SUPPORTING INFORMATION

Cationic Intermediates in Friedel-Crafts Acylation: Structural Information from Theory and Experiment

Hui Zhu and Matthew P. Meyer*

University of California, Merced, School of Natural Sciences P.O. Box 2039, Merced, California 95343

mmeyer@ucmerced.edu

Table of Contents

Synthesis of d_3 -xylene
Procedure for Measuring Intramolecular ² H KIEs2
Raw Data from Intramolecular ² H KIE Experiments
Procedure for Measuring Intermolecular ² H KIEs (d_6 - vs d_{10} -xylene)4
Raw Data from Intermolecular d_6 - vs d_{10} -xylene Competition5
Procedure for Measuring Intermolecular ^{2}H KIEs (d_{6} -xylene vs xylene)6
Raw Data from Intermolecular d_6 -xylene vs xylene Competition7
Optimized Cationic Intermediate Structures8
$\eta^6 - \pi$ -complex (gas phase)
$\eta^1 - \pi$ -complex (gas phase)10
σ -complex (gas phase)11
xylene (gas phase)12
η⁶-π-complex (PCM) 13
$\eta^{1}-\pi$ -complex (PCM)
σ-complex (PCM) 15
xylene (PCM)16

Synthesis of *d*₃-Xylene

To a 250 mL RBF with a stir bar, 0.22 g (1.0 mmol) of palladium acetate, 0.96 g (2.3 mmol) of tri(1-naphthyl)phosphine, 4.5 g (33 mmol) of p-tolylboronic acid, 15.3g (66 mmol) of K₃PO₄·H₂O, 120 mL of THF and 3 mL of water were added. While stirring, 4 mL (9.6 g, 66 mmol) of d_3 -iodomethane was added. The reaction was allowed to stir overnight – at which time the reaction mixture was poured into 500 mL of water. It was then extracted with 3 × 200 mL pentane, and dried with anhydrous magnesium sulfate. The solution was then vacuum filtered and distilled. The distillate with a boiling range of 130-145°C was collected, weighed 1.8 g (50% yield), and identified as pure product by ¹H NMR.

¹H NMR (400MHz, CDCl₃) δ: 7.075 (s,4H), 2.320 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ: 134.886 (s,1C [C4]), 134.768 (s,1C [C1]), 129.107 (s,4C [C2,C3,C5,C6]), 21.195 (s,1C [CH₃]), 20.205 (sept,1C [CD₃])

Procedure for Measuring Intramolecular ²H KIEs

Intramolecular Competition Reaction. A 100 mL 3-neck RBF was mounted with a 25 mL pressureequalizing dropping funnel and a stir bar. The apparatus was dried by heating intensively with heat gun while purging with dry nitrogen gas. After the apparatus cooled to room temperature, 232 μ L (200 mg, 1.83 mmol, 1.0 eq) of d_3 -p-xylene was added to the RBF while purging with a stream of dry nitrogen. To the RBF, 20 mL of dry dichloromethane (Sigma-Aldrich, Sure/Seal™ bottle, used as-is) was transferred into the 3-neck RBF via cannula. The 3-neck RBF was then placed into an ice-water bath. The mixture was stirred for at least 15 minutes to ensure equilibration to 0 °C. Another 100 mL RBF with a stir bar was dried by heating intensively with heat gun while purging with dry nitrogen gas. After the apparatus cooled to room temperature, 1.13 g (1.72 mmol, 0.9 eq) of anhydrous aluminum chloride was added quickly, followed by the cannula transfer of 20 mL of dry dichloromethane (Sigma-Aldrich, Sure/SealTM bottle, used as-is). With stirring, 0.17 mL (0.17g, 1.6 mmol, 0.85 eq) of redistilled isobutyryl chloride was injected into the slurry. The mixture was stirred under room temperature for 10 minutes. During this time, the isobutyryl chloride/AlCl₃ solution became translucent. The isobutyryl chloride/AlCl₃ solution was then transferred to the pressure-equalizing dropping funnel fitted to the 3-neck RBF containing the d_3 -p-xylene. The electrophile solution was added at a rate of one drop per second over a period of approximately 10 minutes. The reaction mixture was stirred at 0 °C for 2 hours. The reaction was then poured into a 125 mL separatory funnel charged with 50 mL of crushed ice. The separatory funnel was capped and shaken vigorously, and put aside until the aqueous and organic layers separated. The organic layer was recovered and collected, and the aqueous layer was extracted with 2×50 mL of dichloromethane. The combined organic layers were dried with anhydrous magnesium sulfate. The dried solution was filtered, and the solvent was removed by rotary evaporation in vacuo.

NMR Measurement and Calculation. Approximately 100 mg of sample was dissolved in 0.75 mL of benzene- d_6 and filled to the 5.0 cm mark in a standard 5 mm NMR tube. ²H NMR spectra were recorded at 61.364 MHz on a Varian Unity 400 MHz NMR using a sweep width (200.0 Hz - 10 times the difference between the 2'-CD₃ and 5'-CD₃ resonances). The sweep width was then centered about the two peaks of interest. A calibrated 90° pulse width and an acquisition time of 8.00 s were used to collect a total of 3200 points. A delay of 12.0 s (approximately 10 times the duration of the T₁ value for the longest relaxing methyl group) was used to ensure quantitative relative ²H measurement. The peaks at δ 2.32 ppm (2'-CD₃) and δ 1.99 ppm (5'-CD₃) were integrated separately using an integration cut that was five times of their line widths (FWHM). The ratio of the integration of these peaks represents the intramolecular ²H KIE. A weighted average was then applied to the individual KIE measurements according to a method reported by Mandel to yield a value of 1.043 ± 0.002.¹

^{1.} Mandel, J The Statistical Analysis of Experimental Data, pp 132-135; Dover: Mineola, NY, 1984.

C	2
С	3

Raw Data from Intramolecular ²H KIE Experiments Table S1. Average ²H integrations with errors for isolated product.

