Supplementary Information For

Remote Amide-Directed Palladium-Catalyzed Benzylic C-H

Amination with N-Fluorobenzenesulfonimide

Tao Xiong, Yan Li, Yunhe Lv, and Qian Zhang*

Department of Chemistry, Northeast Normal University, Changchun, 130024, China

zhangq651@nenu.edu.cn

Table of Contents

General Information	S2
Synthesis Procedure	S 3
Synthesis and Characterization bimetallic Pd complex E	S4
Analytical data of New Compounds	S 5
¹ H and ¹³ C Spectra of New Compounds	S11
Ball-and-stick Representation of Bimetallic Pd Complex E	S34

General Information:

All commercially available compounds were used as received, Palladium acetate and *N*-Fluorobenzenesulfonimide were purchased from J & K Chemical Limited. 2-amino-5-methylphenol was purchased from Alfa aesar. 1,2-dichloroethane was dryed with CaCl₂. All reactions were run under air with no precautions taken to exclude moisture. ¹H NMR and ¹³C NMR spectra were recorded at 25°C on a Varian 500 MHz and 126 MHz, respectively, and TMS as internal standard. IR spectra (KBr) were recorded on a Magna-560 FTIR spectrophotometer in the range of 400~4000 cm⁻¹. Melting points were obtained with a micro melting point XT4A Beijing Keyi electrooptic apparatus and are uncorrected. Elemental analyses were measured on a PE-2400 analyzer (Perkin-Elmer). High resolution mass spectra were recorded on Bruck microtof. All reactions were monitored by TLC with Taizhou GF254 silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel at increased pressure.

Synthesis Procedure:

Substrates **1a-1d**, **1f** and **1j** were prepared by the reaction of corresponding anilines and acyl chlorides in CH_2Cl_2 at room temperature.¹ Substrates **1e** was prepared according to literature procedure.²

General procedure for substrate 1g, 1h and 1i (1g as an example)

To a solution of *N*-(2-hydroxy-4-methylphenyl)pivalamide (2.0 mmol) in DMF(5 mL) at room temperature was added K_2CO_3 (2.4 mmol) in one portion. After the reaction mixture was stirred for 15 min, added CH₃I (2.4 mmol). The reactions were stirred for 1.5 h. After the reaction was stopped, the reaction mixture was concentrated *in vacuo*. The mixture was purified by column chromatography (10% ether/petro ether) afforded the product **1f** (97%).

General procedure for substrate 1k, 1l, 1m, and 1n³ (1k as an example)

A solution of *N*-(2-bromo-4-methylphenyl)pivalamide (2 mmol) in degassed dimethoxyethane (DME) (6 mL) was stirred at room temperature with Pd(Ph₃P)₄ (6 mmol) for 20 min, then phenylboronic acid (2.4 mmol) and 2 M aqueous Na₂CO₃ solution (2 ml) were added and lowered into an oil bath at 80 °C under nitrogen. After completion of the reaction (TLC monitoring) DME was partially evaporated under reduced pressure, the mixture was poured on ice-water and extracted with dichloromethane (3×15 mL). The combined organic layers were dried (Na₂SO₄), filtered over Celite, evaporated *in vacuo*, and the residue was purified by column chromatography to give the compound **1k** (417 mg, 78%).

General procedure for Palladium-Catalyzed Benzylic C–H Amination of 1 with *N*-Fluorobenzenesulfonimide (1a as an example)

To a solution of the *N*-p-tolylpivalamide (**1a**, 0.40 mmol) in 1,2-dichloroethane (4.0 ml) was added the *N*-Fluorobenzenesulfonimide (315 mg, 1.0 mmol), KF (93 mg, 1.6 mmol) and Pd(OAc)₂ (9.0 mg, 0.04 mmol). The reaction was stirred for the 5.5 h at 90 °C under air condition. After completion of the reaction (TLC monitoring) the mixture was poured on ice-water and extracted with dichloromethane (3×15 mL). The combined organic layers were dried (Na₂SO₄), filtered over Celite, evaporated *in vacuo*, and the residue was purified by column chromatography to give the compound *N*-(4-((*N*-(phenylsulfonyl)phenylsulfonamido)methyl)phenyl)pivalamide (**2a**, 167 mg, 86%).

Palladium complex E⁴

In a one-dram vial was added *N*-*p*-tolylpivalamide (**1a**) (67.3 mg, 0.3 mmol), Pd(OAc)₂ (67.2 mg, 0.3 mmol), and dichloromethane (3 mL). Trifluoroacetic acid (34.2 mg, 0.3 mmol) was subsequently added into the vial and the resulting solution was heated to 40 °C for 6 h. After cooling to ambient temperature, the reaction mixture was concentrated *in vacuo* and the resulting residue was redissolved in petro ether (6 mL). Then the precipitation of the desired complex occurred. The suspension was filtered through Celite and washed with 4 x 2 mL (20% ether/petro ether). The residue was evaporated *in vacuo* to afford the bimetallic palladacycle **E** as a yellow solid (87.3 mg, 71%). ¹H NMR (500 MHz; CD₃COCD₃): δ = 0.89 (s, 9H), 2.19 (s, 3H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 2H), 9.81 (s, 1H). ¹³C NMR (125 MHz; CD₃COCD₃): δ = 20.1, 26.1, 38.4, 114.3, 115.4, 116.1, 116.6, 126.1, 128.8, 131.9, 132.8, 173.9. Recrystallization from acetone and hexanes gave a single crystal suitable for X-ray analysis.

