Supplementary Material (ESI) for Chemical Communications
Electronic Supplementary Information

Engineering active sites for enhancing synergy in heterogeneous catalytic oxidations
James Paterson, ${ }^{\text {a }}$ Matthew Potter, ${ }^{\text {a }}$ Enrica Gianotti ${ }^{\text {b }}$ and Robert Raja ${ }^{\text {a }}$
Received (in XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXXX 200X
First published on the web Xth $X X X X X X X X X ~ 200 X ~$
DOI: 10.1039/b000000x

Synthesis of the bimetallic $\mathrm{Co}^{\mathrm{III}} \mathrm{Ti}^{\text {IV }}$ AlPO-5 catalyst

Aluminum hydroxide $\left(\mathrm{AlOH}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}\right.$, Aldrich) and phosphoric acid ($85 \mathrm{wt} \%$ aqueous solution, Sigma Aldrich) were used as the initial synthesis precursors. Cobalt acetate tetrahydrate $\left(\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right.$, Aldrich) and titanium isopropoxide $\left(\mathrm{Ti}\left(\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{4}\right.$, Aldrich) were used as the metal sources with N,N-dicyclohexylmethylamine (Aldrich) used as the structure directing agent (SDA). The composition of the gel was 0.96Al:1.5P:0.03Co:0.03Ti:0.8SDA:50 $\mathrm{H}_{2} \mathrm{O}$.
0.0980 mols (9.601 g , Aldrich) of $\mathrm{H}_{3} \mathrm{PO}_{4}$ was added to 10 ml of deionised water and allowed to stir by magnetic stirrer in a PTFE beaker. 4.071 g (0.0522 mol , Aldrich) of $\mathrm{Al}(\mathrm{OH})_{3}$ was added slowly and was left stirring for 10 minutes with the addition of a further 10 ml of water.

Cobalt acetate tetrahydrate $(0.415 \mathrm{~g}, 1.667 \mathrm{mmol}$, Aldrich) was dissolved in 10 ml of deionised water while $1.667 \mathrm{mmol}(0.474 \mathrm{~g}$, Aldrich) of titanium isopropoxide was measured out and simultaneously these two solutions were added slowly to the main reaction mixture. The reaction mixture was left stirring for 20minutes to homogenize.

N -methyldicyclohexylamine ($0.044 \mathrm{~mol}, 8.682 \mathrm{~g}$, Aldrich) was added slowly with the remaining 18 ml of water. This gel was left stirring for 30 minutes (1200rpm) to obtain a fully homogeneous mixture.

The reaction mixture was transferred to a Teflon-lined autoclave (capacity 40ml), sealed and put in the oven for 2 hours at $180^{\circ} \mathrm{C}$. After 2 hours, the autoclaves were removed and immediately quenched in cold water, the product was filtered and washed with water and dried in the oven $\left(50-90^{\circ} \mathrm{C}\right)$.

Calcination was carried out at $550^{\circ} \mathrm{C}$ for a minimum of 8 hours in a tube furnace with a gentle flow of air throughout; the temperature ramp was 5 degrees per minute. The resulting sample was stored in a desiccator to minimise the reduction of the active sites through water adsorption

The monometallic catalysts $\mathrm{Co}^{\text {III }} \mathrm{AlPO}-5, \mathrm{Ti}^{\mathrm{IV}} \mathrm{AlPO}-5, \mathrm{TS}-1$ and TiMCM-41 were synthesized using reliable procedures that have been reported in the literature, as well as by following protocols documented in the International Zeolite Association web site.

Characterization. XRD patterns were obtained obtained on a Siemens D5000 diffractometer using $\mathrm{Cu} \mathrm{K}_{\alpha 1}$ radiation, $\lambda=1.54056 \AA$. Volumetric analysis (N2 adsorption/desorption at 77 K) were carried out on a Micromeritics ASAP 2020 Surface Area and Porosity Analyzer. Diffuse Reflectance (DR) UV-Vis experiments were performed using a Cary 5000 instrument equipped with an integrated sphere, coated with BaSO_{4}. The reflectance spectra were then elaborated by using Kubelka Munk function. All the spectra are recorded at 298 K in vacuo after the thermal treatments. Scanning electron microscopy was carried out using a JSM5910 microscope with carbon coating during sample preparation. BET was carried out using Micrometrics Gemini 2360 Surface area analyser with N_{2} adsorption/desorption at 77 K .

