Supporting Information for

Copper N-Heterocyclic Carbene (NHC) Complexes as Carbene Transfer Reagents

Marc R. L. Furst and Catherine S. J. Cazin*

EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
Fax: (+)44 (0) 1334 463 808
E-mail: cc111@st-andrews.ac.uk

Contents

1. Generalities	<i>S1</i>
2. Carbene transfer reactions leading to	S2
[AuCl(IMes)] 2a	S2
[AuCl(SIMes)] 2b	S2
[AuCl(IPr)] 2c	S2
[Pd(μ-Cl)Cl(IMes)] ₂ 3a	S3
[Pd(μ-Cl)Cl(SIMes)] ₂ 3b	S3
[Pd(μ-Cl)Cl(IPr)] ₂ 3c	S4
References	<i>S4</i>

1. Generalities

All reactions were performed under an inert atmosphere of argon or nitrogen using standard Schlenk line and glovebox techniques. Solvents were dispensed from a solvent purification system. All other reagents were used without further purification. ^{1}H and ^{13}C - $\{^{1}H\}$ Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker AVANCE 300 spectrometer using the residual solvent peak as reference (CHCl₃: δ_{H} = 7.26 ppm, δ_{C} = 77.16 ppm) at 298K. Elemental analyses were performed by the University of St Andrews Analytical Service. All complexes of type 1 -[CuCl(NHC)]- were prepared by reaction of Cu₂O with the chloride imidazolium salt. 1

2. Carbene transfer reactions leading to

[AuCl(IMes)] 2a

A mixture of [AuCl(SMe₂)] (137.2 mg, 0.47 mmol) and [CuCl(IMes)] **1a** (187.9 mg, 0.47 mmol) in dichloromethane (5 mL) was stirred at 40°C for 1 h. The mixture was filtered through celite and the solvent was removed *in vacuo*. Dichloromethane (3 mL) and petroleum ether (10 mL) were added, resulting in the precipitation of an off-white solid. The product was collected by filtration, washed with petroleum ether (3 x 5 mL) and obtained as a colourless solid in 71% yield (178 mg, 0.33 mmol). NMR spectra were compared to published data.² **1H NMR** (CDCl₃, 300 MHz): $\delta = 7.10$ (s, 2H, H⁴ and H⁵), 7.00 (s, 4H, CH mesityl), 2.36 (s, 6H, CH₃), 2.11 (s, 12H, CH₃). ¹³C-{¹H} NMR (CDCl₃, 75 MHz): $\delta = 173.6$ (s, C² carbene), 140.05 (s, CH mesityl), 135.0 (s, CH mesityl), 134.9 (s, CH mesityl), 129.8 (s, CH mesityl), 122.4 (s, C⁴H and C⁵H carbene), 21.4 (s, CH₃), 18.0 (s, CH₃). **Elem. Anal.**: Calcd for C₂₁H₂₄ClN₂Au: C, 46.98; H, 4.51; N, 5.22. Found: C, 47.09; H, 4.33; N, 5.03.

[AuCI(SIMes)] 2b

A mixture of [AuCl(SMe₂)] (136.7 mg, 0.46 mmol) and [CuCl(SIMes)] **1b** (188.1 mg, 0.46 mmol) in dichloromethane (5 mL) was stirred at 40°C for 1 h. The mixture was filtered through celite and the solvent was removed *in vacuo*. Dichloromethane (3 mL) and petroleum ether (10mL) were added, resulting in the precipitation of an off-white solid. The product was collected by filtration, washed with petroleum ether (3 x 5 mL) and obtained as a colourless solid in 90% yield (225 mg, 0.42 mmol). NMR spectra were compared to published data.² **1H NMR** (CDCl₃, 300 MHz): $\delta = 6.95$ (s, 4H, CH mesityl), 3.99 (s, 4H, H⁴ and H⁵), 2.32 (s, 12H, CH₃), 2.30 (s, 6H, CH₃). ¹³C-{¹H} NMR (CDCl₃, 75 MHz): $\delta = 195.4$ (s, carbene C²), 139.2 (s, CH mesityl), 135.8 (s, CH mesityl), 134.85 (s, CH mesityl), 130.1 (s, CH mesityl), 51.0 (s, C⁴H and C⁵H), 21.35 (s, CH₃), 18.3 (s, CH₃). **Elem. Anal.**: Calcd for C₂₁H₂₆ClN₂Au: C, 46.81; H, 4.86; N, 5.20. Found: C, 46.32; H, 4.77; N, 4.89.