References:

- (1) Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593.
- (2) Vilaivan, T. Tetrahedron Letters. 2006, 47, 6739.
- (3) Pudlo, M.; Csányi, D.; Moreau, F.; Hajós, G.; Riedlb, Z.; Sapi, J. Tetrahedron 2007, 63, 10320.
- (4) Zhao, X.; Yeung, C. S.; Dong, V. M. Am. Chem. Soc. 2010, 132, 5837.

Analytical Data for New Compounds

Tert-butyl p-tolylcarbamate 1e

White solid. mp: 86 °C; ¹H NMR (500 MHz; CDCl₃): δ = 1.51(s, 9H), 2.28 (s, 3H), 6.49 (s, 1H), 7.07 (d, *J* = 8.0 Hz, 2H), 7.24 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): δ = 20.7, 28.3, 80.3, 118.6, 129.4, 132.5, 135.7, 152.9. IR (KBr, cm⁻¹): 1697, 1529, 1157, 1050, 817, 508. MS calcd *m*/*z* 207.2689, [M]⁺ found 207.2684; Anal. Calcd for: C₁₂H₁₇NO₂: C, 69.54; H, 8.27; N, 6.76; Found: C, 69.52; H, 8.24; N, 6.73.

N-(2-methoxy-4-methylphenyl)pivalamide 1g

Colorless liquid; ¹H NMR (500 MHz; CDCl₃): δ = 1.31 (s, 9H), 2.31 (s, 3H), 3.86 (s, 3H), 6.68 (s, 1H), 6.75 (d, *J* = 8.0 Hz, 1H), 8.05 (s, 1H), 8.27 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 21.2, 27.5, 39.8, 55.6, 110.6, 119.2, 121.1, 125.2, 133.1, 147.7, 176.2. IR (KBr, cm⁻¹): 1680, 1528, 1257, 750. MS calcd *m*/*z* 221.2955, [M]⁺ found 221.2959; Anal. Calcd for: C₁₃H₁₉NO₂: C, 70.56; H, 8.65; N, 6.33; Found: C, 70.42; H, 8.25; N, 6.77.

N-(2-ethoxy-4-methylphenyl)pivalamide 1h

Colorless liquid; ¹H NMR (500 MHz; CDCl₃): $\delta = 1.30$ (s, 9H), 1.43 (t, J = 7.0 Hz, 3H), 2.28 (s, 3H), 4.03 (dd, $J_1 = 13.5$ Hz, $J_2 = 7.0$ Hz, 2H), 6.65 (s, 1H), 6.73 (d, J = 8.0 Hz, 1H), 8.13 (s, 1H), 8.25 (d, J = 7.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 14.7$, 21.1, 27.4, 39.7, 63.9, 111.5, 118.9, 120.9, 125.2, 132.8, 147.1, 175.9. IR (KBr, cm⁻¹): 1680, 1526, 1259, 1123, 749. MS calcd m/z 235.3220, [M]⁺ found 235.3197; Anal. Calcd for: C₁₄H₂₁NO₂: C, 71.46; H, 8.99; N, 5.95; Found: C, 71.43; H, 8.94; N, 5.98.

N-(2-(benzyloxy)-4-methylphenyl)pivalamide 1i

Colorless liquid; ¹H NMR (500 MHz; CDCl₃): $\delta = 1.24$ (s, 9H), 2.31 (s, 3H), 5.08 (s, 2H), 6.79 (d, J = 5.5 Hz, 2H), 7.35-7.42 (m, 5H), 8.12 (s, 1H), 8.28 (d, J = 9.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 21.3$, 27.5, 39.8, 70.8, 112.3, 119.4, 121.8, 125.6, 127.3, 128.2, 128.6, 133.2, 136.5, 147.2, 176.2. IR (KBr, cm⁻¹): 1680, 1527, 1257, 1042, 749. MS calcd *m/z* 297.3914, [M]⁺ found 297.3921; Anal. Calcd for: C₁₉H₂₃NO₂: C, 76.73; H, 7.80; N, 4.71; Found: C, 76.75; H, 7.81; N, 4.69.

N-(5-methylbiphenyl-2-yl)pivalamide 1k

White solid. mp: 107 °C; ¹H NMR (500 MHz; CDCl₃): $\delta = 1.09$ (s, 9H), 2.34 (s, 3H), 7.06 (s, 1H), 7.17 (d, J = 8.0 Hz, 1H), 7.36 (t, J = 7.0 Hz, 2H), 7.39-7.42 (m, 2H), 7.47 (t, J = 7.0 Hz, 2H), 8.20 (d, J = 7.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 20.8$, 27.4, 39.6, 121.0, 127.9, 128.9, 129.3, 130.3, 132.2, 132.5, 133.5, 138.2, 176.2. IR (KBr, cm⁻¹): 1680, 1502, 821, 577. MS calcd *m/z* 267.3654, [M]⁺ found 267.3652; Anal. Calcd for: C₁₈H₂₁NO: C, 80.86; H, 7.92; N, 5.24; Found: C, 80.84; H, 7.93; N, 5.26.