	0		Evneri	ment 1				
Spectrum	1	2	3	4	5	6	7	8
2'-CD ₂ integration	960.37	958 84	960.82	962.98	960 86	960 56	962 49	960 17
5'-CD ₂ integration	1000.00	1000.00	1000.02	1000.00	1000.00	1000.00	1000.00	1000.00
Spectrum	9	10	11	12	13	14	1000.00	1000.00
2'-CD ₂ integration	947 56	952 76	956.36	954 47	972.31	959.86		
5'-CD ₂ integration	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00		
o obșintogration	1000.00	[5'-C	D ₂ 1/[2'-CD ₂	1=1.042 +	0.006	1000.00		
		Lo _ 0.						
			Experi	ment 2				
Spectrum	1	2	3	4	5	6	7	8
2'-CD ₂ integration	955 92	966 12	965.80	954.87	986 90	987.36	988 52	985 70
5'-CD ₂ integration	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
Spectrum	9	10	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
2'-CD ₃ integration	985.47	988.66						
5'-CD ₃ integration	1000.00	1000.00						
		[5'-C	D ₃]/[2'-CD ₃] =1.023 ±	0.015			
		•		-				
			Experi	ment 3				
Spectrum	1	2	3	4	5	6		
2'-CD ₃ integration	967.15	951.46	962.71	959.33	964.10	959.68		
5'-CD ₃ integration	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00		
		[5'-CI	D ₃]/[2'-CD ₃] =1.041 ±	0.006			
			Experi	ment 4				
Spectrum	1	2	3	4	5	6		
2'-CD ₃ integration	956.37	958.34	955.78	960.85	961.80	956.48		
5'-CD ₃ integration	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00		
		[5'-Cl	D ₃]/[2'-CD ₃] =1.044 ±	0.003			

Procedure for Measuring Intermolecular ²H KIEs (d_6 - vs d_{10} -xylene)

Competition Reaction Experiment. The acylation for the intermolecular KIE measurement of the deprotonation step was performed identically with that for intramolecular KIE measurement, except an approximately 1:1 mixture of d_{10} -p-xylene- and d_6 -p-xylene served as the aromatic substrate. After drying the extracted mixture of unreacted starting material and converted product, the removal of solvent dichloromethane was accomplished using gentle distillation. In this distillation process, a water bath at 70 °C was utilized to limit the distillation rate in order to preserve the unreacted d_{10} -p-xylene- and d_6 -p-xylene (bp ~133 °C) in the reaction mixture.

NMR Measurement and Calculation.

The sample was dissolved in 0.75 mL of CD_2Cl_2 and filled to the 5.0 cm mark in a standard 5 mm NMR tube.

¹H NMR spectra were recorded at 399.754 MHz using a Varian Unity 400 MHz instrument. A sweep width of 408.2 Hz was utilized with the spectral features of interest centered. An acquisition time of 16.00 s was used to collect a total of 13062 points. A delay of 60.0 s (>5 × T₁ based on an inversion recovery experiment) was used to ensure quantitative ¹H integrations. After acquisition, the spectrum was phased properly and a zero order correction was applied to the baseline. The singlet at δ 7.34 ppm (6'-H from product) and the singlet at δ 7.09 ppm (Ar-H, 4H, from reactant) were integrated separately using an integral cut of five times of their line widths (FWHM). The percent conversion (*F*_H) of p-xylene-*dimethyl-d*₆ was calculated and recorded.

²H NMR spectra were recorded at 92.278 MHz using a Brucker Avance 600 MHz instrument. A sweep width of 992.7 Hz was utilized with the spectral features of interest centered. An acquisition time of 6.00 s was used to collect a total of 11072 points. A delay of 3.0 s (>5 × T₁ based on an inversion recovery experiment) was used to ensure quantitative ²H integrations. After acquisition, the spectrum was phased properly and a zero-order correction was applied to the baseline. The integrations of the singlet at δ 7.63 ppm (6'-D from product) and the singlet at δ 7.38 ppm (Ar-D, 4D, from reactant) were obtained using deconvolution with a mixed Gaussian-Lorentzian peak shape. The percent conversion (*F*_D) of p-xylene-*d*₁₀ was calculated and recorded. The ²H KIE was computed using eq. S1. A weighted average was then applied to the individual KIE measurements according to a method reported by Mandel to yield a value of 1.010 ± 0.007.¹

$$KIE = \frac{k_{\rm H}}{k_{\rm D}} = \frac{\ln(1 - F_{\rm H})}{\ln(1 - F_{\rm D})}$$
(S1)

