Stabilization of zwitterionic aryltrifluoroborates against hydrolysis

Casey R. Wade, Haiyan Zhao, and François P. Gabbaï*

Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA. Email: <u>francois@tamu.edu</u>; Fax: +1 979 845 4719; Tel: +1 979 862 2070

Supplementary Information

General Considerations. 2-bromothioanisole was purchased from TCI America. KHF₂ was purchased from Alfa Aesar. Solvents were dried by passing through an alumina column (*n*-hexane, CH₂Cl₂) or refluxing under N₂ over Na/K (Et₂O and THF). Air-sensitive compounds were handled under a N₂ atmosphere using standard Schlenk and glovebox techniques. Elemental analyses were performed at Atlantic Microlab (Norcross, GA). NMR spectra were recorded on Varian Unity Inova 400 FT NMR (399.59 MHz for ¹H, 375.99 MHz for ¹⁹F, 128.19 MHz for ¹¹B, 100.45 MHz for ¹³C, 161.75 MHz for ³¹P) spectrometer at ambient temperature unless otherwise stated. Chemical shifts δ are given in ppm, and are referenced against external Me₄Si (¹H, ¹³C), BF₃:Et₂O (¹¹B, ¹⁹F) and H₃PO₄(³¹P).

Crystallography. Single crystals of **1**-BF₃ were obtained by slow evaporation of a solution of the compound in acetonitrile. Single crystals of **2**-BF₃ and **3**-BF₃ were obtained by slow evaporation of solutions of the compounds in acetonitrile/H₂O (5/1). The crystallographic measurement of **1**-BF₃, **2**-BF₃, and **3**-BF₃ were performed using a Bruker APEX-II CCD area detector diffractometer, with a graphite-monochromated Mo-K_a radiation ($\lambda = 0.71069$ Å). A specimen of suitable size and quality was selected and mounted onto a nylon loop. The structure was solved by direct methods, which successfully located most of the non-hydrogen atoms. Subsequent refinement on F² using

the SHELXTL/PC package (version 6.10) allowed location of the remaining nonhydrogen atoms. The crystal data are included in Table S1.

Table S1. Crystal data

Crystal data	1	2	3
Formula	$C_9H_{13}BF_3N$	$C_{19}H_{17}BF_3P$	$C_8H_{10}BF_3S$
Mr	203.02	344.11	206.03
Crystal size/mm	0.20 x 0.20 x 0.16	0.27 x 0.12 x 0.08	0.15 x 0.12 x 0.11
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	P2(1)/c	P-1	P2(1)/n
a/Å	7.0647(2)	11.6184(6)	6.6172(5)
b/Å	13.0809(3)	12.0740(6)	12.6622(9)
$c/{ m \AA}$	10.1994(2)	12.6108(7)	11.2891(8)
α /°	90	108.737(3)	90
β/°	95.349(1)	94.921(4)	102.918(1)
$\gamma /^{\circ}$	90	90.944(3)	90
V/Å ³	938.45(4)	1667.30(15)	921.95(12)
Z	4	4	4
$ ho_{ m calc}/ m g\ m cm^{-3}$	1.437	1.371	1.484
μ/mm^{-1}	0.125	0.192	0.343
F(000)	424	712	424
T/K	110(2)	110(2)	110(2)
Scan mode	ω, φ	ω, φ	ω, φ
hkl Range	$-10 \rightarrow +10$	$-13 \rightarrow +13$	$-7 \rightarrow +8$
	$-19 \rightarrow +18$	$-14 \rightarrow +14$	$-15 \rightarrow +15$
	$-15 \rightarrow +15$	$-14 \rightarrow +14$	$-13 \rightarrow +13$
Measd reflns	9940	27166	9052
Unique reflns [Rint]	3254 [0.0303]	5847 [0.0758]	1709 [0.0302]
Reflns used for			
refinement	3254	5847	1709
Refined parameters	127	433	118
GooF	1.000	1.001	1.002
R1, ^a w R2 ^b (all data)	0.0491, 0.0993	0.0981, 0.2021	0.0283, 0.0632
$\rho_{\rm fin}$ (max., min.)/eÅ ⁻³	0.380, -0.220	0.780, -0.611	0.356, -0.2237

