Supporting Information

Development of Photostable Near-Infrared Cyanine Dyes

Animesh Samanta, Marc Vendrell, Rajkumar Das and Young-Tae Chang.

List of contents:

- 1. Synthetic procedures and characterization of 1.
- 2. Procedures and characterization (NMR, HRMS) for CyN-111, 165, 272, 295.
- 3. General procedure for the CyNA library, and detailed characterization data (NMR, HRMS).
- 4. Characterization data for the CyN-111 decomposition products.
- 5. Procedures and additional data for the time-course fluorescence measurements: CyN-111, 165, 272,
- 295 vs CyNA-111, 165, 272, 295 and CyNA library (primary and secondary photostability screening).
- 6. Comparative spectral properties of CyNA-414 and ICG.
- 7. Photobleaching rates of CyNA-414 and CyN-414.

Synthetic Materials and Methods

All the chemicals (building block amines plus others) and solvents were purchased from Sigma Aldrich, Alfa Aesar, Fluka, MERCK or Acros, and used without further purification. ICG-sulfo-OSu was purchased from Dojindo Laboratories. EGFR-IgG_{2a} (sc-120) were supplied by Santa Cruz Biotechnology, Inc. Normal phase purifications were carried out using Merck Silica Gel 60 (particle size: 0.040-0.063mm, 230-400 mesh). Analytical characterization was performed on a HPLC-MS (Agilent-1200 series) with a DAD detector and a single quadrupole mass spectrometer (6130 series) with an ESI probe. Analytical method, unless indicated: eluents: A: H₂O (0.1% HCOOH), B: ACN (0.1% HCOOH), gradient from 5 to 95% B in 6 min; $C_{18}(2)$ Luna column (4.6 x 50mm², 5µm particle size). Normal phase purifications of CyN and CyNA compounds were performed using a 10mL-column, and eluting with DCM-MeOH (ranging from 100:0 to 97:3). ¹H-NMR and ¹³C-NMR spectra were recorded on Bruker Avance 300 NMR and 500 NMR spectrometers, and chemical shifts are expressed in parts per million (ppm). High resolution mass spectrometry (HRMS) data was recorded on a Micromass VG 7035 (Mass Spectrometry Laboratory at National University of Singapore (NUS)). Photobleaching irradiation experiments were performed using a UVP Blak-Ray® B-100AP high intensity UV lamp (100W, 365 nm). Spectroscopic and quantum yield data were measured on a SpectraMax M2 spectrophotometer (Molecular Devices), and the data analysis was performed using GraphPrism 5.0.

1. Synthesis of 1a

To a chilled solution of dimethylformamide (20 mL, 273 mmol, 5.4 eq.) in 20 mL CH₂Cl₂ under N₂ atmosphere, 20 mL of POCl₃ (17.5 ml, 115 mmol, 2.3 eq.) in DCM were added dropwise under an ice bath. After 30 min, cyclohexanone was added (5 g, 50mmol, 1 eq.), and the resulting mixture was refluxed with vigorous stirring for 3 h at 80°C, poured into ice-cold water, and kept it overnight to obtain **1a** as a yellow solid (8.0 g, 92%). ¹H-NMR (300 MHz, CDCl₃): $\delta = 1.57$ (m, 2H), 2.35 (t, 4H, *J*=6.3 Hz), 2.5 (s, 1H), 10.10 (s, 1H). tR: 4.30 min, ESI *m/z* (C8H9ClO2): calc: 172.0; found: 173.1.

Synthesis of 1b

To a solution of 2,3,3-trimethyl-3*H*-indole (2 g, 12.5 mmol, 1 eq.) in ACN, 1-iodopropane (10.6 mL, 62 mmol, 5 eq.) was added, and refluxed with continuous stirring for 15 h. The mixture was dried in high vacuum and washed by Et₂O. The resulting solid was recrystallized in acetone to obtain **1b** a white solid (3.9 g, 95%). ¹HNMR (300 MHz, DMSO-d₆): $\delta = 1.04$ (t, 3H, J=7.2), 1.64 (s, 6H), 2.67 (s, 3H), 1.34 (m, 2H), 4.17 (t, 2H, *J*=7.8 Hz), 7.63 (d, 2H), 7.82 (m, 2H). tR: 2.46 min, ESI *m/z* (C14H20N⁺) calc: 202.4; found: 202.1.

