Electronic Supplementary Information for

Reactions of *O*-protonated oxaphosphirane complexes: formation of a η^2 -Wittig ylide complex and a 1,3-oxaphospholane complex

Janaina Marinas Pérez, Carolin Albrecht, Holger Helten, Gregor Schnakenburg, and Rainer Streubel^a

^aInstitut für Anorganische Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany

Analytical details of complexes 3,5 and 7:

All reactions were carried out in an inert atmosphere using purified and dried argon and standard Schlenk techniques. Solvents were dried over sodium wire or CaH₂ (CH₂Cl₂) and distilled under argon. NMR data were recorded on a Bruker DMX 300 spectrometer at 30 °C using CDCl₃ and C₆D₆ as solvent and internal standard; shifts are given relative to tetramethylsilane (¹³C: 75.5 MHz) and 85% H₃PO₄ (³¹P: 121.5 MHz). Mass spectra were recorded on a a Kratos MS 50 spectrometer (EI, 70 eV). UV/vis absorption spectra were measured with a Shimadzu UV-1650PC spectrometer, and IR spectra were recorded by using a Nicolet 380 FTIR spectrometer in the v = 4000–450 cm⁻¹ range spectrometer.

Complex 3:

 $δ_{\rm H}$ (300 MHz; CDCl₃; 30 °C) 0.3 (9 H, s, Si(CH₃)₃), 0.4 (9 H, d, ⁴J_{F,H} 1.1, Si(CH₃)₃), 1.8 (1 H, d, ²J_{P,H} 15.7, CH(SiMe₃)₂), 2.3 (1 H, d, br, ³J_{P,H} 24.0, OH), 5.3 (1 H, d, ²J_{F,H} 6.6, CHOH), 7.4 (5 H, m_c, Ph); $δ_{\rm P}$ (121.5 MHz; CDCl₃; 30°C; 85%H₃PO₄) 198.1 (dd_{sat}, ¹J_{W,P} 296.3, ¹J_{P,F} 826.0); $δ_{\rm F}$ (282.4 MHz; CDCl₃; 30°C; CFCl₃) -123.1 (d, ¹J_{P,F} 851.9); $ν_{\rm max}$ /cm⁻¹ 3585m (OH), 2075m (CO), 1987s (CO), 1930s (CO), 2023s (CO), 1992m (CO); *m*/*z* (EI) 640 (M⁺, 60 %), 612 (20), 556 (10), 316.1 (10), 179 (100), 73 (80).

Complex 5: $\delta_{\rm H}$ (300 MHz; CDCl₃, 30°C) 0.2 (9 H, s, Si(CH₃)₃), 0.3 (9 H, d, ${}^{4}J_{\rm F,H}$ 1.1, Si(CH₃)₃), 0.85 (1 H, d, ${}^{2}J_{\rm P,H}$ 20.0, CH(SiMe₃)₂), 3.4 (1 H, d, ${}^{2}J_{\rm P,H}$ 17.4, CHPh), 7.45 (m_c, 5H; Ph); $\delta_{\rm P}$ (121.5 MHz; CDCl₃; 30°C; 85%H₃PO₄) 143.5 (ddd_{sat}, ${}^{1}J_{\rm W,P}$ 144.0, ${}^{1}J_{\rm P,F}$ 1043.0, ${}^{2}J_{\rm P,H}$ 20.6, ${}^{2}J(\rm P,H)$ 16.8); $\delta_{\rm F}$ (282.4 MHz, CDCl₃; 30°C; CFCl₃) -71.5 (d, ${}^{1}J_{\rm P,F}$ 1059.7; $v_{\rm max}$ /cm⁻¹ 3373br (OH), 2076m (CO), 1980s (CO), 1942s (CO).