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}||\Sigma |F_{o}|. {}^{b} wR2 ([_{w}(F_{o}^{2} - F_{c}^{2})^{2}]/[\Sigma w(F_{o}^{2})^{2}])^{1/2}; w = 1/[\sigma^{2}(F_{o}^{2}) + (ap)^{2} + bp]; p = (F_{o}^{2} + 2F_{c}^{2})/3 \text{ with } a = 0.0563 \text{ for } \mathbf{1}, 0.0300 \text{ for } \mathbf{2}, \text{ and } 0.0240 \text{ for } \mathbf{3}; \text{ and } b = 0 \text{ for } \mathbf{1}, 8.5 \text{ for } \mathbf{2}, \text{ and } 0.671 \text{ for } \mathbf{3}.$

Preparation of ortho-(Me₃N)C₆H₄(BF₃) (1)

A solution of boronic acid ortho-(Me₂N)C₆H₄(B(OH)₂)¹ (0.725 g, 4.39 mmol) and pinacol (0.570 g, 4.83 mmol) in CH₂Cl₂ (10 mL) was stirred for 3 hrs over anhydrous MgSO₄. The solution was filtered and the solvent removed *in vacuo* to yield the pinacol borane *o*-(Me₂N)C₆H₄(BPin₂) in 79 % yield (0.860 g). ¹H NMR (399.9 MHz, CDCl₃): δ 1.35 (s, 12H, pinacol-CH₃), 2.86 (s, 6H, N- CH₃), 6.80-6.85 (m, 2H, Ph-CH), 7.30 (ddd, 1H, Ph-*CH*, ${}^{3}J_{H-H} = 8.24$, 7.14 Hz, ${}^{4}J_{H-H} = 1.83$ Hz), 7.63 (dd, 1H, Ph-*CH*, ${}^{3}J_{H-H} = 7.33$ Hz, ${}^{4}J_{\text{H-H}} = 1.83$ Hz). ${}^{11}\text{B}$ NMR (128.2 MHz, CDCl₃): δ 32.4. The reaction of o-(Me₂N)C₆H₄(BPin₂) (0.284 g, 1.15 mmol) with 2 eq. of methyl triflate (0.26 mL) in Et₂O (10 mL) led to the immediate precipitation of a white solid, which was filtered and washed with 3×5 mL Et₂O to yield the ammonium triflate [o-(Me₂N)C₆H₄(BPin₂)]OTf in 65% yield (0.308 g). ¹H NMR (399.9 MHz, CDCl₃): δ 1.38 (s, 12H, pinacol-CH₃), 3.83 (s, 9H, N- CH_3), 7.50 (t, 1H, Ph-CH, ${}^{3}J_{H-H} = 7.33$ Hz), 7.67 (t, 1H, Ph-CH, ${}^{3}J_{H-H} =$ 8.43 Hz), 7.85 (d, 1H, Ph-*CH*, ${}^{3}J_{H-H} = 8.43$ Hz), 7.98 (d, 1H, Ph-*CH*, ${}^{3}J_{H-H} = 7.33$ Hz). ¹³C NMR (100.5 MHz, CDCl₃): δ 24.61, 57.54, 85.89, 119.72, 122.27, 129.88, 133.30, 139.14, 150.60. ¹¹B NMR (128.2 MHz, CDCl₃): δ 31.50. Anal. Calcd for C₁₆H₂₅BNO₅F₃S: C, 46.73; H, 6.31; N, 3.41. Found: C, 47.00; H, 6.03; N, 3.45. A solution of the ammonium triflate [o-(Me₂N)C₆H₄(BPin₂)]OTf in MeOH (1 mL) was treated with KHF₂ (0.038 g, 0.48 mmol) in H₂O (1 mL). The solution was sonicated for 15 minutes and the precipitate collected by filtration. The solid was then extracted with 5 mL hot acetonitrile, the solution was filtered over Celite, and the solvent removed in *vacuo* to yield 0.023 g (93 % yield) of *ortho*-(Me₃N)C₆H₄(BF₃). ¹H NMR (399.9 MHz, CD₃CN): δ 3.63 (s, 9H, N- CH₃), 7.33 (ddd, 1H, Ph-CH, ${}^{3}J_{\text{H-H}} = 8.35$ Hz, 7.17 Hz, ${}^{4}J_{\text{H-H}} =$