Synthesis of 1

1a (500 mg, 2.9 mmol, 1eq.) and **1b** (1.91g, 5.81 mmol, 2 eq.) were dissolved in BuOH-benzene (7:3) under N_2 atmosphere, and refluxed at 160°C for 10 h with a Dean-Stark condenser. Afterwards, the

solvent was evaporated, and the resulting green solid mixture was washed with Et₂O and purified by flash chromatography (DCM-MeOH, 50:1) to obtain **1** as a green solid (1.8 g, 96%). ¹HNMR (300 MHz, CDCl₃) δ =1.06 (t, 6H, *J*=7.5 Hz), 1.31 (m, 4H), 1.64 (s, 12H), 1.95 (m, 2H), 2.73 (m, 4H), 4.15 (t, 4H, *J*=6.9Hz), 6.23 (d, 2H, *J*=14.2 Hz), 7.15-7.72 (m, 8H), 8.19 (d, 2H, *J*=13.8 Hz). tR: 5.64 min, ESI *m/z* (C36H44ClN2⁺), calc: 539.4; found: 539.1.

2. General procedure for the synthesis of CyN-111, 165, 272, 295

1 (100 mg, 149.5 μ mol) was mixed with the corresponding amine building blocks (Chart 1, 598 μ mol, 4 eq.), DIEA (38.6 μ L, 299 μ mol, 2 eq.), and dissolved in ACN. The reaction mixture was heated at 80°C for 20 min, quenched with 0.1 N HCl, concentrated under vacuum, and purified by normal-phase chromatography (DCM-MeOH, 98:2) to render the corresponding **CyN** derivatives.

Characterization of CyN-111, 165, 272, 295

CyN-111 (95 mg, 85%): ¹H-NMR (300 MHz, CDCl₃) δ =1.03 (t, 6H, *J*=7.5Hz), 1.31 (*m*, 2H), 1.62 (s, 12H), 1.83 (m, 4H), 2.47 (t, 4H, *J*=6.3Hz), 3.38 (t, 2H, *J*=5.7Hz), 3.80 (t, 2H, *J*=7.2Hz), 4.17 (t, 4H, *J*=6.2Hz), 5.63 (d, 2H, *J*=12.9Hz), 6.85-7.72 (m, 12H), 8.52 (d, 2H, *J*=3.9Hz).

tR: 5.56 min, HRMS (C₄₃H₅₃N₄⁺), calc: 625.4257; found: 625.4265.

CyN-165 (86 mg, 80%): ¹H-NMR (300 MHz, CDCl₃): δ=1.05 (t, 6H, *J*=7.5Hz), 1.24 (m, 2H), 1.32 (m, 2H), 1.68 (s, 12H), 1.85 (m, 4H), 2.16 (t, 2H, *J*=5.4 Hz), 2.47 (t, 4H, *J*=6.3 Hz), 3.44 (s, 3H), 3.71 (t, 2H, *J*=5.4Hz), 3.95 (t, 4H, *J*=6.3Hz), 5.61 (d, 2H, *J*=12.9Hz), 6.50-7.72 (m, 8H), 7.64 (d, 2H, *J*=12.9Hz), 7.92 (bs, 1H).

tR: 5.66 min, HRMS (C₄₀H₅₄N₃O⁺), calc: 592.4255; found: 592.4261.

CyN-272 (93 mg, 83%): ¹H-NMR (300 MHz, CDCl₃): δ=1.08 (t, 6H, *J*=7.5Hz), 1.31 (m, 2H), 1.45 (m, 4H), 1.54 (m, 2H), 1.68 (s, 12H), 1.85 (m, 4H), 2.51 (t, 4H, *J*=6.3 Hz), 3.44 (t, 6H, *J*=7.7 Hz), 3.81 (t, 4H, *J*=6.9Hz), 4.21 (m, 2H), 5.65 (d, 2H, *J*=12.9Hz), 6.80-7.70 (m, 8H), 7.72 (d, 2H, *J*=12.9Hz).

tR: 5.62 min, HRMS (C₄₃H₅₉N₄⁺), calc: 631.4740; found: 631.4734.