Complex 7: mp 110-112 °C (decomp); $\delta_{\rm H}$ (300 MHz; CDCl₃; 25 °C) 1.15 (3 H, d, $J_{\rm H,H}$ 7.1, CH-CH₃), 1.34 (3 H, dd, ${}^{3}J_{\rm P,H}$ 12.8, ${}^{4}J_{\rm F,H}$ 3.5, PC-CH₃)), 1.45 (3 H, s, OC-CH₃), 1.59 (3 H, "sext", $J_{\rm H,H}$ 0.86, C-CH₃), 1.71 ("quint", $J_{\rm H,H}$ 0.8 Hz, C-CH₃), 2.99 (1 H, dq, ${}^{3}J_{\rm P,H}$ 22.9, $J_{\rm H,H}$ 7.6, CH-CH₃), 4.34 (1 H, dd, ${}^{2}J_{\rm P,H}$ 29.1, ${}^{3}J_{\rm F,H}$ 16.6, PCH-Ph), 7.34-7.41 (3 H, m, Ph), 7.46-7.51 (2 H, m, Ph); $\delta_{\rm P}$ (121.5 MHz; CDCl₃; 25°C; 85% H₃PO₄) 215.6 (d_{sat}, ${}^{1}J_{\rm W,P}$ 289.3, ${}^{1}J_{\rm P,F}$ 892.6; $\delta_{\rm F}$ (282.4 MHz; CDCl₃; 25°C; CFCl₃) - 149.7 (d, $J_{\rm C,F}$ = 12.3 Hz); $v_{\rm max}$ /cm⁻¹ 2970w (C=C), 2079m (CO), 1982s (CO), 1918s (CO); *m*/*z* (EI) 616.1 (M⁺, 5%), 532 (1), 510 (8), 426 (3), 396 (2), 368 (2), 340 (2), 136 (100), 121 (20).

Further computational details:

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Fig. 2 Calculated structures of reactive intermediates 8a and 8b (most hydrogen atoms omitted; bond distances in Å).

DFT calculations were carried out with the TURBOMOLE V5.9.1 program package.^[1a] For optimizations^[1b] the gradient corrected exchange functional by Becke^[2] (B88) in combination with the gradient corrected correlation functional by Lee, Yang and Parr^[3] (LYP) with the RI approximation^[4] and the valence-double- ζ basis set SV(P)^[5] was used. For the oxaphosphirane oxygen the basis was augmented with uncontracted gaussian functions having an exponent of 0.0845 (one of each type). For tungsten the effective core potential ECP-60-MWB^[6] was employed. The influence of the polar solvent was taken into account by employing the COSMO approach^[7] with $\varepsilon = 8.93$. For cavity construction the atomic radii of Bondi,^[8] obtained from cystallographic data, were used; the atomic radius of tungsten was set to 2.2230 Å. Transition states were located by using a TRIM algorithm.^[9] Excellent initial guesses were obtained through relaxed surface scans along the major reaction coordinates. All stationary points were characterized by numerical vibrational frequencies calculations.^[10] Single point calculations were carried out using the Three Parameter Hybrid Functional Becke3^[11] (B3) in combination with the correlation functional LYP^[3] using the valencetriple- ζ basis set TZVP,^[12] which was augmented as specified above, and ECP-60-MWB^[6] for tungsten. The COSMO approach^[7] was employed with the same parameters as used for optimizations. Zero point corrections and thermal corrections to free energies were adopted from frequencies calculations on the optimization level (RI-BLYP/aug-SV(P)/ECP-60-MWB(W), COSMO). It has been shown that this approach is appropriate for reactions of epoxide, aziridine and thiirane with methanethiolate.^[13]

- R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, *Chem. Phys. Lett.* 1989, 162, 165–169; M. v. Arnim, R. Ahlrichs, *J. Chem. Phys.* 1999, 111, 9183–9190.
- 2 A. D. Becke, *Phys. Rev.*, A. 1988, **38**, 3098–3100.
- 3 C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
- K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, *Chem. Phys. Lett.* 1995, 240, 283–290; K.Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, *Chem. Phys. Lett.* 1995, 242, 652–660; K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, *Theo. Chem. Acc.* 1997, 97, 119–124.
- 5 A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571–2577.
- 6 D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta 1990, 77, 123–141.
- 7 A. Klamt, G. Schüürmann, J. Chem. Soc., Perkin Trans. 2 1993, 799–805.
- 8 A. Bondi, J. Phys. Chem. 1964, 68, 441–451.
- 9 T. Helgaker, Chem. Phys. Lett. 1991, 182, 503-510.
- P. Deglmann, F. Furche, R. Ahlrichs, *Chem. Phys. Lett.* 2002, **362**, 511–518; P. Deglmann, F. Furche, *J. Chem. Phys.* 2002, **117**, 9535–9538; P. Deglmann, K. May, F. Furche, R. Ahlrichs, *Chem. Phys. Lett.* 2004, **384**, 103–107.
- 11 A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- 12 A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829–5835.
- 13 H. Helten, T. Schirmeister, B. Engels, J. Phys. Chem. A 2004, 108, 7691–7701; H. Helten, T. Schirmeister, B. Engels, J. Org. Chem. 2005, 70, 233–237; c) R. Vicik, H. Helten, T. Schirmeister, B. Engels, Chem. Med. Chem. 2006, 1, 1021–1028.