[AuCl(IPr)] 2c

A mixture of [AuCl(SMe₂)] (118.6 mg, 0.40 mmol) and [CuCl(IPr)] **1c** (196.3 mg, 0.40 mmol) in dichloromethane (5 mL) was stirred at 40°C for 2 h. The mixture was filtered through celite and the solvent was removed *in vacuo*. Dichloromethane (3 mL) and petroleum ether (10mL) were added, resulting in the precipitation of an off-white solid. The product was

collected by filtration, washed with petroleum ether (3 x 5 mL) and obtained as a colourless solid in 84% yield (209 mg, 0.34 mmol). NMR spectra were compared to published data.² ¹H NMR (CD₂Cl₂, 300 MHz): $\delta = 7.57$ (t, 2H, CH phenyl), 7.34 (d, 4H, CH phenyl), 7.23 (s, 2H, H⁴ and H⁵), 2.57 (pseudo-septuplet, 4H, CH isopropyl), 1.33 (d, 12H, CH₃ isopropyl), 1.23 (d, 12H, CH₃ isopropyl). ¹³C-{¹H} NMR (CD₂Cl₂, 75 MHz): $\delta = 146.6$ (s, CH phenyl), 131.55 (s, CH phenyl), 125.1 (s, CH phenyl), 124.2 (s, C⁴H and C⁵H), 29.7 (s, CH isopropyl), 25.0 (s, CH₃ isopropyl), 24.60 (s, CH₃ isopropyl). **Elem. Anal.**: Calcd for C₂₇H₃₆ClN₂Au: C, 52.22; H, 5.84; N, 4.51. Found: C, 51.76; H, 5.83; N, 4.23.

[Pd(μ-Cl)Cl(IMes)]₂ 3a

A mixture of [PdCl₂(NCPh)₂] (199 mg, 0.52 mmol) and [CuCl(IMes)] **1a** (209.4 mg, 0.52 mmol) in dichloromethane (5 mL) was stirred at 40°C for 1 h. The mixture was filtered through celite and the solvent was removed *in vacuo*. Dichloromethane (3 mL) and petroleum ether (10 mL) were added, resulting in the precipitation of a yellow solid. The product was collected by filtration, washed with petroleum ether (3 x 5 mL) and obtained as a yellow solid in 79% yield (196 mg, 0.20 mmol). NMR spectra were compared to published data.³

¹**H NMR** (CDCl₃, 300 MHz): $\delta = 7.33$ (s, broad, 8H, CH mesityl), 6.95 (s, 4H, H⁴ and H⁵), 2.45 (s, 12H, CH₃), 2.24 (s, 12H, CH₃), 2.09 (s, 12H, CH₃). ¹³C-{¹**H**} **NMR** (CDCl₃, 75 MHz): $\delta = 139.5$ (s, CH mesityl), 135.9 (s, CH mesityl), 134.75 (s, CH mesityl), 129.7 (s, CH mesityl), 124.8 (s, C⁴H and C⁵H), 21.6 (s, CH₃), 19.3 (s, CH₃, 19.0 (s, CH₃). **Elem. Anal.**: Calcd for C₄₂H₄₈Cl₄N₄Pd₂: C, 52.36; H, 5.02; N, 5.81. Found: C, 52.67; H, 5.12; N, 5.71.