CyN-295 (88 mg, 87%): ¹H-NMR (300 MHz, CDCl₃): δ=1.05 (t, 6H, *J*=7.5Hz), 1.56 (t, 3H, *J*= 7.0 Hz), 1.68 (s, 12H), 1.85 (m, 4H), 1.83 (m, 2H), 2.47 (t, 4H, *J*=6.3 Hz), 3.79 (t, 4H, *J*=6.9Hz), 3.96 (m, 2H), 5.62 (d, 2H, *J*=12.9Hz), 6.80-7.28 (m, 8H), 7.72 (d, 2H, *J*=12.5Hz).

tR: 5.66 min, HRMS (C₃₈H₅₀N₃⁺), calc: 548.3999; found: 548.3999.

CyN-414 (82 mg, 70%): ¹H-NMR (300 MHz, CDCl₃): δ=1.03 (t, 6H, *J*=7.5Hz), 1.24 (d, 3H, *J*=6.6 Hz), 1.32 (m, 4H), 1.36 (t, 2H, *J*=5.4 Hz), 1.70 (s, 12H), 1.78-1.85 (m, 11H), 2.02-2.16 (m, 4H), 2.47 (t, 4H, *J*=5.4 Hz), 3.76 (t, 2H, *J*=6.0 Hz), 3.93 (t, 2H, *J*=6.0 Hz), 5.58 (d, 2H, *J*=14.1Hz), 6.83 (d, 2H, *J*=14.1Hz), 6.83-7.72 (m, 8H).

tR: 5.97 min, ESI-MS (C₄₅H₆₃N₄⁺), calc: 659.5; found: 659.4.

compound	$\lambda_{abs}(nm)$	λ _{em} (nm)	\$ *	ε(cm ⁻¹ M ⁻¹)
CyN-111	640	760	0.42	$0.538 \cdot 10^5$
CyN-165	640	762	0.37	$0.352 \cdot 10^5$
CyN-272	635	765	0.41	$0.516 \cdot 10^5$
CyN-295	640	760	0.35	$0.519 \cdot 10^5$

Supplementary Table 1. Absorbance (λ_{abs}) and fluorescence maximum wavelengths (λ_{em}), quantum yields, and extinction coefficients of CyN-111, CyN-165, CyN-272, and CyN-295.

* Quantum yields were measured in DMSO, using Cardiogreen as a standard (ϕ : 0.13, in DMSO).¹

3. General procedure for the CyNA library synthesis

For every reaction, **1** (20 mg, 30 µmol, 1 eq.) and the primary amine building block (**Chart S1**) (120 µmol, 4 eq.) were dissolved in ACN, and *N*,*N*-diisopropylethylamine (DIEA) (7.7 µL, 60 µmol, 2 eq.) was added. The reaction mixture was heated at 80°C for 10-60 min, depending on the reactivity of the amine. The resulting blue color crude mixtures (**CyN**) were neutralized with 0.1 N HCl, and concentrated under vacuum. Resulting **CyN** crudes were dissolved in DCM under N₂ atmosphere, and treated with excess DIEA (96.2 µL, 750 µmol, 25 eq.) and acetyl chloride (11.7 µL, 150 µmol, 5 eq.) at 0°C for 15 min. The final green products were washed with 0.1 N HCl to remove the excess of DIEA, concentrated under vacuum, and purified by a normal-phase silica short column using DCM-MeOH (ranging from 100:0 to 97:3) as the eluting solvent. The characterization of the whole library was performed by HPLC-MS (Table S2), and the compounds studied in detail were also characterized by ¹H-NMR and HRMS.

Supplementary Table 2. Absorbance (λ_{abs}) and fluorescence maximum wavelengths (λ_{emis}) , quantum yields, LC-MS data, condensation reaction times, and photostability primary evaluation for the whole **CyNA** library.