			Ex	periment	1			
¹ H Spectrum	1	2	3	4	5	6		
aryl (4H) <i>p</i> -xylene	709.12	706.205	708.986	714.356	721.611	727.455		
6'-H product	56.128	56.069	55.962	55.881	55.794	56.151		
<i>F_H</i> =0.239 ±0.002	0.240472	0.241032	0.239966	0.238329	0.236218	0.235914		
² H Spectrum	1	2	3	4	5	6	7	8
aryl (4D) <i>p</i> -xylene	6.822	5.239	4.525	5.513	4.813	4.903	4.672	4.548
6'-D product	0.522	0.402	0.347	0.423	0.369	0.376	0.358	0.35
$F_D=0.2348$ ±0.0003	0.234343	0.234847	0.234737	0.234837	0.234696	0.234743	0.2346	0.235373
			KIE	=1.019±0.01	11			
					0			
1	4	2	EX	periment	2			
Spectrum		∠	3	4				
aryl (4H) <i>p</i> -xylene	28.63	28.48	28.14	28.14				
6'-H product	400.00	400.00	400.00	400.00				
F _H =0.221	0 222576	0.221669	0.219604	0.219604				
±0.002	0.222010	0.221003	0.213004	0.219004				
² H Spectrum	1	2	3	4	5	6	7	8
² H Spectrum aryl (4D) <i>p</i> -xylene	1 19.55	2 8.969	3 10.259	4 10.529	5 12.113	6 14.62	7 11.283	8 13.821
2H Spectrum aryl (4D) <i>p</i> -xylene 6'-D product	19.55 1.415	2 8.969 0.652	3 10.259 0.74	4 10.529 0.751	5 12.113 0.84	6 14.62 1.044	7 11.283 0.795	8 13.821 0.951
	1 19.55 1.415 0.224514	2 8.969 0.652 0.225274	3 10.259 0.74 0.22392	4 10.529 0.751 0.221976	5 12.113 0.84 0.217152	6 14.62 1.044 0.222175	7 11.283 0.795 0.219871	8 13.821 0.951 0.21583
$\begin{array}{r} \pm 0.002 \\ {}^{2}\text{H} \\ \text{Spectrum} \\ \text{aryl (4D)} \\ p\text{-xylene} \\ 6^{2}\text{-D} \\ product \\ F_{D} = 0.221 \\ \pm 0.003 \end{array}$	1 19.55 1.415 0.224514	2 8.969 0.652 0.225274	3 10.259 0.74 0.22392 KIE	4 10.529 0.751 0.221976 = 0.998±0.0	5 12.113 0.84 0.217152	6 14.62 1.044 0.222175	7 11.283 0.795 0.219871	8 13.821 0.951 0.21583
	1 19.55 1.415 0.224514	2 8.969 0.652 0.225274	3 10.259 0.74 0.22392 KIE	4 10.529 0.751 0.221976 =0.998±0.0 ⁴	5 12.113 0.84 0.217152 10	6 14.62 1.044 0.222175	7 11.283 0.795 0.219871	8 13.821 0.951 0.21583
$ \frac{\pm 0.002}{^{2}\text{H}} $ Spectrum aryl (4D) p-xylene 6'-D product F_D=0.221 ±0.003	1 19.55 1.415 0.224514	2 8.969 0.652 0.225274	3 10.259 0.74 0.22392 KIE Ex	4 10.529 0.751 0.221976 =0.998±0.0 ⁷ periment	5 12.113 0.84 0.217152 10 3	6 14.62 1.044 0.222175	7 11.283 0.795 0.219871	8 13.821 0.951 0.21583
$ \frac{\pm 0.002}{^{2}\text{H}} $ Spectrum aryl (4D) p-xylene 6'-D product F_D=0.221 ±0.003 - 1H Spectrum	1 19.55 1.415 0.224514	2 8.969 0.652 0.225274 2	3 10.259 0.74 0.22392 КІЕ Ех 3	4 10.529 0.751 0.221976 =0.998±0.0 [°] periment 4	5 12.113 0.84 0.217152 10 3 5	6 14.62 1.044 0.222175 6	7 11.283 0.795 0.219871 7	8 13.821 0.951 0.21583 8
$\frac{\pm 0.002}{^{2}\text{H}}$ Spectrum aryl (4D) p-xylene 6'-D product F_D=0.221 ±0.003	1 19.55 1.415 0.224514	2 8.969 0.652 0.225274 2	3 10.259 0.74 0.22392 KIE Ex 3	4 10.529 0.751 0.221976 =0.998±0.0 ⁷ periment 4	5 12.113 0.84 0.217152 10 3 5	6 14.62 1.044 0.222175 6	7 11.283 0.795 0.219871 7	8 13.821 0.951 0.21583 8
	1 19.55 1.415 0.224514 1 400.00	2 8.969 0.652 0.225274 2 400.00	3 10.259 0.74 0.22392 KIE Ex 3 400.00	4 10.529 0.751 0.221976 =0.998±0.0 ² periment 4 400.0	5 12.113 0.84 0.217152 10 3 5 400.00	6 14.62 1.044 0.222175 6 400.00	7 11.283 0.795 0.219871 7 400.00	8 13.821 0.951 0.21583 8 400.00
$\frac{\pm 0.002}{^{2}\text{H}}$ Spectrum aryl (4D) p-xylene 6'-D product F_D=0.221 \pm0.003	1 19.55 1.415 0.224514 1 400.00 26.65	2 8.969 0.652 0.225274 2 400.00 27.05	3 10.259 0.74 0.22392 KIE Ex 3 400.00 26.87	4 10.529 0.751 0.221976 =0.998±0.0 ² periment 4 400.0 27.22	5 12.113 0.84 0.217152 10 3 5 400.00 27.1	6 14.62 1.044 0.222175 6 400.00 26.84	7 11.283 0.795 0.219871 7 400.00 26.49	8 13.821 0.951 0.21583 8 400.00 26.42
$\begin{array}{r} \pm 0.002 \\ {}^{2}\text{H} \\ \text{Spectrum} \\ \text{aryl (4D)} \\ p\text{-xylene} \\ 6'\text{-D} \\ product \\ F_{D} = 0.221 \\ \pm 0.003 \\ \hline \\ \hline \\ \hline \\ F_{D} = 0.221 \\ \pm 0.003 \\ \hline \\ \hline \\ \hline \\ P\text{-xylene} \\ 6'\text{-H} \\ product \\ \hline \\ F_{H} = 0.212 \\ \pm 0.002 \\ \hline \end{array}$	1 19.55 1.415 0.224514 1 400.00 26.65 0.210422	2 8.969 0.652 0.225274 2 400.00 27.05 0.212908	о.213004 3 10.259 0.74 0.22392 КІЕ Ех 3 400.00 26.87 0.211792	4 10.529 0.751 0.221976 =0.998±0.0 [°] periment 4 400.0 27.22 0.21396	5 12.113 0.84 0.217152 10 3 5 400.00 27.1 0.213218	6 14.62 1.044 0.222175 6 400.00 26.84 0.211605	7 11.283 0.795 0.219871 7 400.00 26.49 0.209424	8 13.821 0.951 0.21583 8 400.00 26.42 0.208986