2.04 Hz), 7.39 (t, 1H, Ph-*CH*, ${}^{3}J_{\text{H-H}} = 7.16$ Hz), 7.55 (d, 1H, Ph-*CH*, ${}^{3}J_{\text{H-H}} = 8.31$ Hz), 7.97 (d, 1H, Ph-*CH*, ${}^{3}J_{\text{H-H}} = 5.31$ Hz). 13 C NMR (100.5 MHz, CD₃CN): δ 57.8 q, (pseudo-q, ${}^{3}J_{\text{H-F}} = 3.90$ Hz), 128.46, 129.62, 139.72 (q, ${}^{3}J_{\text{H-F}} = 4.32$ Hz), 151.17. 11 B NMR (128.2 MHz, CD₃CN): δ 3.2 (q, ${}^{1}J_{\text{B-F}} = 45.5$ Hz). 19 F NMR (375.97 MHz, CD₃CN): δ -131.5 (q, ${}^{1}J_{\text{B-F}} = 45.5$ Hz). Anal. Calcd for C₉H₁₃BNF₃: C, 53.25; H, 6.45; N, 6.90. Found: C, 53.18; H, 6.59; N, 6.90.

Preparation of ortho-(Ph₂MeP)C₆H₄(BF₃) (2)

The pinacol borane *ortho*-(Ph₂P)C₆H₄(Bpin)² (0.175 g, 0.451 mmol) was treated with 2 eq. of MeOTf (0.10 mL) in Et₂O (5 mL) leading to the immediate precipitation of a white solid. This white solid was filtered and washed with 3×5 mL of Et₂O. Recrystallization by slow diffusion of Et₂O into a CH₂Cl₂ solution (3 mL) yielded [*o*-(Ph₂MeP)C₆H₄(Bpin)]OTf (0.180 g, 72%). ¹H NMR (399.9 MHz, CDCl₃): δ 0.96 (s, 12H, pinacol-*CH₃*), 3.06 (d, 3H, P-*CH₃*, ¹*J*_{H-P} = 13.92 Hz), 7.11 (dd, 1H, Ph-*CH*, ³*J*_{H-P} = 15.7 Hz, ³*J*_{H-H} = 7.80 Hz), 7.54-7.67 (m, 9H, Ph-*CH*), 7.74 (t, 3H, Ph-CH, , ³*J*_{H-H} = 7.51 Hz) 8.22 (dd, 1H, Ph-*CH*, ³*J*_{H-P} = 7.50 Hz, ³*J*_{H-H} = 6.87 Hz). ¹³C NMR (100.5 MHz, CDCl₃): δ 9.88 (d, P-CH₃, ¹*J*_{C-P} = 57.22 Hz), 24.24 (pinacol-CH₃), 85.28 (pinacol-*C*-O), 121.07 (d, *J*_{C-P} = 88.5 Hz), 123.95 (d, *J*_{C-P} = 84.7 Hz), 130.32 (d, *J*_{C-P} = 13.0 Hz), 132.13 (d, *J*_{C-P} = 13.73 Hz), 132.7 (d, *J*_{C-P} = 9.9 Hz), 133.88 (d, *J*_{C-P} = 3.0 Hz), 134.55 (d, *J*_{C-P} = 2.3 Hz), 136.84 (d, *J*_{C-P} = 13.0 Hz), 139.27 ((d, *J*_{C-P} = 13.7 Hz), (ipso C for phenylene-C-B not observed). ¹¹B NMR (128.2 MHz, CDCl₃): δ 29.72. ³¹P NMR (161.75 MHz, CDCl₃): δ 25.64. Anal. Calcd for C₂₆H₂₉BO₅F₃PS: C, 56.54; H, 5.29. Found: C, 56.29; H, 5.26. The phosphonium triflate [*o*-(Ph₂MeP)C₆H₄(Bpin)]OTf (0.050 g, 0.09 mmol) in 1