[Pd(µ-Cl)Cl(SIMes)]₂ 3b

A mixture of [PdCl₂(NCPh)₂] (198.2 mg, 0.52 mmol) and [CuCl(SIMes)] **1b** (209.5 mg, 0.52 mmol) in dichloromethane (5 mL) was stirred at 40°C for 1 h. The mixture was filtered through celite and the solvent was removed *in vacuo*. Dichloromethane (3 mL) and petroleum ether (10 mL) were added, resulting in the precipitation of a yellow solid. The product was collected by filtration, washed with petroleum ether (3 x 5 mL) and obtained as a yellow solid in 82% yield (205 mg, 0.21 mmol). NMR spectra were compared to published data.³

¹**H NMR** (CDCl₃, 300 MHz): $\delta = 7.00$ (s, broad, 8H, CH mesityl), 3.86 (s, broad, 8H, H⁴ and H⁵), 2.45 (s, 12H, CH₃), 2.41 (s, 12H, CH₃), 2.26 (s, 12H, CH₃). ¹³C-{¹**H**} **NMR** (CDCl₃, 75 MHz): $\delta = 138.7$ (s, CH mesityl), 134.6 (s, CH mesityl), 129.9 (s, CH mesityl), 129.9 (s, CH

mesityl), 51.5 (s, C^4H and C^5H), 21.6 (s, CH_3), 19.4 (s, CH_3). **Elem. Anal**.: Calcd for $C_{42}H_{52}Cl_4N_4Pd_2$: C, 52.14; H, 5.42; N, 5.79. Found: C, 52.12; H, 5.49; N, 5.56.

$[Pd(\mu-Cl)Cl(IPr)]_2$ 3c

A mixture of [PdCl₂(NCPh)₂] (169.4 mg, 0.44 mmol) and [CuCl(IPr)] **1c** (215.4 mg, 0.44 mmol) in dichloromethane (5 mL) was stirred at 40°C for 2 h. The mixture was filtered through celite and the solvent was removed *in vacuo*. Dichloromethane (3 mL) and petroleum ether (10 mL) were added, resulting in the precipitation of a yellow solid. The product was collected by filtration, washed with petroleum ether (3 x 5 mL) and obtained as an ochre yellow solid in 82% yield (206 mg, 0.18 mmol). NMR spectra were compared to published data.⁴

¹**H NMR** (CDCl₃, 300 MHz): $\delta = 7.55$ (t, 4H, CH phenyl), 7.30 (d, 8H, CH phenyl), 6.99 (s, 4H, H⁴ and H⁵), 2.87 (br. s, 2H, CH isopropyl), 2.61 (br. s, 2H, CH isopropyl), 1.31 (d, broad, 24H, CH₃ isopropyl), 0.99 (d, broad, 24H, CH₃ isopropyl). ¹³**C-**{¹**H**} **NMR** (CDCl₃, 75 MHz): $\delta = 148.14$ (s, CH phenyl), 146.53 (s, CH phenyl), 134.54 (s, CH phenyl), 130.6 (s, CH phenyl), 125.5 (s, CH phenyl), 124.5 (s, C⁴H and C⁵H), 28.9 (s, CH isopropyl), 26.5 (s, CH₃ isopropyl), 23.5 (s, CH₃ isopropyl). **Elem. Anal.**: Calcd for C₅₄H₇₂Cl₄N₄Pd₂: C, 57.30; H, 6.41; N, 4.95. Found: C, 57.09; H, 6.41; N, 4.66.

References

- 1 C. A. Citadelle, E. Le Nouy, F. Bisaro, A. M. Z. Slawin, C. S. J. Cazin, *Dalton Trans*. 2010, **39**, 4489-4491.
- 2 P. De Frémont, N. M. Scott, E. D. Stevens and S. P. Nolan, *Organometallics* 2005, **24**, 2411.
- 3 D. R. Jensen and M. S. Sigman, *Org. Lett.*, 2003, **5**, 63.
- 4 M. S. Viciu, R. M. Kissling, E. D. Stevens and S. P. Nolan, Org. Lett., 2002, 4, 2229.