N-(5-methylbiphenyl-2-yl)pivalamide 11

White solid. mp: 102 °C; ¹H NMR (500 MHz; CDCl₃): $\delta = 1.09$ (s, 9H), 2.31 (s, 3H), 2.39 (s, 3H), 7.02 (d, J = 1.0 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.5 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.45 (s, 1H), 8.20 (d, J = 8.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 20.7$, 21.0, 27.3, 39.5, 120.9, 128.5, 128.9, 129.5, 130.2, 132.1, 132.5, 133.2, 135.1, 137.5, 175.9. IR (KBr, cm⁻¹): 1680, 1514, 1301, 820. MS calcd *m/z* 281.3920, [M]⁺ found 281.3924; Anal. Calcd for: C₁₉H₂₃NO: C, 81.10; H, 8.24; N, 4.98; Found: C, 81.11; H, 8.25; N, 4.94.

N-(4,5-dimethylbiphenyl-2-yl)pivalamide 1m

White solid. mp: 105 °C; ¹H NMR (500 MHz; CDCl₃): $\delta = 1.09$ (s, 9H), 2.24 (s, 3H), 2.30 (s, 3H), 7.02 (s, 1H), 7.33 (d, J = 7.5 Hz, 2H), 9.38 (s, 2H), 7.46 (t, J = 7.5 Hz, 2H), 8.14 (s, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 19.1$, 19.7, 27.3, 39.6, 122.2, 127.7, 128.8, 129.3, 129.8, 130.7, 132.2, 132.5, 136.7, 138.1, 176.2. IR (KBr, cm⁻¹): 1642, 1511, 846, 820. MS calcd *m/z* 281.3920, [M]⁺ found 281.3925; Anal. Calcd for: C₁₉H₂₃NO: C, 81.10; H, 8.24; N, 4.98; Found: C, 81.12; H, 8.25; N, 4.96.

N-(4-methoxy-6-methylbiphenyl-3-yl)pivalamide 1n

White solid. mp: 114 °C; ¹H NMR (500 MHz; CDCl₃): δ = 1.31 (s, 9H), 2.26 (s, 3H), 3.91 (s, 3H), 6.76 (s, 1H), 7.27 (t, *J* = 7.0 Hz, 1H), 7.31-7.36 (m, 4H), 8.06 (s, 1H), 8.34 (s, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 20.4, 27.6, 39.9, 55.9, 111.7, 121.2, 125.4, 126.4, 127.8, 129.4, 130.3, 134.5, 141.5, 147.1, 176.3. IR (KBr, cm⁻¹): 1677, 1527, 1170, 581. MS calcd *m/z* 297.3914, [M]⁺ found 297.3910; Anal. Calcd for: C₁₉H₂₃NO₂: C, 76.73; H, 7.80; N, 4.71; Found: C, 76.72; H, 7.82; N, 4.70.

N-(4-((N-(phenyl sulf on yl) phenyl sulf on amido) methyl) phenyl) pivalamide 2a

White solid. mp: 124 °C; ¹H NMR (500 MHz; CDCl₃): δ = 1.34 (s, 9H), 4.88 (s, 2H), 7.30 (s, 1H), 7.33 (d, *J* = 8.5 Hz, 2H), 7.41-7.47 (m, 6H), 7.59 (t, *J* = 7.5 Hz, 2H), 7.80 (d, *J* = 7.5 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 27.6, 39.7, 51.9, 119.7, 128.1, 128.9, 129.9, 130.2, 133.7, 137.9, 139.8, 176.6. IR (KBr, cm⁻¹): 1676, 1394, 1170, 788, 582. MS calcd *m/z* 486.6036, [M]⁺ found 486.6041; Anal. Calcd for: C₂₄H₂₆N₂O₅S₂: C, 59.24; H, 5.39; N, 5.76. Found: C, 59.27; H, 5.34; N, 5.75.

N-(4-((N-(phenylsulfonyl)phenylsulfonamido)methyl)phenyl)acetamide 2b

White solid. mp: 156 °C; ¹H NMR (500 MHz; CDCl₃): $\delta = 2.19$ (s, 3H), 4.89 (s, 2H), 7.31-7.33 (m, 3H), 7.37 (d, J = 8.0 Hz, 2H), 7.44 (t, J = 8.0 Hz, 4H), 7.58 (t, J = 7.5 Hz, 2H), 7.79 (d, J = 7.5 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 24.7$, 51.9, 119.5, 128.0, 128.8, 129.9, 130.1, 133.7, 137.8, 139.8, 168.3. IR (KBr, cm⁻¹): 1668, 1214, 750, 704. MS calcd *m/z* 444.5239, [M]⁺ found 444.5241; Anal. Calcd for: C₂₁H₂₀N₂O₅S₂: C, 56.74; H, 4.53; N, 6.30. Found: C, 56.71; H, 4.52; N, 6.27.