$\begin{array}{r} \pm 0.002 \\ {}^{2}\text{H} \\ \text{Spectrum} \\ \text{aryl (4D)} \\ p\text{-xylene} \\ 6'\text{-D} \\ product \\ F_{D} = 0.221 \\ \pm 0.003 \\ \hline \\ \hline \\ H \\ \hline \\ Spectrum \\ aryl (4H) \\ p\text{-xylene} \\ 6'\text{-H} \\ product \\ \hline \\ F_{H} = 0.212 \\ \pm 0.002 \\ \hline \\ H \\ \end{array}$	1 19.55 1.415 0.224514 1 400.00 26.65 0.210422 1	2 8.969 0.652 0.225274 2 400.00 27.05 0.212908 2	3 10.259 0.74 0.22392 KIE Ex 3 400.00 26.87 0.211792 3	4 10.529 0.751 0.221976 =0.998±0.0 ⁷ periment 4 400.0 27.22 0.21396 4	5 12.113 0.84 0.217152 0 3 5 400.00 27.1 0.213218 5	6 14.62 1.044 0.222175 6 400.00 26.84 0.211605 6	7 11.283 0.795 0.219871 7 400.00 26.49 0.209424 7	8 13.821 0.951 0.21583 8 400.00 26.42 0.208986 8
$\begin{array}{r} \pm 0.002 \\ ^{2}\text{H} \\ \hline \text{Spectrum} \\ aryl (4D) \\ p-xylene \\ 6'-D \\ product \\ F_{D}=0.221 \\ \pm 0.003 \\ \hline \end{array}$	1 19.55 1.415 0.224514 1 400.00 26.65 0.210422 1	2 8.969 0.652 0.225274 2 400.00 27.05 0.212908 2	3 10.259 0.74 0.22392 KIE Ex 3 400.00 26.87 0.211792 3	4 10.529 0.751 0.221976 =0.998±0.0 ⁷ periment 4 400.0 27.22 0.21396 4	5 12.113 0.84 0.217152 10 3 5 400.00 27.1 0.213218 5	6 14.62 1.044 0.222175 6 400.00 26.84 0.211605 6	7 11.283 0.795 0.219871 7 400.00 26.49 0.209424 7	8 13.821 0.951 0.21583 8 400.00 26.42 0.208986 8
$\begin{array}{r} \pm 0.002 \\ ^{2}\text{H} \\ \hline \text{Spectrum} \\ aryl (4D) \\ p-xylene \\ 6'-D \\ product \\ \hline F_{D}=0.221 \\ \pm 0.003 \\ \hline \end{array}$	1 19.55 1.415 0.224514 1 400.00 26.65 0.210422 1 28.495	2 8.969 0.652 0.225274 2 400.00 27.05 0.212908 2 29.909	3 10.259 0.74 0.22392 KIE Ex 3 400.00 26.87 0.211792 3 30.929	0.219004 4 10.529 0.751 0.221976 =0.998±0.0 ² periment 4 400.0 27.22 0.21396 4 34.191	5 12.113 0.84 0.217152 10 3 5 400.00 27.1 0.213218 5 30.457	6 14.62 1.044 0.222175 6 400.00 26.84 0.211605 6 35.477	7 11.283 0.795 0.219871 7 400.00 26.49 0.209424 7 32.218	8 13.821 0.951 0.21583 8 400.00 26.42 0.208986 8 30.746
$\begin{array}{r} \pm 0.002 \\ ^{2}\text{H} \\ \textbf{Spectrum} \\ aryl (4D) \\ p-xylene \\ 6'-D \\ product \\ F_{D}=0.221 \\ \pm 0.003 \\ \hline \\ \hline \\ H \\ Spectrum \\ aryl (4H) \\ p-xylene \\ 6'-H \\ product \\ \hline \\ F_{H}=0.212 \\ \pm 0.002 \\ ^{2}\text{H} \\ \textbf{Spectrum} \\ aryl (4D) \\ p-xylene \\ 6'-D \\ product \\ \hline \\ \hline \\ p-xylene \\ 6'-D \\ product \\ \hline \end{array}$	1 19.55 1.415 0.224514 1 0.224514 1 400.00 26.65 0.210422 1 28.495 1.909	2 8.969 0.652 0.225274 2 400.00 27.05 0.212908 2 29.909 1.99	3 10.259 0.74 0.22392 KIE Ex 3 400.00 26.87 0.211792 3 30.929 2.052	0.219004 4 10.529 0.751 0.221976 =0.998±0.0' periment 4 400.0 27.22 0.21396 4 34.191 2.284	5 12.113 0.84 0.217152 0 3 5 400.00 27.1 0.213218 5 30.457 2.024	6 14.62 1.044 0.222175 6 400.00 26.84 0.211605 6 35.477 2.356	7 11.283 0.795 0.219871 7 400.00 26.49 0.209424 7 32.218 2.144	8 13.821 0.951 0.21583 8 400.00 26.42 0.208986 8 30.746 2.046
$\begin{array}{r} \pm 0.002 \\ {}^{2}\text{H} \\ \text{Spectrum} \\ aryl (4D) \\ p-xylene \\ 6'-D \\ product \\ F_{D}=0.221 \\ \pm 0.003 \\ \hline \\ \hline \\ F_{D}=0.221 \\ \pm 0.003 \\ \hline \\ \hline \\ F_{D}=0.221 \\ \pm 0.003 \\ \hline \\ \hline \\ F_{H}=0.212 \\ \pm 0.002 \\ {}^{2}\text{H} \\ \text{Spectrum} \\ aryl (4H) \\ p-xylene \\ 6'-H \\ product \\ \hline \\ F_{D}=0.2103 \\ \pm 0.0005 \\ \hline \\ \hline \\ F_{D}=0.2103 \\ \pm 0.0005 \\ \hline \end{array}$	1 19.55 1.415 0.224514 1 0.224514 1 400.00 26.65 0.210422 1 28.495 1.909 0.211342	2 8.969 0.652 0.225274 2 400.00 27.05 0.212908 2 29.909 1.99 0.210198	3 10.259 0.74 0.22392 KIE Ex 3 400.00 26.87 0.211792 3 30.929 2.052 0.209725	0.213004 4 10.529 0.751 0.221976 =0.998±0.0° periment 4 400.0 27.22 0.21396 4 34.191 2.284 0.210862	5 12.113 0.84 0.217152 0 3 5 400.00 27.1 0.213218 5 30.457 2.024 0.209997	6 14.62 1.044 0.222175 6 400.00 26.84 0.211605 6 35.477 2.356 0.209884	7 11.283 0.795 0.219871 7 400.00 26.49 0.209424 7 32.218 2.144 0.210227	8 13.821 0.951 0.21583 8 400.00 26.42 0.208986 8 30.746 2.046 0.210223