compound	tR (min)	M ⁺(calc.)	M ⁺ (exp.)	$\lambda_{abs}(nm)$	λ _{em} (nm)	 ϕ^{*^1}	purity* ²	reaction	max RFU	F/F _o * ³
CvNA-11	2.61	687.4	687.1	802	820	0.11	95.3	20	1250.1	90
CyNA-28	3.42	758.6	758.2	804	818	0.05	93.2	20	23.9	87
CvNA-48*4	2.77	783.4	783.0	804	819	0.06	94.6	15	620.9	45
CyNA-49	2.82	696.4	696.1	804	818	0.10	95.3	30	851.3	95
CyNA-55	3.24	744.5	744.2	804	819	0.13	97.1	15	162.3	100
CyNA-80	3.00	688.4	688.2	804	817	0.08	96.1	50	734.9	93
CyNA-92	2.82	646.4	646.1	805	821	0.09	96.3	15	420.2	64
CyNA-95	2.8	604.4	604.2	806	818	0.09	95.6	10	1027.9	91
CyNA-100	2.94	756.4	756.1	804	819	0.08	94.4	15	333.8	63
CyNA-101	2.94	666.4	666.1	806	822	0.08	94.6	25	693.9	86
CyNA-102	2.90	696.4	696.1	805	822	0.14	97.1	15	998.9	63
CyNA-103	2.88	696.4	696.2	804	821	0.14	96.9	20	1106.6	<u>92</u>
CyNA-107	2.35	/35.5	/35.1	803	820	0.07	93.4	30	275.3	50
CyNA-111	2.08	712.4	712.1	804	818	0.11	98.2	25	303.0	96
CyNA-124	2.80	604.4	604.1	803	820	0.13	98.1	30	1554.2	100
CyNA-151 CyNA 165	2.93	634.4	634.1	806	821	0.13	97.5	15	239.0	94
CyNA-103	2.78	648.4	648.1	804	818	0.09	90.1	25	1031.8	02
CyNA-180	2.82	630.4	630.1	805	821	0.10	97.5	10	991.3	91
CyNA-181	2.8	712.4	712.1	805	821	0.14	96.5	30	996.8	66
CyNA-185	2.95	632.4	632.1	804	820	0.15	97.4	30	1209.7	91
CyNA-193	3.16	732.5	732.2	806	822	0.12	96.2	15	58.7	n.d
CyNA-201	3.00	694.4	694.1	803	820	0.08	93.2	15	52.6	33
CyNA-218	2.89	670.4	670.1	802	823	0.08	94.2	20	549.9	85
CyNA-219	3.01	672.4	672.1	804	822	0.14	96.4	45	902.7	65
CyNA-220	2.89	686.3	686.1	804	823	0.12	95.3	50	848.2	100
CyNA-221	2.94	687.4	687.1	803	820	0.07	93.2	45	382.6	86
CyNA-230	3.10	674.5	674.2	805	822	0.09	94.3	25	77.7	80
CyNA-262	2.88	712.4	712.1	803	822	0.10	95.1	20	816.5	81
CyNA-266	2.81	726.4	726.1	804	823	0.08	93.5	20	541.8	99
CyNA-272	2.31	673.4	673.1	804	820	0.10	93.8	25	662.1	98
CyNA-274	2.89	662.4	662.1	805	820	0.12	95.6	10	1209.5	99
CyNA-275	2.97	694.4	694.1	804	817	0.14	96.8	45	6/9.8	62
CyNA-277	2.09	675.4	675.1	805	810	0.11	93.7	20	820.1	90
CyNA-202	2.51	590.4	590.1	805	820	0.09	96.4	15	608.6	100
CyNA-319	2.85	712.4	712.1	805	820	0.06	92.1	25	578.6	67
CyNA-329	2.97	732.3	731.9	806	821	0.10	94.5	60	348.8	99
CvNA-335	2.93	680.4	680.1	804	821	0.06	93.2	15	167.9	50
CyNA-336	2.82	742.4	742.1	804	820	0.11	94.5	25	827.7	85
CyNA-341	3.51	732.4	732.1	805	822	0.10	93.7	45	259.2	100
CyNA-346*5	4.58	724.4	724.1	804	822	0.07	92.7	25	434.2	69
CyNA-351	4.86	688.4	688.1	805	818	0.10	95.8	35	555.4	52
CyNA-356	4.44	742.4	742.1	804	820	0.12	96.9	20	892.3	83
CyNA-358	4.79	712.4	712.0	805	819	0.14	98.2	30	487.4	100
CyNA-359	4.76	711.4	711.1	805	821	0.11	95.6	20	527.6	85
CyNA-364	5.01	686.3	686.0	804	821	0.05	92.1	60	264.8	98
CyNA-373	4.90	652.4	652.1	805	820	0.07	93.0	15	307.2	/0
CyNA-5/4	4.81	670.4	670.1	804	821	0.14	97.3	15	522.7	94
CyNA-375	5.12	668 3	668.0	805	821	0.07	95.5	15	1259.7	90
CyNA-382	5.29	658.4	658.1	803	820	0.14	93.4	20	294.6	85
CyNA-387	4,71	682.4	682.1	804	820	0.07	92.9	30	739.9	75
CyNA-388	4.89	682.4	682.0	803	819	0.14	97.8	25	1398.5	97
CyNA-395	4.83	696.4	696.1	804	820	0.07	95.1	20	234.3	95
CyNA-396	5.06	666.4	666.1	804	820	0.09	94.7	30	736.1	96
CyNA-398	5.01	666.4	666.1	804	819	0.07	93.4	25	540.2	99
CyNA-399	4.97	688.4	688.1	804	819	0.10	95.8	60	775.5	95
CyNA-401	5.03	653.4	653.1	805	820	0.10	94.9	35	856.5	91
CyNA-403	4.63	686.3	686.0	805	819	0.05	93.5	30	261.6	45
CyNA-405	4.99	684.3	684.0	806	820	0.06	94.5	20	138.5	83
CyNA-407	5.64	702.3	702.1	805	820	0.08	96.1	20	22.5	n.d.
CyNA-414	3.38	701.5	701.2	804	819	0.13	95.9	30	925.5	100
CyNA-419	5.53	632.4	632.0	804	820	0.13	97.4	10	835.2	91