mL of MeOH was then treated with a solution of KHF₂ (0.028 g, 0.36 mmol) in 1 mL H₂O. The resulting solution was sonicated for 15 minutes and the precipitate collected by filtration. The solid was washed with H₂O (3 × 1 mL) and dried *in vacuo* to yield 0.026 g (97 % yield) of *ortho*-(Ph₂MeP)C₆H₄(BF₃) (**2**). ¹H NMR (399.9 MHz, CDCl₃): δ 2.89, (d, 3H, P-*CH₃*, ²*J*_{H-P} = 13.9 Hz), 6.81 (dd, 1H, ³*J*_{H-P} = 15.1 Hz, ³*J*_{H-H} = 7.8 Hz), 7.19 (tdd, 1H, *J* = 7.69, 3.45, 1.33 Hz), 7.41 (dd, 4H,*m*-phenyl-*CH*, *J* = 7.58, 1.87 Hz), 7.55 (td, 4H, *o*-phenyl-*CH*, *J* = 8.13, 3.17 Hz), 7.59 (td, 1H, phenyl-*CH*, *J* = 6.40, 7.58 Hz), 7.68 (tq, 1H, phenyl-*CH*, *J* = 7.58, 1.68 Hz), 8.15 (dd, 1H, phenyl-*CH*, *J* = 6.40, 7.58 Hz), 123.62 (d *J*_{P-C} = 88.50 Hz), 126.67 (d *J*_{P-C} = 14.49 Hz), 129.63 (d *J*_{P-C} = 12.97 Hz), 132.62 (d *J*_{P-C} = 15.26 Hz), 135.84 (dq ¹*J*_{P-C} = 16.77 Hz, ³*J*_{F-C} = 3.02 Hz). ¹¹B NMR (128.2 MHz, CDCl₃): δ 3.68. ¹⁹F NMR (375.97 MHz, CDCl₃): δ -139.0. ³¹P NMR (161.75 MHz, CDCl₃): δ 26.23.

Preparation of ortho-(Me₂S)C₆H₄(BF₃) (3)

To 2-bromothioanisole (2.0 g, 9.8 mmol) in diethyl ether (20 mL) was added *n*-BuLi (3.4 mL, 11.7 mmol, 2.9M in *n*-hexane) at 0 °C. After stirring the mixture for 1h at 0 °C, trimethylborate (1.32 mL, 11.8 mmol) was added dropwise to the lithiated compound at -78 °C. The mixture was allowed to warm to room temperature and stirred for 3 hours. The mixture was quenched with 3 M HCl (16 mL) and extracted with ethyl acetate (50 ml \times 3). The organic layer was separated, dried over MgSO₄ and filtered. The volatiles were removed *in vacuo* to give a white solid which was washed with hexanes

(20 mL) to afford 1.2 g of the crude boronic acid. The boronic acid o- $(MeS)C_6H_4(B(OH)_2)$ (0.2 g, 1.19 mmol) was treated with MeOTf (0.23 mL, 2.05 mmol) in dichloromethane (15 mL) at room temperature. The mixture was refluxed overnight and cooled to room temperature. The solvent was removed in vacuo yielding an offwhite solid that was washed with diethyl ether to afford the sulfonium triflate [o-(Me₂S)C₆H₄(B(OH)₂)]OTf (0.28 g, yield 74%). ¹H-NMR (400 MHz, CD₃CN): δ 3.10 (s, 6H, S-*CH*₃), 7.71-7.80 (m, 2H, Ph-*CH*), 7.90 (d, 1H, Ph-*CH*, ${}^{3}J_{H-H} = 8.0$ Hz), 7.99 (d, 1H, Ph-CH, J = 7.2Hz). ¹¹B-NMR (128 MHz, CD₃CN): δ + 28.7. A solution of the sulfonium triflate [ortho-(Me₂S)C₆H₄(B(OH)₂)]OTf (0.20 g, 0.6 mmol) in acetonitrile (5 mL) was treated with solid KHF₂ (0.19 g, 2.4 mmol) and the mixture was stirred for 1 hour at room temperature. After filtration, the solvent was removed in vacuo to yield a The solid was washed with ethanol (40 ml) to afford orthowhite solid. (Me₂S)C₆H₄(BF₃) (0.078 g, yield 63%). ¹H-NMR (400 MHz, CD₃CN): δ 3.04 (s, 6H, S-*CH*₃), 7.50-7.56 (m, 2H, Ph-*CH*), 7.74 (d, 2H, Ph-*CH*, ${}^{3}J_{H-H} = 8.0$ Hz). ${}^{13}C$ NMR (100.5 MHz, CD₃CN): 27.85, 125.16, 128.73, 132.01, 133.92. ¹¹B-NMR (128 MHz, CD₃CN): δ + 3.14 (q, ${}^{1}J_{B-F}$ = 43.7 Hz). ${}^{19}F$ NMR (375.97 MHz, CD₃CN): δ -136.58 (q, ${}^{1}J_{B-F}$ = 43.7 Hz). Anal. Calcd for C₈H₁₀BF₃S: C, 46.64; H, 4.89; F, 27.66. Found: C, 46.46; H, 4.90; F, 27.46.