N-(4-((N-(phenyl sulf on yl) phenyl sulf on amido) methyl) phenyl) benzamide 2 c

White solid. mp: 131 °C; ¹H NMR (500 MHz; CDCl₃): δ = 4.91 (s, 2H), 7.36 (d, *J* = 8.5 Hz, 2H), 7.45-7.53 (m, 7H), 7.54-7.59 (m, 5H), 7.81 (t, *J* = 8.0 Hz, 3H), 7.89 (d, *J* = 8.5 Hz, 2H), 7.96 (s, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 51.9, 119.9, 127.0, 128.1, 128.8, 128.9, 129.9, 130.5, 131.9, 133.7, 134.7, 137.9, 139.9, 165.6. IR (KBr, cm⁻¹): 1684, 1513, 1165, 752. MS calcd *m/z* 506.5933, [M]⁺ found 506.5936; Anal. Calcd for: C₂₆H₂₂N₂O₅S₂: C, 61.64; H, 4.38; N, 5.53; Found: C, 61.62; H, 4.34; N, 5.56.

$\label{eq:linear} \texttt{2-phenyl-N-(4-((N-(phenyl sulf on yl) phenyl sulf on amido) methyl) phenyl)} ace tamide \ \texttt{2d}$

White solid. mp: 171 °C; ¹H NMR (500 MHz; CDCl₃): $\delta = 3.75$ (s, 2H), 4.86 (s, 2H), 7.22 (s, 1H), 7.35 (t, J = 7.0 Hz, 3H), 7.39-7.44 (m, 5H), 7.47 (t, J = 7.5 Hz, 2H), 7.54-7.59 (m, 3H), 7.77 (t, J = 7.5 Hz, 4H), 7.93 (d, J = 7.5 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 44.7$, 51.8, 119.6, 127.7, 127.7, 128.0, 128.8, 129.0, 129.2, 129.5, 129.8, 130.5, 133.6, 133.7, 134.2, 137.4, 139.8, 169.4. IR (KBr, cm⁻¹): 1675, 1514, 1374, 1167, 752. MS calcd *m*/*z* 520.6199, [M]⁺ found 520.6174; Anal. Calcd for: C₂₇H₂₄N₂O₅S₂: C, 62.29; H, 4.65; N, 5.38; Found: C, 62.31; H, 4.66; N, 5.36.

tert-butyl 4-((N-(phenylsulfonyl)phenylsulfonamido)methyl)phenylcarbamate 2e

White solid. mp: 96 °C; ¹H NMR (500 MHz; CDCl₃): δ = 1.54 (s, 9H), 4.87 (s, 2H), 6.49 (s, 1H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.5 Hz, 2H), 7.44 (t, *J* = 8.0 Hz, 4H), 7.57 (t, *J* = 8.0 Hz, 2H), 7.79 (t, *J* = 7.0 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 28.3, 51.9, 80.7, 118.1, 127.8, 128.1,

128.8, 129.1, 130.1, 131.3, 133.6, 138.3, 139.9, 152.5. IR (KBr, cm⁻¹): 1631, 1170, 788, 745. MS calcd m/z 502.6030, [M]⁺ found 502.6025; Anal. Calcd for: C₂₄H₂₆N₂O₆S₂: C, 57.35; H, 5.21; N, 5.57; Found: C, 57.38; H, 5.19; N, 5.55.

N-(2-methyl-4-((*N*-(phenylsulfonyl)phenylsulfonamido)methyl)phenyl)pivalamide 2f

White solid. mp: 147 °C; ¹H NMR (500 MHz; CDCl₃): $\delta = 1.34$ (s, 9H), 2.10 (s, 3H), 4.87 (s, 2H), 7.09 (s, 1H), 7.17 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.5$ Hz, 1H), 7.23 (s, 1H), 7.45 (t, J = 8.0 Hz, 4H), 7.56 (t, J = 8.0 Hz, 2H), 7.73 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 17.4$, 27.6, 39.7, 52.0, 122.6, 127.5, 128.0, 128.8, 128.9, 130.7, 130.8, 133.6, 135.7, 139.8, 176.4. IR (KBr, cm⁻¹): 1642, 1511, 844, 486, 457. MS calcd *m/z* 500.6302, [M]⁺ found 500.6297; Anal. Calcd for: C₂₅H₂₈N₂O₅S₂: C, 59.98; H, 5.64; N, 5.60; Found: C, 59.96; H, 5.67; N, 5.62.

N-(2-methoxy-4-((*N*-(phenylsulfonyl)phenylsulfonamido)methyl)phenyl)pivalamide 2g White solid. mp: 158 °C;¹H NMR (500 MHz; CDCl₃): δ = 1.34 (s, 9H), 3.67 (s, 3H), 4.89 (s, 2H), 6.83 (s, 1H), 6.94 (d, *J* = 8.5 Hz, 1H), 7.45 (t, *J* = 8.0 Hz, 4H), 7.58 (t, *J* = 7.0 Hz, 2H), 7.83 (d, *J* = 8.0 Hz, 4H), 8.08 (s, 1H), 8.32 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 27.6, 40.0, 52.4, 55.7, 110.0, 118.9, 122.0, 127.7, 128.1, 128.8, 129.4, 133.6, 139.9, 147.9, 176.5. IR (KBr, cm⁻¹): 1677, 1526, 1374, 1168, 582, 563. MS calcd *m*/*z* 516.6296, [M]⁺ found: 516.6292; Anal. Calcd for: C₂₅H₂₈N₂O₆S₂: C, 58.12; H, 5.46; N, 5.42; Found: C, 58.14; H, 5.47; N, 5.40.