Raw Data from Intermolecular d_{6} - vs d_{10} -xylene Competition **Table S2.** Integrations (¹H and ²H) from which F_H and F_D are computed.

Procedure for Measuring Intermolecular ²H KIEs (d_6 -xylene vs xylene)

Competition Reaction Experiment. The acylation for the intermolecular KIE measurement resulting in fractionation of d_6 -p-xylene and p-xylene was performed identically with that used for the intramolecular KIE measurement, except an approximately 1:1 mixture of d_6 -p-xylene- and p-xylene served as the aromatic substrate. After drying the extracted mixture of unreacted starting material and converted product, the removal of solvent dichloromethane was accomplished using gentle distillation. In this distillation process, a water bath at 70 °C was utilized to limit the distillation rate in order to preserve the unreacted d_6 -p-xylene- and p-xylene (bp ~133 °C) in the reaction mixture.

NMR Measurement and Calculation.

The sample was dissolved in 0.75 mL of CD_2Cl_2 and filled to the 5.0 cm mark in a standard 5 mm NMR tube.

¹H NMR spectra were recorded at 399.753 MHz using a Varian Unity 400 MHz instrument. A sweep width of 6387.7 Hz was utilized with the spectral features of interest centered. An acquisition time of 16.00 s was used to collect a total of 204408 points. A delay of 84.0 s (>5 × T₁ based on an inversion recovery experiment) was used to ensure quantitative ¹H integrations. After acquisition, the spectrum was phased properly, and a zero order correction was applied to the baseline. The doublet centered at δ 2.34 ppm (2'- and 5'-CH₃ from product) and the singlet at δ 2.29 ppm (methyl groups from reactant) were integrated separately using an integral cut of five times of their line widths (FWHM). These integrations were used to compute the fractional conversion (*F*_H) of *p*-xylene.

²H NMR spectra were recorded at 61.364 MHz using a Varian Unity 400 MHz instrument. A sweep width of 200.0 Hz was utilized with the spectral features of interest centered. An acquisition time of 6.00 s was used to collect a total of 11072 points. A delay of 20.0 s was used to ensure quantitative ²H integrations. After acquisition, the spectrum was phased properly and zeroth order correction was applied to the baseline. The two resonances centered at δ 2.32 ppm (2'- and 5'-CD₃ from product) and the singlet at δ 2.27 ppm (deuterated methyl groups from reactant) were integrated separately using an integral cut of three times their line widths (FWHM). In Table S3, the integrations for the 2'- and 5'-methyl groups are combined. These integrations were used to compute the fractional conversion (F_D) of d_{σ} -p-xylene. The ²H KIE was computed using eq. S1. A weighted average was then applied to the individual KIE measurements according to a method reported by Mandel to yield a value of 0.949 ± 0.004.¹

Raw Data from Intermolecular d_6 -p-xylene vs p-xylene Competition

Table S3. Integ	grations ('H a	ind ² H) from v	which F_H and	F_D are comp	uted.	
- 1		E	xperiment 1			
'H Spectrum	1	2	3	4	5	6
1,4-(CH ₃) ₂	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
2'-,5'-CH₃	244.43	241.61	247.4	245.63	245.56	245.06
<i>F_H</i> =0.197 ±0.001	0.19641	0.19459	0.19833	0.19719	0.19714	0.19682
² H Spectrum	1	2	3	4	5	6
1,4-(CD ₃) ₂	264.83	266.23	267.81	263.34	260.22	259.64
2'-,5'-CD ₃	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
F _D =0.209 ±0.002	0.20938	0.21025	0.21124	0.20845	0.20649	0.20612
		KIE :	= 0.936 ± 0.01	12		
		E	xperiment 2			
¹ H Spectrum	1	2	3	4	5	6
1,4-(CH ₃) ₂	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
2'-,5'-CH ₃	286.40	286.13	286.06	286.57	286.73	285.37
F _H =0.2225 +0.0003	0.22264	0.22247	0.22243	0.22274	0.22284	0.22201
² H Spectrum	1	2	3	4	5	6
1.4-(CH ₃) ₂	306.13	305.56	300.13	300.3	303.26	298.44
2'-,5'-CH ₃	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
$F_D = 0.232$ ±0.002	0.23438	0.23405	0.23085	0.23095	0.23269	0.22985
		KIE :	= 0.953 ± 0.00	09		
		E	xperiment 3			
¹ H Spectrum	1	2	3	4	5	6
1,4-(CH ₃) ₂	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
2'-,5'-CH₃	1840.73	1838.42	1841.14	1855.75	1854.1	1849.04
F _H =0.6487 ±0.0009	0.647978	0.647691	0.648029	0.649829	0.649627	0.649005
² H Spectrum	1	2	3	4	5	6
1,4-(CH ₃) ₂	1984.59	2010.34	2011.4	2013.2	2012.8	1991.25
2'-,5'-CH₃	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
<i>F_D</i> =0.667 ±0.001	0.664946	0.667812	0.667929	0.668127	0.668083	0.6656916
		KIE :	= 0.951 ± 0.00	04		
	_	E	xperiment 4		-	
n Spectrum	1	∠	3	4	3	0
2' 5' CU	201 57	1000.00	200.70	201 77	295.44	204 54
Z -,3 -C⊓3 E0 277	301.57	302.31	380.76	301.77	385.44	304.51
<i>гн</i> =0.277 ±0.001	0.27619	0.27660	0.27576	0.27629	0.27821	0.27772
⁻ H Spectrum	1	2	3	4	5	
1,4-(CH ₃) ₂	405.29	413.42	407.57	407.25	417.39	
2'-,5'-CH ₃	1000.00	1000.00	1000.00	1000.00	1000.00	
F _D =0.291 ±0.002	0.2884031	0.2924962	0.2895558	0.2893942	0.2944779	
$KIE = 0.943 \pm 0.010$						

le S3. Integrations (¹H and ²H) from which F_H and F_D are computed

Computed Structures

All quantum mechanical calculations were performed with Gaussian09.¹ All structures were fully optimized using the M06-2X hybrid functional together with the 6-31+G(d,p) basis set.

