Electronic supplementary information

One-pot sequential alcohol oxidations and asymmetric α-oxyamination in aqueous media using recyclable resin-supported peptide catalyst

Kengo Akagawa, Takuma Fujiwara, Seiji Sakamoto, Kazuaki Kudo*

General information.

¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz respectively on a JEOL JNM-LA400 spectrometer, and chemical shifts were referenced to internal tetramethylsilane (TMS, $\delta = 0.0$ ppm) for ¹H, the central line of CDCl₃ ($\delta = 77.0$ ppm) for ¹³C. PEG-PS supported peptide catalyst **1** was synthesized according to the same method as previously described.^{8,9c} HPLC analyses were carried out on a Shimadzu CLASS-VP system using Chiralcel OD-H column (25 cm) and OD-H guard (1 cm), Chiralpak IA column (25 cm) and IA guard (1 cm), or Chiralcel OJ (25 cm). FAB mass measurements were performed on JEOL JMS-600H.

Examinations of reaction conditions for α -oxyamination of aldehyde: To estimate the reaction efficiency in α -oxyamination of an aldehyde with copper(I) chloride, the ratio of starting aldehyde 2, carboxylic acid 5, and desired product 6 was analyzed by ¹H NMR measurement of crude mixtures.

Optimization of reaction conditions for tandem reaction starting from alcohol: The ratio of starting alcohol **4**, aldehyde **2**, carboxylic acid **5**, and desired product **6** was analyzed by ¹H NMR measurement of crude mixtures.

All products obtained in Table 2 are known compounds. Enantiomeric excesses and the absolute configurations of products **3a**-**f** were determined according to the literature.⁶

¹H NMR spectra

¹³C NMR spectra

Chiralcel OD-H column, hexane/2-propanol = 98/2, 1.0 mL min⁻¹

Chiralcel OD-H column, hexane/2-propanol = 98/2, 1.0 mL min⁻¹

Chiralcel OD-H column, hexane/2-propanol = 90/10, 0.5 mL min⁻¹

Chiralpak IA column, hexane/2-propanol = 98/2, 1.0 mL min⁻¹

Chiralcel OD-H column, hexane/2-propanol = 98/2, 1.0 mL min⁻¹

Chiralpak IA column, hexane/2-propanol = 99/1, 0.5 mL min⁻¹

FAB Mass spectra (matrix: 3-nitrobenzyl alcohol, positive ionization mode)

