Observation of slow relaxation of the magnetization and hysteresis loop in antiferromagnetic ordered phase of a 2D framework based on Co^{II} magnetic chains

Shi-Yuan Zhang,^a Wei Shi,*^a Yanhua Lan,^b Na Xu,^a Xiao-Qing Zhao,^a Annie K. Powell,^b Bin Zhao,^a Peng Cheng,*^a Dai-Zheng Liao,^a and Shi-Ping Yan^a

^aDepartment of Chemistry, Nankai University, Tianjin 300071, P. R. China ^bInstitute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 15, 76131, Karlsruhe, Germany

Supplementary Index

1. Crystallographic studies	S3
2. Physical measurements	S3
3. Supporting Schemes and Figures	
Scheme S1. Two coordination modes of the ipa ²⁻ anions	S4
Scheme S2. The pathway of magnetic interactions among the Co ^{II} ions	S4
Figure S1. The [Co ₅] moiety bulit by vertex-sharing of the Co ^{II} trimers	S5
Figure S2. Perspective of the [Co ₅]-based 1D chains linked by btx with	
<i>cis</i> -configuration viewed down the <i>a</i> axis	S5
Figure S3 . Edge-to-face $\pi \cdots \pi$ interactions of the layers viewed down the <i>a</i> axis.	S6
Figure S4 . Plots of χ_M vs <i>T</i> (left) and $\chi_M T$ vs <i>T</i> (right) at an applied field of 0,	20, 40,
100, 1000 and 10000 Oe, respectively. The 0 Oe data were measured at	: 1 Hz
frequency, 3 Oe oscillating field and zero external field.	S6
Figure S5 . Plots of χ_{M}^{-1} vs <i>T</i> fitted by Curie-Weiss law	S7
Figure S6. Magnetization curves at different temperatuer	S7
Figure S7. First field derivative of the magnetization as a function of the applie	d
dc-field for 1 at different temperature	S8
Figure S8 . (<i>T</i> , <i>H</i>) phase diagram of 1	S8
Figure S9. The heat-capacity plots of 1 in the temperature range of 2-15 K	S9
Figure S10 . Temperature dependence of the χ' (top) and χ'' (bottom) component	ents of
the ac magnetic susceptibilities of 1 measured in an oscillating field of 3 Oe at v	various
frequencies	S10
Figure S11. X-Ray powder diffraction patterns of 1	S11
Figure S12. TGA curve of 1	S11

Crystallographic studies

Diffraction intensity data for single crystals of **1** were collected at 113 K on a Rigaku Saturn 007 CCD diffractometer. The instruments were equipped with graphitemonochromated Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å). The structures were solved by the direct method and refined by the full-matrix least-squares method on F^2 with anisotropic thermal parameters for all non-hydrogen atoms.^[1,2] Hydrogen atoms were located geometrically and refined isotropically.

- Sheldrick, G. M. SHELXS 97, Program for the Solution of Crystal Structures; University of Göttingen: Germany, 1997.
- [2] Sheldrick, G. M. SHELXL 97, Program for the Refinement of Crystal Structures; University of Göttingen: Germany, 1997.

Physical measurements

Analyses for C, H, and N were carried out on a Perkin-Elmer analyzer. TGA experiments were performed on a NETZSCH TG 209 instrument with a heating rate of 10 °C min⁻¹. Variable-temperature magnetic susceptibilities were measured on a Quantum Design MPMS XL-7 SQUID magnetometer. Diamagnetic corrections were made with Pascal's constants for all the constituent atoms. Heat-capacity data were measured on a Quantum Design PPMS-9 physical property measurement system. Both the magnetic data and heat-capacity data are corrected with the contribution of sample holder.

Scheme S1. Two coordination modes of the ipa²⁻ anions: $\mu_2 - \eta^1 : \eta^1$ (left) and $\mu_2 - \eta^2 : \eta^1$ and $\mu_3 - \eta^2 : \eta^1$ (right)

Scheme S2. The pathway of magnetic interactions among the Co^{II} ions.

Figure S1. The [Co₅] moiety bulit by vertex-sharing of the Co^{II} trimers.

Figure S2. Perspective of the $[Co_5]$ -based 1D chains linked by btx with *cis*-configuration viewed down the *a* axis.

Figure S3. Edge-to-face $\pi \cdots \pi$ interactions of the layers viewed down the *a* axis.

Figure S4. Plots of χ_M vs *T* (left) and $\chi_M T$ vs *T* (right) at an applied field of 0, 20, 40, 100, 1000 and 10000 Oe, respectively. The 0 Oe data were measured at 1 Hz frequency, 3 Oe oscillating field and zero external field.

Figure S5. Plots of χ_{M}^{-1} vs *T* fitted by Curie-Weiss law in the temperature range of 50-300 K with the data obtained at 1000 Oe.

Figure S6. Magnetization curves at different temperatuer.

Figure S7. First field derivative of the magnetization as a function of the applied dc-field for **1** at different temperature. The plots were obtained from the data of Figure S6. Solid lines are guides for eyes.

Figure S8. (*T*, *H*) phase diagram of **1**. The plots were obtained from the maximum of susceptibility from Figure S7. Solid lines are guides for eyes.

Figure S9. The heat-capacity plots of **1** in the temperature range of 2-15 K.

Figure S10. Temperature dependence of the χ' (top) and χ'' (bottom) components of the ac magnetic susceptibilities of **1** measured in an oscillating field of 3 Oe at various frequencies.

Figure S11. X-Ray powder diffraction patterns of 1.

Figure S12. TGA curve of **1**. The sample was heated to 730 $^{\circ}$ C at the heating rate of 10 $^{\circ}$ C/min.