Solvent effects (dichloromethane) in the computed geometries and frequencies were taken into account by means of the IEFPCM solvation model as implemented in Gaussian09. All IEFPCM calculations were carried out at the M06-2X/6-31+G(d,p) level of theory. The solute cavities were generated using the United Atom Topological Model UA0 set of radii.

^{1.} Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

η^{6} - π -complex (gas phase) E(RM062X) = -542.238874007

Zero-point correction=0.261239(Hartree/Particle)0.276626Thermal correction to Energy=0.277570Thermal correction to Gibbs Free Energy=0.217536

	11	
Thermal correction to	Gibbs Free Energy=	0.217536
Sum of electronic and	zero-point Energies=	-541.977635
Sum of electronic and	thermal Energies=	-541.962248
Sum of electronic and	thermal Enthalpies=	-541.961304
Sum of electronic and	thermal Free Energies=	-542.021338

		E (Thermal)		CV	S
		KCal/Mol	Cal/I	Mol-Kelvin	Cal/Mol-Kelvin
Total		173.585		55.210	126.352
С	0	2.619048	-0.677784	1.355691	
Н	0	2.200802	0.318261	1.495297	
Н	0	2.236827	-1.347795	2.127449	
Н	0	3.706152	-0.626896	1.443773	
С	0	2.314111	-1.192417	-0.062603	
Н	0	2.733700	-2.204714	-0.189149	
С	0	2.811073	-0.277236	-1.198340	
Н	0	2.578072	-0.682476	-2.184382	
Н	0	2.383363	0.719437	-1.097066	
Н	0	3.896249	-0.212787	-1.095417	
С	0	0.889680	-1.473404	-0.224819	
С	0	-1.849359	0.394961	-1.132655	
С	0	-2.349320	-0.142693	0.061370	
С	0	-0.710657	1.196339	-1.142128	
С	0	-1.658599	0.137922	1.246555	
С	0	-0.033612	1.503419	0.048286	
Н	0	-0.373716	1.639434	-2.076712	
С	0	-0.516925	0.936524	1.241352	
Н	0	-2.033139	-0.254670	2.188440	
0	0	-0.127925	-1.915501	-0.394051	
Н	0	-0.037051	1.188718	2.185277	
С	0	-3.578868	-1.011558	0.062606	
Н	0	-3.323314	-2.047619	-0.187323	
Н	0	-4.059971	-1.015607	1.042854	
Н	0	-4.305513	-0.665686	-0.676030	
С	0	1.041231	2.562372	0.074724	
Н	0	1.851732	2.333451	0.773886	
Н	0	1.470193	2.734191	-0.916087	
Н	0	0.604997	3.511666	0.402392	
Н	0	-2.372795	0.198432	-2.065029	

 η^{1} - π -complex (gas phase) SCF Done: E(RM062X) = -542.236964346

Zero-point correction=		0.260940
(Hartree/Particle)		
Thermal correction to	Energy=	0.275592
Thermal correction to	Enthalpy=	0.276536
Thermal correction to	Gibbs Free Energy=	0.219259
Sum of electronic and	zero-point Energies=	-541.976024
Sum of electronic and	thermal Energies=	-541.961372
Sum of electronic and	thermal Enthalpies=	-541.960428
Sum of electronic and	thermal Free Energies=	-542.017705

		E (Thermal)		CV	S
		KCal/Mol	Cal/I	Mol-Kelvin	Cal/Mol-Kelvin
Total		172.937		53.263	120.550
С	0	-0.961967	-1.106813	1.662493	
Н	0	0.012617	-0.893361	1.222011	
Н	0	-1.255827	-0.289619	2.323278	
Н	0	-0.904657	-2.027665	2.246463	
С	0	-1.997650	-1.361758	0.550867	
Н	0	-2.977455	-1.623500	0.987447	
С	0	-1.570770	-2.440747	-0.468824	
Н	0	-2.311889	-2.588087	-1.255843	
Н	0	-0.603405	-2.181635	-0.900652	
Н	0	-1.471927	-3.370756	0.094721	
С	0	-2.343528	-0.129257	-0.140882	
С	0	0.289400	0.787180	-1.145944	
С	0	0.301792	1.687751	-0.073426	
С	0	1.219575	-0.258018	-1.225474	
С	0	1.267262	1.494332	0.927411	
С	0	2.183308	-0.441936	-0.233922	
Н	0	1.219614	-0.907197	-2.098458	
С	0	2.187896	0.456857	0.845525	
Н	0	1.314480	2.189207	1.762506	
0	0	-2.802718	0.764181	-0.641589	
Н	0	2.940154	0.347197	1.622914	
С	0	-0.620260	2.881317	-0.025902	
Н	0	-1.254739	2.874321	0.867858	
Н	0	-0.039429	3.807335	0.007669	
Н	0	-1.260903	2.933426	-0.909710	
С	0	3.206617	-1.544530	-0.315407	
Н	0	3.082983	-2.259602	0.504284	
Н	0	3.131047	-2.090071	-1.258149	
Н	0	4.218772	-1.137594	-0.240637	
Н	0	-0.387749	0.957884	-1.982093	

σ-complex (gas phase) SCF Done: E(RM062X) = -542.233849762

	0121200010702	
Zero-point correction= (Hartree/Particle)		0.261940
Thermal correction to Thermal correction to	Energy= Enthalpy=	0.276452 0.277397
Thermal correction to	Gibbs Free Energy=	0.220895
Sum of electronic and Sum of electronic and	zero-point Energies= thermal Energies=	-541.971909 -541.957397
Sum of electronic and Sum of electronic and	thermal Enthalpies= thermal Free Energies=	-541.956453 -542.012955