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

CyNA-427	3.51	647.3	647.0	805	821	0.14	96.7	45	1247.4	100
CyNA-442	4.97	632.4	632.1	806	822	0.07	94.3	25	424.2	54
CyNA-443	5.11	630.4	630.0	806	821	0.09	95.6	30	583.5	75
CyNA-446	4.79	642.4	642.1	804	821	0.08	94.2	25	709.2	85
CyNA-477	4.91	684.9	684.1	805	819	0.09	93.7	20	169.8	n.d.
CyNA-478	5.03	680.4	680.1	805	821	0.09	95.4	20	121.6	64
CyNA-480	5.01	700.4	700.1	803	817	0.06	92.1	20	154.8	51
CyNA-487	4.98	618.4	618.1	806	823	0.04	91.6	25	45.3	30
CyNA-531	5.21	720.3	720.1	804	820	0.08	97.3	50	187.5	100
CyNA-542	5.01	702.4	702.1	805	821	0.08	94.5	45	442.7	74
CyNA-548	5.01	742.4	742.1	804	820	0.04	92.9	35	67.6	n.d.
CyNA-565	5.20	720.3	720.1	805	821	0.09	95.3	40	335.5	96
CyNA-567	5.69	716.5	716.2	805	820	0.14	98.3	20	279.2	100
CyNA-572	5.21	684.4	684.1	805	818	0.05	93.2	25	58.9	n.d.
CyNA-574	5.01	632.4	632.1	803	818	0.06	93.8	35	321.1	38
CyNA-599	5.20	742.5	742.1	805	819	0.07	97.6	25	105.9	n.d.

*¹ Quantum yields were measured in DMSO, using Cardiogreen as a standard (\$\operatorname{0}: 0.13, in DMSO).¹

*² Purities were determined according to UV absorption at 365 nm.

 $*^{3}$ Quotients of fluorescent intensities (8h) vs. fluorescent intensities (0h), in a time-course fluorescence measurement using 10 μ M (2% DMSO) solutions in HEPES buffer (100 mM, pH 7.4).

*⁴ Triacetylated derivative was isolated as the main product.

*⁵ Diacetylated derivative was isolated as the main product.

Max. RFU: maximum relative fluorescence units; n.d.: non-determined value due to fluctuation of the experimental data.

Detailed characterization of CyNA-111, 165, 272, 295, 414

CyNA-111 (12 mg, 45%): ¹H-NMR (300MHz, CDCl₃): δ=1.05 (t, 6H, *J*=7.5Hz), 1.29 (m, 2H), 1.63 (s, 6H), 1.65 (s, 6H), 1.72 (m, 4H), 1.94 (t, 4H), 2.05 (s, 3H), 3.09 (m, 2H), 3.63 (m, 2H), 4.18 (t, 4H, *J*=3.9Hz), 6.07 (d, 0.3H, *J*=13.5Hz), 6.28 (d, 1.7H, *J*=14.1Hz), 7.02-7.72 (m, 12H), 8.43 (d, 0.4H, *J*=14.1Hz), 8.68 (d, 1.6 H, *J*=3.3Hz).

tR: 4.70 min, HRMS (C₄₅H₅₅ON₄⁺), calc: 667.4370; found: 667.4350.