N-(2-ethoxy-4-((*N*-(phenylsulfonyl)phenylsulfonamido)methyl)phenyl)pivalamide 2h White solid. mp: 142 °C; ¹H NMR (500 MHz; CDCl₃): δ = 1.34 (s, 9H), 1.37 (t, *J* = 7.0 Hz, 3H), 3.84 (dd, *J*₁ = 14.0 Hz, *J*₂ = 7.0 Hz, 2H), 4.88 (s, 2H), 6.84 (s, 1H), 6.94 (d, *J* = 7.0 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 4H), 7.56-7.59 (m, 2H), 7.82 (d, *J* = 7.5 Hz, 4H), 8.17 (s, 1H), 8.30 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 14.6, 27.5, 40.0, 52.4, 64.0, 111.1, 118.8, 121.9, 127.8, 128.1, 128.2, 128.8, 129.4, 133.5, 139.9, 147.3, 176.4. IR (KBr, cm⁻¹): 1677, 1526, 1479, 1394, 1170, 582, 562. MS calcd *m*/*z* 530.6562, [M]⁺ found 530.6457; Anal. Calcd for: C₂₆H₃₀N₂O₆S₂: C, 58.85; H, 5.70; N, 5.28; Found: C, 58.84; H, 5.73; N, 5.26.

N-(2-(benzyloxy)-4-((*N*-(phenylsulfonyl)phenylsulfonamido)methyl)phenyl)pivalamide 2i White solid. mp: 135 °C; ¹H NMR (500 MHz; CDCl₃): $\delta = 1.27$ (s, 9H), 4.82 (s, 2H), 4.89 (s, 2H), 6.96 (s, 1H), 6.97 (s, 1H), 7.35-7.43 (m, 9H), 7.54 (d, J = 7.5 Hz, 2H), 7.82 (d, J = 8.0 Hz, 4H), 8.16 (s, 1H), 8.32 (d, J = 9.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 27.5$, 39.9, 52.4, 70.7, 111.8, 119.1, 122.4, 127.6, 128.1, 128.2, 128.4, 128.7, 128.8, 129.5, 133.6, 136.1, 139.9, 147.2, 176.5. IR (KBr, cm⁻¹): 1681, 1525, 1375, 1168, 581, 550. MS calcd *m/z* 592.7256, [M]⁺ found 592.7252; Anal. Calcd for: C₃₁H₃₂N₂O₆S₂: C, 62.82; H, 5.44; N, 4.73; Found: C, 62.81; H, 5.42; N, 4.75.

$$N(SO_2Ph)_2$$

N-(3-methyl-4-((*N*-(phenylsulfonyl)phenylsulfonamido)methyl)phenyl)pivalamide 2j White solid. mp: 137 °C;¹H NMR (500 MHz; CDCl₃): δ = 1.32 (s, 9H), 2.28 (s, 3H), 4.97 (s, 2H), 7.00 (dd, J_1 = 8.5 Hz, J_2 = 2.0 Hz, 1H), 7.14 (d, J = 8.5 Hz, 1H), 7.24 (s, 1H), 7.39 (s, 1H), 7.45 (t, J = 7.5 Hz, 4H), 7.59 (t, J = 7.5 Hz, 2H), 7.82 (d, J = 8.5 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 19.3, 27.6, 39.6, 49.7, 117.2, 121.5, 126.6, 127.9, 128.0, 128.4, 128.8, 129.9, 133.6, 137.4, 137.6, 139.9, 176.6. IR (KBr, cm⁻¹): 1687, 1521, 1168, 734, 550. MS calcd *m/z* 500.6302, [M]⁺ found 500.6293; Anal. Calcd for: C₂₅H₂₈N₂O₅S₂: C, 59.98; H, 5.64; N, 5.60; Found: C, 59.94; H, 5.61; N, 5.63.

N-(5-((N-(phenyl sulf on yl) phenyl sulf on amido) methyl) biphenyl-2-yl) pivalamide 2k

White solid. mp: 140 °C; ¹H NMR (500 MHz; CDCl₃): $\delta = 1.10$ (s, 9H), 4.93 (s, 2H), 7.17 (d, J = 8.0 Hz, 2H), 7.22 (s, 1H), 7.35 (d, J = 7.5 Hz, 2H), 7.41-7.49 (m, 6H), 7.58 (t, J = 7.5 Hz, 2H), 7.84 (t, J = 8.0 Hz, 4H), 8.27 (d, J = 8.0 Hz, 1H), ¹³C NMR (125 MHz; CDCl₃): $\delta = 27.3$, 39.8, 52.0, 120.6, 128.1, 128.2, 128.4, 128.6, 128.8, 129.1, 129.4, 129.8, 130.2, 132.2, 133.7, 134.9, 137.3, 139.9, 176.3. IR (KBr, cm⁻¹): 1669, 1567, 1159, 581, 550. MS calcd *m/z* 562.6996, [M]⁺ found 562.6987; Anal. Calcd for: C₃₀H₃₀N₂O₅S₂: C, 64.03; H, 5.37; N, 4.98; Found: C, 64.23; H, 5.39; N, 4.94.