		E (Thermal)		CV	S
		KCal/Mol	Cal/	Mol-Kelvin	Cal/Mol-Kelvin
Total		173.477		53.951	118.918
С	0	-0.807295	-1.083429	1.817963	
H	0	0.253216	-0.869428	1.669036	
Н	0	-1.291929	-0.210714	2.264688	
Н	0	-0.882598	-1.907298	2.532364	
С	0	-1.475641	-1.513594	0.510248	
Н	0	-2.520188	-1.780978	0.704548	
С	0	-0.778500	-2.713883	-0.138379	
Н	0	-1.160416	-2.924102	-1.140951	
Н	0	0.305766	-2.583916	-0.180927	
Н	0	-0.974064	-3.592605	0.481386	
С	0	-1.637101	-0.330730	-0.427453	
С	0	-0.225461	0.542309	-0.953777	
С	0	-0.178279	1.691078	-0.052832	
С	0	0.961424	-0.288538	-1.070984	
С	0	0.945034	1.847777	0.749494	
С	0	2.067914	-0.106684	-0.279517	
Н	0	0.961427	-1.061964	-1.835704	
С	0	2.030104	0.981510	0.630182	
Н	0	1.000300	2.683385	1.440263	
0	0	-2.649374	0.117170	-0.834273	
Н	0	2.906368	1.162017	1.250968	
С	0	-1.314302	2.660321	0.005412	
Н	0	-2.101690	2.281484	0.669881	
Н	0	-0.978020	3.618104	0.405835	
Н	0	-1.770625	2.813075	-0.973859	
С	0	3.290572	-0.977144	-0.373785	
Н	0	3.466643	-1.496595	0.573147	
Н	0	3.181299	-1.726800	-1.159393	
Н	0	4.178870	-0.378799	-0.593531	
Н	0	-0.650176	0.783825	-1.932997	

xylene (gas phase) SCF Done: E(RM062X) = -310.749750401

Zero-point correction=		0.156243
(Hartree/Particle)		
Thermal correction to	Energy=	0.164272
Thermal correction to	Enthalpy=	0.165216
Thermal correction to	Gibbs Free Energy=	0.122879
Sum of electronic and	zero-point Energies=	-310.593507
Sum of electronic and	thermal Energies=	-310.585479
Sum of electronic and	thermal Enthalpies=	-310.584535
Sum of electronic and	thermal Free Energies=	-310.626871

		E (Thermal KCal/Mol) Cal/1	CV Mol-Kelvin	S Cal/Mol-Kelvin
Total		103.082		29.212	89.105
С	0	-1.417429	0.002110	0.013038	
C	0	-0.695872	-1.195707	0.007408	
С	0	0.695873	-1.195708	-0.007418	
С	0	1.417429	0.002109	-0.013028	
С	0	0.697016	1.197979	-0.007471	
C	0	-0.697015	1.197979	0.007461	
Н	0	-1.232881	-2.141561	0.013090	
Н	0	1.232880	-2.141563	-0.013119	
Н	0	1.233231	2.144065	-0.013317	
Н	0	-1.233230	2.144066	0.013288	
C	0	2.925488	-0.002412	0.005088	
Н	0	3.304038	-0.127428	1.025335	
Н	0	3.325753	-0.822387	-0.597648	
Н	0	3.328316	0.935502	-0.385685	
С	0	-2.925489	-0.002413	-0.005077	
Н	0	-3.328316	0.935483	0.385742	
Н	0	-3.304054	-0.127384	-1.025323	
Н	0	-3.325743	-0.822413	0.597630	

η⁶-π-complex (PCM) SCF Done: E(RM062X) = -542.305880156

Zero-point correction=		0.261071
(Hartree/Particle)		
Thermal correction to	Energy=	0.276541
Thermal correction to	Enthalpy=	0.277485
Thermal correction to	Gibbs Free Energy=	0.216688
Sum of electronic and	zero-point Energies=	-542.044809
Sum of electronic and	thermal Energies=	-542.029339
Sum of electronic and	thermal Enthalpies=	-542.028395
Sum of electronic and	thermal Free Energies=	-542.089192

		E (Thermal)		CV	S
		KCal/Mol	Cal/	Mol-Kelvin	Cal/Mol-Kelvin
Total		173.532		55.207	127.957
С	0	2.619643	-0.593587	1.359200	
Н	0	2.128127	0.374780	1.445120	
Н	0	2.286461	-1.250446	2.162866	
Н	0	3.699345	-0.457030	1.436779	
С	0	2.360999	-1.204809	-0.031756	
Н	0	2.855411	-2.186105	-0.112118	
С	0	2.781193	-0.302255	-1.209066	
Н	0	2.572225	-0.766236	-2.173213	
Н	0	2.283861	0.665198	-1.143380	
Н	0	3.858305	-0.157732	-1.111721	
С	0	0.965892	-1.581861	-0.165929	
С	0	-1.827027	0.334387	-1.155778	
С	0	-2.330714	-0.176903	0.045461	
С	0	-0.731758	1.196270	-1.168701	
С	0	-1.695317	0.197281	1.235073	
С	0	-0.108960	1.590562	0.022695	
Н	0	-0.374074	1.595830	-2.114715	
С	0	-0.601071	1.060108	1.225177	
Н	0	-2.066272	-0.186100	2.182354	
0	0	-0.072596	-1.985153	-0.284592	
Н	0	-0.145011	1.358585	2.166954	
С	0	-3.491599	-1.137009	0.051782	
Н	0	-3.140036	-2.166984	-0.077770	
Н	0	-4.038413	-1.089875	0.996263	
Н	0	-4.186281	-0.921306	-0.763495	
C	0	0.965431	2.649632	0.024054	
Н	0	1.755548	2.441523	0.751780	
Н	0	1.421159	2.762567	-0.963107	
Н	0	0.530708	3.617457	0.295006	
Н	0	-2.300559	0.056197	-2.094123	

η¹-π-complex (PCM) SCF Done: E(RM062X) = -542.305651141

Zero-point correction= 0.261544 (Hartree/Particle) 0.276905 Thermal correction to Energy= 0.277849 Thermal correction to Gibbs Free Energy= 0.218216 Sum of electronic and zero-point Energies= -542.044108 Sum of electronic and thermal Energies= -542.028746 Sum of electronic and thermal Enthalpies= -542.027802 Sum of electronic and thermal Free Energies= -542.087436