CyNA-165 (10 mg, 50%): ¹H-NMR (300 MHz, CDCl₃): δ=1.05 (t, 6H, *J*=7.5Hz), 1.76 (s, 12H), 1.87-1.92 (m, 8H), 2.58 (t, 4H, *J*=6.3 Hz), 3.28 (s, 3H), 3.32 (t, 2H, *J*=5.4Hz), 3.45 (t, 2H, *J*=6.3 Hz), 3.92 (t, 4H, *J*=7.5 Hz), 4.16 (s, 3H), 6.02 (d, 2H, *J*=13.1 Hz), 6.90-7.30 (m, 8H), 7.35 (d, 2H, *J*=4.5Hz).

tR: 6.1 min, HRMS (C₄₂H₅₆N₃O₂⁺), calc: 634.4367; found: 634.4352.

CyNA-272 (9 mg, 42%): ¹H-NMR (300 MHz, CDCl₃): δ=1.08 (t, 6H, *J*=7.5Hz), 1.31 (m, 2H), 1.45 (m, 4H), 1.54 (m, 2H), 1.69 (s, 12H), 1.86 (m, 4H), 1.94 (s, 3H), 2.51 (t, 4H, *J*=6.3 Hz), 3.44 (t, 6H, *J*=7.7Hz), 3.81 (t, 4H, *J*=6.9Hz), 4.21 (m, 2H), 5.65 (d, 2H, *J*=12.9Hz), 6.80-7.70 (m, 8H), 7.72 (d, 2H, *J*=12.9Hz).

tR: 4.24min, HRMS (C₄₅H₆₁N₄O⁺), calc: 673.4840; found: 673.4845.

CyNA-295 (9 mg, 48%): ¹H-NMR (300 MHz, CDCl₃): δ=1.05 (t, 6H, *J*=7.5Hz), 1.56 (t, 3H, *J*=7.0 Hz), 1.68 (s, 12H), 1.83 (m, 2H),1.85 (m, 4H), 1.94 (s, 3H), 2.59 (t, 4H, *J*=6.3Hz), 3.79 (t, 4H, *J*=6.9Hz), 3.96 (m, 2H), 6.04 (d, 2H, *J*=14.0Hz), 6.80-7.28 (m, 8H), 8.14 (d, 2H, *J*=14.0Hz).

tR: 4.87 min, HRMS (C₄₀H₅₂N₃O⁺), calc: 590.4105; found: 590.4113.

CyNA-414 (9 mg, 41%): ¹H-NMR (300MHz, CDCl₃): δ=1.06 (t, 6H, *J*=7.5Hz), 1.24 (d, 3H, *J*=6.6 Hz), 1.23 (m, 2H), 1.58 (s, 6H), 1.66 (s, 6H), 1.83-2.06 (m, 6H), 1.95 (s, 3H), 2.46-2.56 (m, 4H), 2.82 (t, 2H, *J*=5.4 Hz), 2.87 (t, 2H, *J*=5.4 Hz), 3.08 (t, 4H), 2.96-2.98 (m, 2H), 3.08-3.12 (m, 1H), 3.67 (t, 2H, *J*=

6.0Hz), 4.12 (t, 4H, *J*=7.2Hz), 6.21 (d, 1H, *J*=14.1Hz), 6.26 (d, 1H, *J*=14.1Hz), 7.11 (d, 2H, *J*=7.5 Hz), 7.20 (d, 2H, *J*=6.9 Hz), 7.34 (m, 4H), 7.55 (d, 1H, *J*=14.1 Hz), 7.59 (d, 1H, *J*=14.1Hz).

¹³C-NMR (75.5MHz, CDCl₃): 11.6, 11.7, 20.5, 20.6, 20.8, 20.9, 22.9, 23.7, 25.0, 28.1, 28.2, 28.3, 28.5, 28.6, 29.6, 30.8, 46.2, 46.2, 49.2, 49.3, 102.2, 110.7, 110.8, 122.3, 125.3, 125.4, 128.2, 128.4, 128.6, 140.9, 141.0, 142.2, 154.2, 170.4, 172.1.

tR: 4.32 min, HRMS ($C_{47}H_{65}N_4O^+$), calc: 701.5153; found: 701.5147.