Catalysis. All epoxidation reactions were carried out using a stirred (500 rpm) glasslined reactor at atmospheric pressure. 0.313 mols of dichloromethane (Aldrich) was used as a solvent and triethylene glycol dimethyl ether (triglyme, 8.98 mmol , Aldrich) used as the internal standard. In each reaction, 5.75 g of acetylperoxyborate ($3.9 \% \mathrm{PAA}$) was dissolved in 20 ml of $\mathrm{H}_{2} \mathrm{O}$ before being added to $\underline{\text { ca }} 9.25 \mathrm{mmol}$ of
cyclohexene ($\geq 99.5 \%$ pure, Aldrich) with $\underline{c a} 0.25-0.30 \mathrm{~g}$ of fresh catalyst. Reactions were run at $65^{\circ} \mathrm{C}$ for 3 hours with samples removed for analysis at 30 minute intervals. Analysis was carried out using a Varian Star 3400CX gas chromatograph with flame ionization detector (FID) and HP1 cross linked methylsiloxane column (30m x $0.32 \mathrm{~mm} \times 1 \mu \mathrm{~m}$ film thickness).

The identities of the products were first confirmed using authenticated standards and their individual response factors were determined using a suitable internal standard (triglyme) by the calibration method. The overall yields were normalized with respect to the (GC) response factors obtained as above and the conversions and selectivities were determined by the following equations:

Conv. $\%=[($ moles of initial substrate - moles of residual substrate $) /($ moles of initial substrate)] x 100

Sel. $\%=[($ moles of individual product $) /($ moles of total products $)] \times 100$

For the internal standard GC method, the response factor (RF) and mol \% of individual products were calculated using the following equations:

RF $=($ mol Product $/ \mathrm{mol}$ Standard $) \times($ Area Standard $/$ Area Product $)$
Mol \% Product $=$ RF x Mol Standard $\times($ Area Product/Area Standard $) \times 100 / \mathrm{Mol}$ Sample

The catalysts have been re-used at least four times without appreciable loss in catalytic activity or selectivity. Further, experiments analogous those reported earlier [1, 2], were carried out to rule out the possibility of leaching.

Refinement Results

Sqrt(Sum(2Th O-C)**2)/(Nref-Npar)) : 0.0878
Sqrt(Sum(2Th O-C)**2)/Nref) : 0.0835
Final values : (Standard errors on 2nd line)
Zero Lambda a b c alpha beta gamma volume 0.0001 .5418013 .711613 .71168 .416190 .0090 .00120 .001370 .31 $\begin{array}{llllllll}0.0000 & 0.00000 & 0.0301 & 0.0000 & 0.0044 & 0.000 & 0.000 & 0.000\end{array}$

H K L 2Th(obs) 2Th_obs-shift 2Th(Calc) diff.

0	1	0	7.4200	7.4200	7.4445	-0.0245
1	1	0	12.8800	12.8800	12.9126	-0.0326
0	2	0	14.8800	14.8800	14.9207	$-\mathbf{0 . 0 4 0 7}$
1	2	0	19.7200	19.7200	19.7806	$-\mathbf{0 . 0 6 0 6}$
0	0	2	21.1400	21.1400	21.1120	0.0280
1	2	1	22.4000	22.4000	22.4498	$-\mathbf{0 . 0 4 9 8}$
1	1	2	24.8600	24.8600	24.8255	0.0345

0	2	2	25.9000	25.9000	25.9520	-0.0520
1	3	1	29.0400	29.0400	29.1157	-0.0757
0	4	0	30.0000	30.0000	30.1022	-0.1022
2	2	2	33.7000	33.7000	33.7234	-0.0234
1	3	2	34.5000	34.5000	34.5837	-0.0837
0	4	2	37.0400	37.0400	37.0595	-0.0195
0	5	0	37.8000	37.8000	37.8828	-0.0828
1	4	2	40.9600	40.9600	40.8991	0.0609
2	4	1	41.6600	41.6600	41.6516	0.0084
1	5	0	42.3600	42.3600	42.3798	-0.0198
1	5	1	43.8600	43.8600	43.7874	0.0726
3	3	2	45.2400	45.2400	45.1472	0.0928
0	6	0	45.9000	45.9000	45.8494	0.0506
	5	0	47.7800	47.7800	47.8357	-0.0557

Sqrt(Sum(2Th O-C)**2)/(Nref-Npar)) : 0.0602
Sqrt(Sum(2Th O-C)**2)/Nref) : 0.0573

References

[1]J.M. Thomas, R. Raja, G. Sankar and R.G. Bell, Acc. Chem. Res., 2001, 34, 191.
[2]B. Notari, Adv. Catal., 1996, 41, 253-334.
[3]T. Maschmeyer, F. Rey, G. Sankar and J.M. Thomas, Nature, 1995, 378, 159-162.
[4]P.T. Tanev, M. Chibwe and T.J. Pinnavaia, Nature, 1994, 368, 321-323.
[5]J.M. Thomas and R. Raja, Annu. Rev. Mater. Res., 2005, 35, 315.
[6] http://www.iza-online.org/synthesis/default.htm
[7] R. Raja, J.M. Thomas, M. Greenhill-Hooper, V. Doukova, Chem. Commun. 2007, 1924-1926.
[8] R. Raja, J.M. Thomas, M. Greenhill-Hooper, S.V. Ley, F.A.A. Paz, Chem: Eur. J. 2008, 14, 2340-2348.