NMR Spectroscopic Kinetic Analyses

Samples of **1** (5 mg), **2** (8.5 mg), and **3** (5 mg) were each dissolved in 0.2 mL CD₃CN and 1.0 mL D₂O phosphate buffer (pH 7.5, 500 mM). All of the resulting mixtures were filtered over glass wool to remove any precipitated solids. The ¹⁹F NMR spectrum of each sample was collected periodically. Decomposition of the aryltrifluoroborate species was monitored by integration of the decreasing aryltrifluoroborate signal in conjunction with the increasing signal corresponding to free F⁻ using VNMRJ Version 2.2 NMR processing software. The rate constants, k_{obs} , were calculated using a method reported in the literature.³ The data used for these calculations is given in Table S2-S5.

		Data for 1		
				k=6.30E-05
			exp. ratio	calc. ratio
Time				
<u>(min)</u>	<u>[F-]</u>	<u>[BF3]</u>	[BF3]/([BF3]+[F])	[BF3]/([BF3]+[F])
0	0	100	1.000	1.000
255	2.82	100	0.973	0.984
450	3.47	100	0.966	0.972
595	4.86	100	0.954	0.963
740	5.94	100	0.944	0.954
1330	10.14	100	0.908	0.920
1660	12.57	100	0.888	0.901
2790	21.51	100	0.823	0.839
4350	31.28	100	0.762	0.760
5700	44.78	100	0.691	0.698
10155	84.44	100	0.542	0.527
14460	137.25	100	0.421	0.402
20000				0.284
30000				0.151
40000				0.080
50000				0.043

Table S2: Kinetic data for the hydrolysis of 1

		Data for 2		
				k=3.40E-06
			exp. ratio	calc. ratio
<u>Time</u>				
<u>(min)</u>	<u>[F-]</u>	[BF3]	[BF3]/([BF3]+[F])	[BF3]/([BF3]+[F])
0	0	100	1	1
1100	0.25	100	0.997506234	0.996266985
2560	0.81	100	0.991965083	0.99133377
4170	1.21	100	0.98804466	0.985922035
5520	2.67	100	0.973994351	0.981407022
9975	4.46	100	0.957304231	0.966653667
14250	5.3	100	0.949667616	0.952704973
19920	7.24	100	0.932487878	0.934514627
24300	7.97	100	0.926183199	0.920700947
40110	13.77	100	0.878966336	0.87251625
50000				0.843664817

Table S3: Kinetic data for the hydrolysis of 2

		Data for 3		
				k=1.20E-04
			exp. ratio	calc. ratio
<u>Time</u>				
<u>(min)</u>	<u>[F-]</u>	[BF3]	[BF3]/([BF3]+[F])	[BF3]/([BF3]+[F])
0	0	100	1.000	1.000
212	2.88	100	0.972	0.975
308	3.07	100	0.970	0.964
523	6.12	100	0.942	0.939
688	7.96	100	0.926	0.921
1430	17.75	100	0.849	0.842
1650	19.99	100	0.833	0.820
2857	36.89	100	0.731	0.710
6000				0.487
9000				0.340
12000				0.237
15805	607.15	100	0.141	0.150
20000				0.091
30000				0.027
40000				0.008
50000				0.002

Table S4: Kinetic data for the hydrolysis of 3

		<u>Data for</u> K[C6H5BF3]		
				k =0.0245
			exp. ratio	calc. ratio
Time				
(min)	[F-]	[BF3]	[BF3]/([BF3]+[F])	[BF3]/([BF3]+[F])
0	0	100	1.000	1.000
15	44	100	0.694	0.692
30	105	100	0.488	0.480
45	197	100	0.337	0.332
60	335	100	0.230	0.230
75	531	100	0.158	0.159
90	841	100	0.106	0.110

Table S4: Kinetic data for the hydrolysis of PhBF₃⁻

References

- 1. K. Albrecht, V. Kaiser, R. Boese, J. Adams and D. E. Kaufmann, *Perkin 2*, 2000, 2153-2157.
- 2. S. Porcel, G. Bouhadir, N. Saffon, L. Maron and D. Bourissou, *Angew. Chem. Int. Ed.*, 2010, released online.
- 3. R. Ting, C. W. Harwig, J. Lo, Y. Li, M. J. Adam, T. J. Ruth and D. M. Perrin, *J. Org. Chem.*, 2008, **73**, 4662-4670.