N-(4'-methyl-5-((*N-*(phenylsulfonyl)phenylsulfonamido)methyl)biphenyl-2-yl)pivalamide 2l

White solid. mp: 113°C; ¹H NMR (500 MHz; CDCl₃): δ = 1.12 (s, 9H), 2.42 (s, 3H), 4.92 (s, 2H), 7.06 (d, *J* = 7.5 Hz, 2H), 7.20 (s, 1H), 7.26 (d, *J* = 7.5 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 4H), 7.51 (s, 1H), 7.58 (t, *J* = 7.5 Hz, 2H), 7.84 (d, *J* = 7.5 Hz, 4H), 8.28 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 21.2, 27.4, 39.8, 52.1, 120.4, 128.1, 128.1, 128.8, 128.9, 129.2, 129.7, 130.4, 132.0, 133.6, 133.9, 134.3, 135.1, 138.0, 139.9, 176.3. IR (KBr, cm⁻¹): 1667, 1564, 1160, 581, 550. MS calcd *m*/*z* 576.7262, [M]⁺ found 576.7254; Anal. Calcd for:

C₃₁H₃₂N₂O₅S₂: C, 64.56; H, 5.59; N, 4.86; Found: C, 64.54; H, 5.57; N, 4.84.

N-(4-methyl-5-((*N*-(phenylsulfonyl)phenylsulfonamido)methyl)biphenyl-2-yl)pivalamide 2m

White solid. mp: 139 °C; ¹H NMR (500 MHz; CDCl₃): δ = 1.11 (s, 9H), 2.38 (s, 3H), 5.01 (s, 2H), 7.04-7.06 (m, 3H), 7.39-7.44 (m, 8H), 7.54 (d, *J* = 7.5 Hz, 2H), 7.84 (d, *J* = 7.5 Hz, 4H), 8.16 (s, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 19.2, 27.3, 39.8, 49.6, 122.3, 127.8, 127.9, 128.0, 128.8, 128.9, 129.1, 129.8, 130.2, 133.6, 134.3, 136.7, 137.2, 139.9, 176.4. IR (KBr, cm⁻¹): 1669, 1450, 1400, 1159, 581, 550. MS calcd *m*/*z* 576.7262, [M]⁺ found 576.7269; Anal. Calcd for: C₃₁H₃₂N₂O₅S₂: C, 64.56; H, 5.59; N, 4.86; Found: C, 64.54; H, 5.57; N, 4.88.

N-(4-methoxy-6-((*N*-(phenylsulfonyl)phenylsulfonamido)methyl)biphenyl-3-yl)pivalamide 2n

White solid. mp: 158°C; ¹H NMR (500 MHz; CDCl₃): δ = 1.33 (s, 9H), 3.51 (s, 3H), 4.96 (s, 2H), 6.77 (s, 1H), 7.34 (d, *J* = 7.5 Hz, 3H), 7.38-7.45 (m, 6H), 7.56-7.62 (m, 2H), 7.79 (d, *J* = 7.5 Hz, 4H), 8.02 (t, *J* = 7.5 Hz, 2H), 8.36 (s, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 27.6, 39.9, 50.2, 55.4, 109.4, 120.9, 126.5, 126.7, 127.1, 128.1, 128.2, 128.7, 129.4, 129.6, 129.8, 133.5, 134.7, 135.8, 139.8, 139.9, 147.1, 176.6. IR (KBr, cm⁻¹): 1667, 1452, 1400, 1160, 581, 550. MS calcd *m/z* 592.7256, [M]⁺ found 592.7249; Anal. Calcd for: C₃₁H₃₂N₂O₆S₂: C, 62.82; H, 5.44; N, 4.73; Found: C, 62.84; H, 5.43; N, 4.70.

¹H and ¹³C Spectra of New Compounds Compound 1e

Compound 1g

Compound 1h

Compound 1i

Compound 1k

Compound 11

Compound 1m

Compound 1n

Compound 2a

Compound 2b

Compound 2c

Compound 2e

Compound 2f

Compound 2g

Compound 2h

Compound 2i

Compound 2k

Compound 2l

.

Compound 2m

Compound 2n

Compound E

Ball-and-stick Representation of Bimetallic Pd Complex E

Table 1. Crystal data and structure refinement for 1.

Identification code	1
Empirical formula	C H F0.01 N O Pd
Formula weight	149.64
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, Pbcn
Unit cell dimensions	a = 10.9301(6) A alpha = 90 deg. b = 16.8303(8) A beta = 90 deg. c = 40.821(2) A gamma = 90 deg.
Volume	7509.3(7) A^3
Z, Calculated density	90, 2.978 Mg/m^3
Absorption coefficient	5.303 mm^-1
F(000)	6129