Total		E (Thermal KCal/Mol 173.760) Cal/	CV Mol-Kelvin 54.929	S Cal/Mol-Kelvin 125.509
С	0	-1.060177	-1.005754	1.633253	
H	0	-0.099484	-0.821328	1.150857	
Н	0	-1.317687	-0.171903	2.286982	
Н	0	-0.997487	-1.918115	2.228440	
C	0	-2.147495	-1.266316	0.570036	
H	0	-3.111399	-1.497939	1.050464	
C	0	-1.772461	-2.367926	-0.445736	
H	0	-2.547917	-2.514147	-1.197343	
H	0	-0.820178	-2.130397	-0.922143	
Н	0	-1.662487	-3.286055	0.133540	
С	0	-2.458240	-0.042014	-0.137138	
С	0	0.402398	0.806905	-1.161386	
С	0	0.469376	1.700141	-0.086285	
С	0	1.251478	-0.301402	-1.233137	
С	0	1.419156	1.447871	0.912494	
С	0	2.191766	-0.555928	-0.231856	
Н	0	1.192859	-0.964751	-2.093195	
С	0	2.264591	0.344613	0.839677	
Н	0	1.503351	2.133637	1.752156	
0	0	-2.767991	0.891449	-0.674243	
Н	0	2.998038	0.179718	1.625021	
С	0	-0.423719	2.913275	-0.003659	
Н	0	-1.152527	2.815710	0.809120	
Н	0	0.163245	3.812850	0.200858	
Н	0	-0.970230	3.072079	-0.936379	
С	0	3.083755	-1.769437	-0.290945	
Н	0	2.617805	-2.616105	0.225261	
Н	0	3.269803	-2.072634	-1.324136	
Н	0	4.044892	-1.577107	0.191629	
Н	0	-0.289243	1.000728	-1.979095	

σ-complex (PCM) SCF Done: E(RM062X) = -542.297511079

Zero-point correction= 0.261892 (Hartree/Particle) 0.276174 Thermal correction to Energy= 0.277118 Thermal correction to Gibbs Free Energy= 0.221294 Sum of electronic and zero-point Energies= -542.035619 Sum of electronic and thermal Energies= -542.021337 Sum of electronic and thermal Enthalpies= -542.020393 Sum of electronic and thermal Free Energies= -542.076217

Total		E (Thermal) KCal/Mol 173.302) Cal/	CV Mol-Kelvin 53.417	S Cal/Mol-Kelvin 117.491
С	0	-1.059167	-0.667686	1.854361	
H	0	0.027795	-0.617616	1.742051	
Н	0	-1.432896	0.314510	2.156888	
Н	0	-1.269087	-1.367923	2.666794	
C	0	-1.728709	-1.179351	0.579301	
Н	0	-2.809035	-1.260379	0.735030	
C	0	-1.192861	-2.563265	0.180257	
Н	0	-1.573568	-2.885598	-0.792379	
Н	0	-0.099038	-2.586158	0.163085	
Н	0	-1.520571	-3.286396	0.931439	
C	0	-1.613199	-0.193047	-0.568602	
C	0	-0.174672	0.462418	-0.887961	
C	0	0.031122	1.651203	-0.035798	
C	0	0.923976	-0.510489	-0.969805	
C	0	1.229339	1.783797	0.640500	
C	0	2.094377	-0.360818	-0.277988	
Н	0	0.792041	-1.349337	-1.649702	
C	0	2.221819	0.808947	0.517904	
Н	0	1.411735	2.657056	1.257507	
0	0	-2.539545	0.155107	-1.244638	
Н	0	3.156676	0.959788	1.054611	
C	0	-1.045118	2.678516	0.059100	
Н	0	-1.889687	2.284571	0.638740	
Н	0	-0.681653	3.579091	0.553217	
Н	0	-1.435777	2.930549	-0.930477	
C	0	3.223497	-1.349314	-0.351902	
Н	0	3.399279	-1.795800	0.630916	
Н	0	2.997964	-2.148170	-1.059459	
Н	0	4.147442	-0.855947	-0.664782	
н	0	-0.367692	0.821437	-1.912574	

xylene (PCM) SCF Done: E(RM062X) = -310.752383911

Zero-point correction=		0.155811
(Hartree/Particle)		
Thermal correction to	Energy=	0.162175
Thermal correction to	Enthalpy=	0.163119
Thermal correction to	Gibbs Free Energy=	0.125415
Sum of electronic and	zero-point Energies=	-310.596582
Sum of electronic and	thermal Energies=	-310.590217
Sum of electronic and	thermal Enthalpies=	-310.589273
Sum of electronic and	thermal Free Energies=	-310.626977

		E (Thermal))	CV	S
		KCal/Mol	Cal/	Mol-Kelvin	Cal/Mol-Kelvin
Total		101.766		25.316	79.354
C	0	_1 /19/29	0 002121	0 012452	
C	0	-1.410430	1 105222	0.012455	
C	0	-0.095454	-1.195522 1 105222	0.007202	
C	0	0.695455	-1.195323	-0.007234	
C	0	1.418439	0.002129	-0.012473	
С	0	0.696641	1.197518	-0.007422	
С	0	-0.696639	1.197519	0.007389	
Н	0	-1.234554	-2.142725	0.012735	
Н	0	1.234555	-2.142726	-0.012730	
Н	0	1.235009	2.145144	-0.013293	
Н	0	-1.235003	2.145148	0.013298	
С	0	2.918648	-0.002194	0.004443	
Н	0	3.305466	-0.146250	1.021578	
Н	0	3.324633	-0.813050	-0.610955	
Н	0	3.325747	0.944092	-0.367855	
С	0	-2.918650	-0.002194	-0.004395	
Н	0	-3.325727	0.944057	0.368023	
Н	0	-3.305542	-0.146151	-1.021515	
Н	0	-3.324594	-0.813117	0.610938	