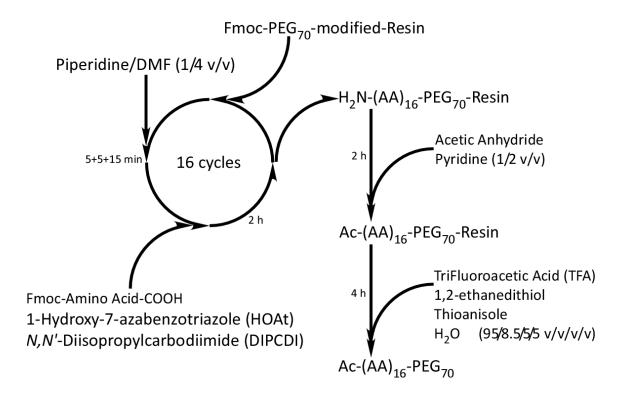
Electric Supplementary Information for:

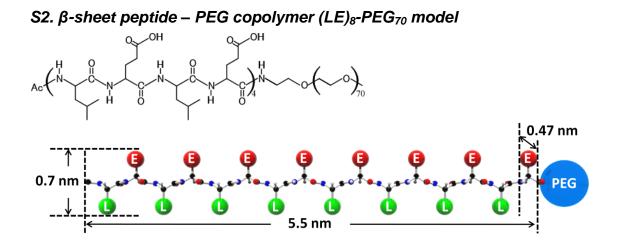
Morphology Control of Calcium Phosphate by Mineralization

on the β -sheet Peptide Template

Takayuki Nonoyama, ^a Masayoshi Tanaka,^a Takatoshi Kinoshita, ^a Fukue Nagata,^b Kimiyasu Sato^b and Katsuya Kato^{*b}

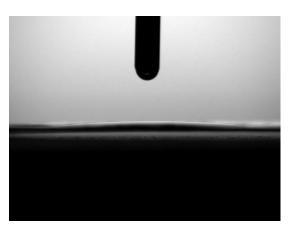
^a Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, Japan


E-mail: kinoshita.takatoshi@nitech.ac.jp


^b National Institute of Advanced Industrial Science and Technology, 2266-98 Anagahora, Shimo-Shidami moriyama-ku, Nagoya, Aichi, Japan.

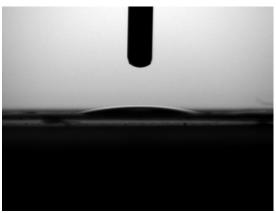
E-mail: katsuya-kato@aist.go.jp

S1. Peptide synthesis by Fmoc solid phase peptide synthesis2	,
S2. β-sheet peptide – PEG copolymer (LE) ₈ -PEG ₇₀ model2	•
S3. Contact angle measurement	}
S4. XPS spectrum of precipitate on peptide scaffold4	l
S5. AFM image of calcium phosphate nano fiber	;


S1. Peptide synthesis by Fmoc solid phase peptide synthesis

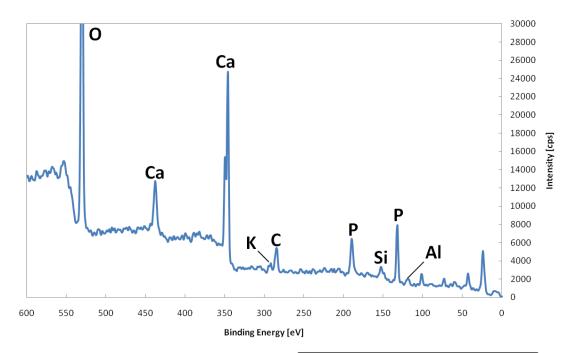
S3. Contact angle measurement

Mica surface



(LE)₈-PEG₇₀ LB monolayer (Glutamic acid is surface side)

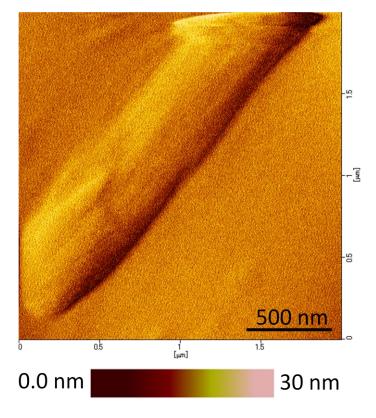
(LE)₈-PEG₇₀ LB monolayer (Leucine is surface side)


Adsorption monolayer

Surface	Contact angle [deg]
Mica surface	8.1
(LE) ₈ -PEG ₇₀ LB monolayer	43.5
(Leucine is surface side)	
(LE) ₈ -PEG ₇₀ LB monolayer	13.9
(Glutamic acid is surface side)	
Adsorption monolayer	17.6

The Langmuir-Blodgett method can control a molecular direction precisely. The two types of the (LE)₈-PEG₇₀ monolayer of the leucine surface (hydrophobic side) and the glutamic acid surface (hydrophilic side) were prepared, and an adsorption film was compared with the LB films. A contact angle value of the adsorption film was similar to the glutamic acid surface one.

S4. XPS spectrum of precipitate on peptide scaffold


Mica : KAI₂(Si₃AI)O₁₀(OH)₂

Element	Atom [%]
К	15.0
AI	43.9
Si	41.1

CaP

Atom [%]
54.2
45.8

Element	Binding Energy
С	284(1.00) 1S _{1/2}
0	532(2.93) 1S _{1/2}
Al	118(.753) 2S _{1/2}
Si	149(.955) 2S _{1/2}
Ρ	189(1.18) 2S _{1/2} 135(.789) 2P _{3/2}
К	294(2.62) 2P _{3/2}
Са	438(2.59) 2S _{1/2} 350(1.72) 2P _{1/2} 347(3.35) 2P _{3/2}

S5. AFM image of calcium phosphate nanofiber