Crystal size	0.21 x 0.24 x 0.26 mm
Theta range for data collection	2.00 to 25.04 deg.
Limiting indices	-12<=h<=9, -19<=k<=20, -48<=l<=36
Reflections collected / unique	31157 / 6615 [R(int) = 0.0832]
Completeness to theta = 25.04	99.8 %
Absorption correction	Numerical
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	6615 / 0 / 191
Goodness-of-fit on F^2	1.925
Final R indices [I>2sigma(I)]	R1 = 0.1261, wR2 = 0.3407
R indices (all data)	R1 = 0.1909, wR2 = 0.3617
Largest diff. peak and hole	3.809 and -0.766 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for 1. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
Pd(1)	4064(1)	837(1)	1195(1)	62 (1)
Pd(2)	5074(1)	2352(1)	1456(1)	72(1)
O(3)	5610(12)	884(7)	907(3)	79(3)
O(5)	5167(11)	420(7)	1591(3)	79(3)
O(2)	2627(12)	669(7)	1481(3)	81(3)
N(1)	2830(14)	3488(8)	1245(3)	74(4)
0(1)	4715(13)	3106(8)	1105(3)	94(4)
O(4)	6477(12)	1920(7)	1143(3)	86(3)
O(6)	5627(11)	1584(7)	1832(3)	81(3)
F(1)	5727(12)	-250(7)	2165(3)	118(4)
C(9)	3017(16)	1200(9)	840(4)	66(4)
C(10)	5593(16)	856(10)	1801(4)	72(5)
C(12)	3813(17)	2836(10)	1744(5)	81(5)
F(3)	6263(16)	834(9)	2351(4)	160(5)
C(14)	2835(15)	3328(9)	1568(4)	66(4)
N(2)	1398(13)	1522(8)	1245(3)	72(4)
F(5)	7982(16)	1960(10)	608(4)	175(6)
F(2)	7288(16)	210(9)	2000(4)	167(5)
C(18)	6427(18)	1381(11)	952(4)	75(5)
C(19)	1904(17)	1534(10)	919(4)	76(5)
C(20)	3590(20)	3860(12)	701(5)	99(6)
C(21)	2250(20)	4032(12)	596(5)	106(7)
F(4)	8400(20)	993 (11)	866(5)	226(8)
C(23)	1990(20)	3659(12)	1750(5)	95(6)
C(24)	820(20)	946(12)	1752(6)	102(7)
C(25)	3790(20)	2735(12)	2074(5)	103(6)
C(26)	1150(20)	1839(12)	660(5)	99(6)
C(27)	6200(20)	414(14)	2090(6)	104(7)
F(6)	7477(17)	734(11)	498(4)	196(6)
C(30)	1910(20)	3534(13)	2103(6)	117(7)
C(31)	210(20)	141(14)	1714(5)	111(7)
C(32)	2857(19)	3076(11)	2258(5)	96(6)
C(33)	3390(20)	1096(12)	518(5)	99(6)

C(34)	1726(18)	1064(11)	1478(4)	79(5)
C(35)	4320(20)	4595(13)	733(5)	108(7)
C(37)	3713(19)	3435(11)	1040(5)	81(5)
C(38)	-220(30)	1599(17)	1790(6)	146(9)
C(39)	2590(20)	1434(14)	265(6)	122(8)
C(40)	7470(30)	1337(17)	684(6)	136(8)
C(41)	1520(20)	1811(13)	331(5)	108(7)
C(42)	1570(30)	879(16)	2082(7)	172(11)
C(43)	3030(30)	1332(15)	-92(6)	145(9)
C(44)	4160(20)	3252(12)	414(5)	104(6)
C(45)	2910(30)	2941(15)	2658(7)	145(9)

Pd(1)-C(9)	1.945(16)
Pd(1)-O(2)	1.978(12)
Pd(1)-O(3)	2.060(13)
Pd(1)-O(5)	2.135(12)
Pd(1)-Pd(2)	2.9750(18)
Pd(2)-C(12)	1.987(18)
Pd(2)-O(1)	1.953(13)
Pd(2)-O(6)	2.095(12)
Pd(2)-O(4)	2.123(13)
O(3)-C(18)	1.237(19)
O(5)-C(10)	1.222(18)
O(2)-C(34)	1.19(2)
N(1)-C(14)	1.346(18)
N(1)-C(37)	1.28(2)
O(1)-C(37)	1.26(2)
O(4)-C(18)	1.196(18)
O(6)-C(10)	1.232(18)
F(1)-C(27)	1.27(2)
C(9)-C(33)	1.39(2)
C(9)-C(19)	1.38(2)
C(10)-C(27)	1.55(3)
C(12)-C(25)	1.36(2)
C(12)-C(14)	1.53(2)
F(3)-C(27)	1.28(2)
C(14)-C(23)	1.31(2)
N(2)-C(34)	1.276(19)
N(2)-C(19)	1.44(2)
F(5)-C(40)	1.23(3)
F(2)-C(27)	1.29(2)
C(18)-C(40)	1.58(3)
C(19)-C(26)	1.44(2)
C(20)-C(37)	1.56(3)
C(20)-C(35)	1.48(3)
C(20)-C(21)	1.55(3)
C(20)-C(44)	1.68(3)
F(4)-C(40)	1.39(3)
C(23)-C(30)	1.46(3)
C(24)-C(31)	1.52(3)
C(24)-C(42)	1.58(3)
C(24)-C(38)	1.59(3)

 Table 3.
 Bond lengths [A] and angles [deg] for 1.