4. Photodecomposition monitoring of CyN-111

HPLC-MS analysis

Supplementary Figure 1. MS data for the decomposition monitoring of CyN-111.

Supplementary Figure 2. Chemical structures of CyN-111 and decomposition products (CyN-111a, b, c).

Supplementary Figure 3. IR spectra of the reaction mixture after: a) 0h, b) 6h. The carbonyl bands corresponding to **CyN-111b** (ketone) and **CyN-111c** (aldehyde) are easily distinguishable.

¹H-NMR

CyN-111c

¹**H-NMR** (CyN-111c) (300 MHz, CDCl₃) δ =0.98 (t, 3H, *J*=7.5Hz), 1.65 (s, 6H), 1.69-1.77 (m, 2H), 3.63(t, 3H, *J*=9.0 Hz), 5.43 (d, 1H, *J*=9.0 Hz), 6.82 (d, 1H, *J*=7.5Hz), 7.04 (t, 1H, *J*=7.5 Hz), 7.22-7.28 (m, 2H), 9.98(d, 1H, J=9.0Hz).

5. Time-course fluorescence measurements

a) CyN-111, 165, 272, 295 vs CyNA-111, 165, 272, 295 and 1

Procedure: 10µM **CyN(A)** solutions in 10mM HEPES buffer (pH 7.4) containing 1% DMSO were placed in a 96-well black plate, and fluorescence intensity measurements were recorded every 10 min for a total period of 10 h (excitation-emission: 640-750 nm for **CyN** derivatives, and 790-820 nm for **1** and **CyNA** derivatives). Values are fitted to a non-linear regression one-phase exponential decay (GraphPad Prism 5.0). Detailed statistics:

<u>One phase</u> <u>decay</u> Goodness of Fit Degrees of	CyN-111	CyN-165	CyN-272	CyN-295	CyNA-111	CyNA-165	CyNA-272	CyNA-295	1
Freedom	57	57	57	57	57	57	57	57	57
R ² Absolute Sum	0.9967	0.9988	0.9971	0.9981	0.9736	0.9664	0.9259	0.9418	0.8433
of Squares	0.008321	0.002994	0.007014	0.00426	0.002442	0.006335	0.004751	0.009447	0.04572
Sy.x Number of points	0.01208	0.007247	0.01109	0.008645	0.006546	0.01054	0.00913	0.01287	0.02832
Analyzed	60	60	60	60	60	60	60	60	60

Photodecomposition rate constants were determined by plotting $-ln(F/F_0)$ vs time, and calculated using a *pseudo*-first order rate equation.²

b) CyNA library (primary and secondary screening).

Primary screening: 10 μ M CyN(A) solutions in 100mM HEPES buffer (pH 7.4) containing 2% DMSO were placed in a 96-well black plate, and fluorescence intensity measurements were recorded every 10 min for a total period of 8h (excitation-emission: 790-820 nm). A subset of 14 compounds selected according to their quotients F_{8h}/F_o, quantum yields and maximum RFU values (**Table S2**) was further evaluated on the secondary screening.

Secondary screening: 10µM solutions in 10mM HEPES buffer (pH 7.4) or PBS (pH 7.3) containing 1% DMSO were placed in a 96-well black plate, and irradiated for periods of 15 min (up to 2h) with a high intensity UV lamp (100W, 365 nm) at 2-cm distance. Values are represented as means (n=2), and fitted to a non-linear regression one-phase exponential decay (GraphPad Prism 5.0).

Supplementary Figure 4. Photostability secondary screening of the **CyNA** library in HEPES buffer (10mM, pH 7.4).

Supplementary Figure 5. Photostability secondary screening of the **CyNA** library in PBS buffer (pH 7.3).

Detailed statistics:

For Supplementary Figure 4:

One phase decay							
Goodness of Fit	49	111	272	274	295	388	396
Degrees of Freedom	6	6	6	6	6	6	6
R ²	0.988	0.9892	0.9915	0.998	0.9932	0.9904	0.9775
Absolute Sum of Squares	0.006007	0.00361	0.005435	0.001729	0.005058	0.005089	0.01161
Sy.x	0.03164	0.02453	0.0301	0.01697	0.02903	0.02912	0.04398
Number of points							
Analyzed	9	9	9	9	9	9	9
Goodness of Fit	399	414	398	220	375	124	266
Degrees of Freedom	6	6	6	6	6	6	6
R ²	0.995	0.9465	0.9982	0.99	0.9805	0.9418	0.9843
Absolute Sum of Squares	0.002487	0.01398	0.001551	0.008653	0.01301	0.01779	0.008353
Sy.x	0.02036	0.04827	0.01608	0.03798	0.04656	0.05446	0.03731
Number of points							
Analyzed	9	9	9	9	9	9	9

