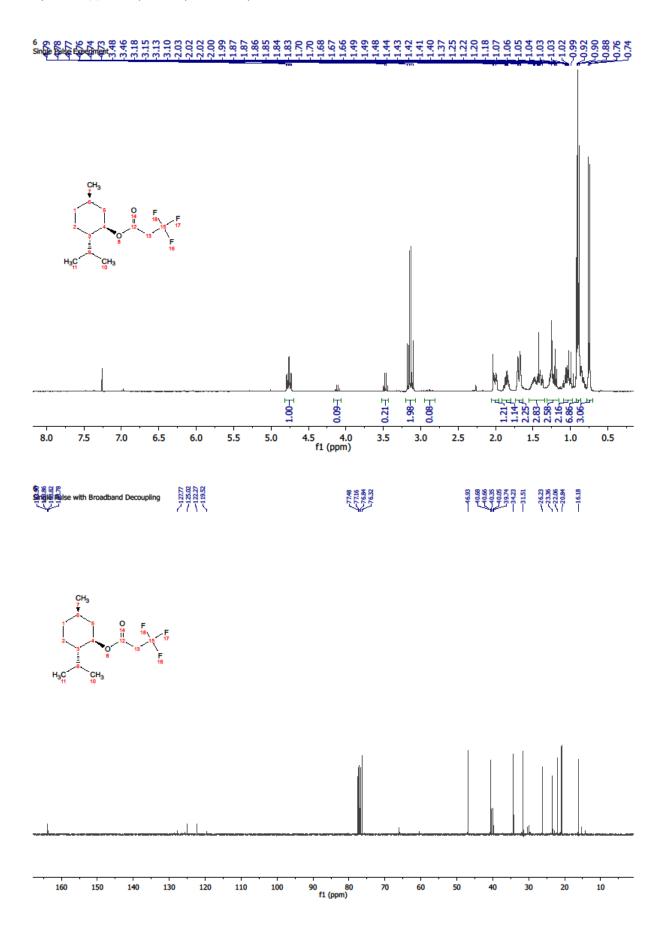


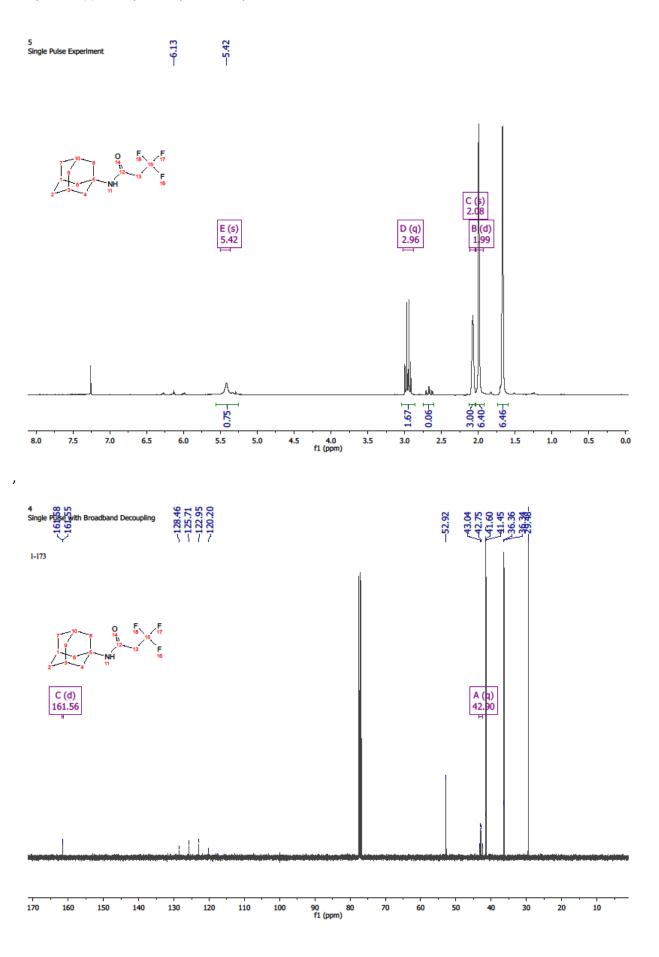

SI 12




SI 14






110.000 110.000 110.000 110.000 110.000 1110.0000 1110.0000 1110.0000 1110.000