C(24)-C(34)	1.51(3)
C(25)-C(32)	1.39(3)
C(26)-C(41)	1.40(3)
C(26)-C(54)	1.85(8)
F(6)-C(40)	1.27(3)
C(30)-C(32)	1.43(3)
C(32)-C(45)	1.65(3)
C(33)-C(39)	1.47(3)
C(39)-C(41)	1.36(3)
C(39)-C(43)	1.55(3)
C(9)-Pd(1)-O(2)	91.1 (6)
C(9)-Pd(1)-O(3)	92.6(6)
O(2)-Pd(1)-O(3)	173.7(5)
C(9)-Pd(1)-O(5)	178.3(6)
O(2)-Pd(1)-O(5)	87.3(5)
O(3)-Pd(1)-O(5)	88.9(4)
C(9)-Pd(1)-Pd(2)	102.5(5)
O(2)-Pd(1)-Pd(2)	101.9(3)
O(3)-Pd(1)-Pd(2)	82.3(3)
O(5)-Pd(1)-Pd(2)	78.6(3)
C(12)-Pd(2)-O(1)	91.6 (7)
C(12)-Pd(2)-O(6)	91.1 (6)
O(1)-Pd(2)-O(6)	174.6(5)
C(12)-Pd(2)-O(4)	175.8(6)
O(1)-Pd(2)-O(4)	85.8(5)
O(6)-Pd(2)-O(4)	91.2(5)
C(12)-Pd(2)-Pd(1)	107.8(5)
O(1)-Pd(2)-Pd(1)	102.7(4)
O(6)-Pd(2)-Pd(1)	80.8(3)
O(4)-Pd(2)-Pd(1)	76.1(3)
C(18)-O(3)-Pd(1)	122.2(12)
C(10)-O(5)-Pd(1)	123.4(11)
C(34)-O(2)-Pd(1)	124.8(13)
C(14)-N(1)-C(37)	128.5(17)
C(37)-O(1)-Pd(2)	128.0(13)
C(18)-O(4)-Pd(2)	128.1(13)
C(10)-O(6)-Pd(2)	122.1(12)
C(33)-C(9)-C(19)	122.3(17)
C(33)-C(9)-Pd(1)	119.6(14)
C(19)-C(9)-Pd(1)	118.1(13)
O(5)-C(10)-O(6)	132.8(17)
O(5)-C(10)-C(27)	114.3(16)
O(6)-C(10)-C(27)	112.9(17)

C(25)-C(12)-C(14)	121.3(17)
C(25)-C(12)-Pd(2)	123.4(15)
C(14)-C(12)-Pd(2)	115.3(12)
N(1)-C(14)-C(23)	117.9(17)
N(1)-C(14)-C(12)	124.8(15)
C(23)-C(14)-C(12)	117.2(16)
C(34)-N(2)-C(19)	126.1(16)
O(3)-C(18)-O(4)	130.0(19)
O(3)-C(18)-C(40)	112.5(18)
O(4)-C(18)-C(40)	117.1(19)
N(2)-C(19)-C(9)	123.4(16)
N(2)-C(19)-C(26)	117.7(17)
C(9)-C(19)-C(26)	118.6(17)
C(37)-C(20)-C(35)	105.0(17)
C(37)-C(20)-C(21)	114.3(18)
C(35)-C(20)-C(21)	112.0(18)
C(37)-C(20)-C(44)	108.0(15)
C(35)-C(20)-C(44)	112.0(18)
C(21)-C(20)-C(44)	105.6(16)
C(30)-C(23)-C(14)	122(2)
C(31)-C(24)-C(42)	104.7(19)
C(31)-C(24)-C(38)	108(2)
C(42)-C(24)-C(38)	110(2)
C(31)-C(24)-C(34)	109.4(18)
C(42)-C(24)-C(34)	108(2)
C(38)-C(24)-C(34)	116.7(19)
C(12)-C(25)-C(32)	120(2)
C(41)-C(26)-C(19)	122(2)
C(41)-C(26)-C(54)	135(3)
C(19)-C(26)-C(54)	102(3)
F(1)-C(27)-F(3)	107.9(19)
F(1)-C(27)-F(2)	102(2)
F(3)-C(27)-F(2)	110(2)
F(1)-C(27)-C(10)	115(2)
F(3)-C(27)-C(10)	113.0(19)
F(2)-C(27)-C(10)	107.8(19)
C(23)-C(30)-C(32)	118(2)
C(25)-C(32)-C(30)	120.7(19)
C(25)-C(32)-C(45)	116.9(19)
C(30)-C(32)-C(45)	122(2)
C(9)-C(33)-C(39)	116(2)
O(2)-C(34)-N(2)	125.4(18)
O(2)-C(34)-C(24)	117.5(18)
N(2)-C(34)-C(24)	116.7(18)

O(1)- $C(37)$ - $N(1)$	123 5(18
O(1) - O(37) - O(1)	123.3(10) 117.4(10)
U(1) - U(57) - U(20)	117.0(18)
N(1)-C(37)-C(20)	118.8(18)
C(33)-C(39)-C(41)	124(2)
C(33)-C(39)-C(43)	115(2)
C(41)-C(39)-C(43)	121(2)
F(5)-C(40)-F(6)	122(3)
F(5)-C(40)-F(4)	99 (2)
F(6)-C(40)-F(4)	89(2)
F(5)-C(40)-C(18)	118(2)
F(6)-C(40)-C(18)	117(2)
F(4)-C(40)-C(18)	100(2)
C(26)-C(41)-C(39)	117(2)

Symmetry transformations used to generate equivalent atoms:

Table 4.	Anisotropic displacement parameters (A^2 x 10^3) for 1.
The aniso	tropic displacement factor exponent takes the form:
-2 pi^2 [ł	n^2 a*^2 U11 + + 2 h k a* b* U12]

	U11	U22	U33	U2	23	U13	U12
Pd(1)	54(1)	64(1)	68(1)	-2(1)	-1(1)	-2(1)	
Pd(2)	62 (1)	57(1)	98 (1)	-14(1)	-2(1)	11(1)	