For **Supplementary Figure 5**:

One phase decay

Goodness of Fit	49	111	272	274	295	388	396
Degrees of Freedom	6	6	6	6	6	6	6
R ²	0.9685	0.9472	0.9812	0.9787	0.9695	0.9491	0.9654
Absolute Sum of Squares	0.009142	0.003654	0.003342	0.005172	0.01214	0.0141	0.009859
Sy.x	0.03903	0.02468	0.0236	0.02936	0.04498	0.04847	0.04054
Number of points							
Analyzed	9	9	9	9	9	9	9
Goodness of Fit	399	414	398	220	375	124	266
Goodness of Fit Degrees of Freedom	399 6	414 6	398 6	220 6	375 6	124 6	266 6
Goodness of Fit Degrees of Freedom R ²	399 6 0.9788	414 6 0.9285	398 6 0.9638	220 6 0.9933	375 6 0.9856	124 6 0.9581	266 6 0.9928
Goodness of Fit Degrees of Freedom R ² Absolute Sum of Squares	399 6 0.9788 0.007325	414 6 0.9285 0.006867	398 6 0.9638 0.02214	220 6 0.9933 0.004388	375 6 0.9856 0.006524	124 6 0.9581 0.008531	266 6 0.9928 0.002706
Goodness of Fit Degrees of Freedom R ² Absolute Sum of Squares Sy.x	399 6 0.9788 0.007325 0.03494	414 6 0.9285 0.006867 0.03383	398 6 0.9638 0.02214 0.06074	220 6 0.9933 0.004388 0.02704	375 6 0.9856 0.006524 0.03298	124 6 0.9581 0.008531 0.03771	266 6 0.9928 0.002706 0.02124
Goodness of Fit Degrees of Freedom R ² Absolute Sum of Squares Sy.x Number of points	399 6 0.9788 0.007325 0.03494	414 6 0.9285 0.006867 0.03383	398 6 0.9638 0.02214 0.06074	220 6 0.9933 0.004388 0.02704	375 6 0.9856 0.006524 0.03298	124 6 0.9581 0.008531 0.03771	266 6 0.9928 0.002706 0.02124

6. Comparative spectral properties of CyNA-414 and ICG.

Absorbance spectra: 5µM solutions in PBS (pH 7.3) containing 1% DMSO or in pure DMSO. Emission spectra: 10µM solutions in PBS (pH 7.3) containing 1% DMSO.

Supplementary Figure 6. Absorbance and emission spectra of **CyNA-414** and **ICG** (for emission spectra, excitation wavelength: 760 nm).

Photostability measurements: 10µM solutions in PBS (pH 7.3) containing 1% DMSO were placed in a 96-well black plate, and irradiated for periods of 10 min (up to 2 h) with a high intensity UV lamp (100W, 365 nm) at 2-cm distance. Values are represented as means (n=6), and fitted to a non-linear regression one-phase exponential decay (GraphPad Prism 5.0).

7. Photobleaching rates of CyNA-414 and CyN-414.

Procedure: 10µM **CyNA-414 and CyN-414** solutions in 10mM HEPES buffer (pH 7.4) containing 1% DMSO were placed in a 96-well black plate, and fluorescence intensity measurements (n=3) were recorded every 10 min for a total period of 12 h (excitation-emission: 640-750 nm for **CyN-414**, and 790-820 nm for **CyNA-414**) under a xenon flash lamp. Values are fitted to a non-linear regression one-phase exponential decay (GraphPad Prism 5.0).

Supplementary Table 3. Photobleaching rates of CyNA-414 and CyN-414.

compound	$k (s^{-1})$	k_{CyN}/k_{CyNA}
CyN-414	$17.5 \cdot 10^{-6}$	
CyNA-414	$2.5 \cdot 10^{-6}$	7

References

1. K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler. *Photochem. Photobiol.* 2000, 72, 392-398.

2. A. Toutchkine, D.V. Nguyen, K.M. Hahn. Org. Lett. 2007, 9 2775-2777.