# Supporting Information for "On the relationship between structure and reaction rate in olefin ring-closing metathesis"

Ashworth, Carboni, Hillier, Nelson, Percy, Rinaudo and Vincent

## Contents

| T <sub>1</sub> Values for Dienes and Cycloalkenes         | 2  |
|-----------------------------------------------------------|----|
| Procedure for Kinetic Experiments                         | 3  |
| Kinetic Data                                              | 5  |
| Ternary Competition RCM in Chloroform                     | 5  |
| Ternary Competition RCM in Dichloromethane                | 10 |
| Heptadiene RCM in Chloroform                              | 15 |
| Heptadiene RCM in Dichloromethane                         | 20 |
| Octadiene RCM in Chloroform                               | 25 |
| Octadiene RCM in Dichloromethane                          | 31 |
| Nonadiene RCM in Chloroform                               | 36 |
| Nonadiene RCM in Dichloromethane                          | 43 |
| Attempted Hexadiene Metathesis in Chloroform              | 50 |
| Hexadiene Metathesis, Concentrated Solution in Chloroform | 51 |
| Heptadiene/Octadiene Competition RCM in Chloroform        | 53 |
| Inhibited Octadiene RCM in Chloroform                     | 58 |
| Coordinates and Energies                                  | 62 |
| Basis Set Details.                                        | 84 |

| Compound     | δ <sub>H</sub> (CDCl₃) | T <sub>1</sub> | $\delta_{H}$ (CDCl <sub>3</sub> ) | <b>T</b> <sub>1</sub> | $\delta_{H}$ (CDCl <sub>3</sub> ) | <b>T</b> <sub>1</sub> | $\delta_{H}$ (CDCl <sub>3</sub> ) | <b>T</b> <sub>1</sub> |
|--------------|------------------------|----------------|-----------------------------------|-----------------------|-----------------------------------|-----------------------|-----------------------------------|-----------------------|
| Octadiene    | 5.82 ppm               | 5.94 s         | 4.97 ppm                          | 5.08 s                | 2.06 ppm                          | 3.73 s                | 1.41 ppm                          | 3.49 s                |
| Cyclopentene | 5.76 ppm               | 6.93 s         | 2.33 ppm                          | 5.42 s                | 1.84 ppm                          | 5.46 s                | -                                 | 1                     |
| Cyclohexene  | 5.75 ppm               | 6.84 s         | 2.00 ppm                          | 4.89 s                | 1.62 ppm                          | 5.00 s                | -                                 | 1                     |
| Cycloheptene | 5.81 ppm               | 6.54 s         | 2.14 ppm                          | 4.82 s                | 1.74 ppm                          | 4.50 s                | 1.52 ppm                          | 4.66 s                |
| Cyclooctene  | 5.64 ppm               | 6.05 s         | 2.16 ppm                          | 4.16 s                | 1.51 ppm                          | 4.08 s                | -                                 | 1                     |

Octadiene is representative of all diene substrates; olefinic protons exhibited the highest T<sub>1</sub>

values in each molecule.  $D_1 = 35$  s was selected, being the longest  $T_1 \ge 5$ .

### **Procedure for Kinetic Experiments**

Grubbs' second generation pre-catalyst **9** and 1,3,5-trimethoxybenzene were purchased from Sigma Aldrich and used as supplied. The pre-catalyst was handled under a flow of dry oxygen-free nitrogen at all times. Deuterated chloroform and dichloromethane were purchased from Sigma Aldrich and Goss Scientific respectively; solvents were dried over activated 4 Å molecular sieves for at least 12 h before use. Karl-Fischer analysis confirmed that water content in both solvents was < 10 ppm.

The use of disposable plastic syringes was avoided to prevent contamination of the chlorinated solvents with plasticisers that might interfere with the metathesis catalyst.

A clean and dry volumetric flask was flushed with nitrogen and charged with an appropriate mass of 1,3,5-trimethoxybenzene and an appropriate mass of diene. The flask was made up to volume with dry solvent under a gentle nitrogen flow. This concentrated stock solution(s) (typically approx. 100 mM total diene concentration) was then diluted to an appropriate concentration in a second volumetric flask, using a clean and dry gastight syringe. The flask was made up to volume using dry solvent. This solution (typically 10 mM total diene concentration) was used as a stock solution.

A clean, oven-dried NMR tube was flushed with nitrogen using a balloon. The 10 mM stock solution (600  $\mu$ L) was added and the tube capped. The tube was inserted into the magnet and the instrument internal temperature was set to 298K and allowed to equilibrate. NMR analysis was carried out before pre-catalyst addition to confirm that the solution did not contain acetone ( $\delta_{\rm H} = 2.2$  ppm) or water (broad peak at  $\delta_{\rm H} = 1.5$  ppm) and that it contained the correct concentration of diene with respect to the internal standard.

A dry volumetric flask was flushed with nitrogen and charged with an appropriate mass of Grubbs' second generation pre-catalyst **9** and stored in a bag filled with nitrogen. The flask was made up to volume using dry solvent approximately 5 minutes before charging the solution to the NMR tube.

This catalyst solution was charged to the NMR tube *via* a dry glass syringe and the time noted. The tube was shaken vigorously for approx. 15 seconds before the cap was exchanged for a pierced cap.

The sample was then analysed at appropriate intervals using a Brüker Topspin automated script, *multi\_zgvd2b*. Samples were automatically shimmed using *topshim 1dfast* between acquisitions.

NMR spectra were acquired on a Brüker AV400 instrument fitted with BBFO-z-ATMA probe or a Brüker AV600 instrument fitted with a TBI-z or BBO-z-ATMA probe; both instruments are fitted with temperature control units. Settings for spectra acquisition were as follows: NS = 4 scans; D1 = 35 s; SW = 24 ppm and O1P = 10 ppm. The sample was held at 298 K for the duration of the experiment.

# Kinetic Data

#### Ternary Competition RCM in Chloroform

3.3 mM heptadiene 7b, 3.4 mM octadiene 7c, 3.5 mM nonadiene 7d, 0.1 mM pre-catalyst 9

Analysis was by <sup>1</sup>H NMR at 600 MHz using a Bruker AV600 equipped with TBI-z probe; the

temperature was maintained at 298 K throughout.





Concentration/time data for the RCM of heptadiene 7**b**, octadiene 7**c**, nonadiene 7**d** with precatalyst **9** in CDCl<sub>3</sub> at 298 K (AV600, TBI-z probe); 4 scans with  $D_1 = 35$  s; TE = 298 K; concentrations obtained by integration of the appropriate signal and the internal standard (see above).



Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

| t (s) | Diene (M) | Ethene (M) | Cyclopentene (M) | Cyclohexene (M) | Cycloheptene (M) |
|-------|-----------|------------|------------------|-----------------|------------------|
| 0     | 0.009938  | 0.000007   | 0.000024         | 0.000043        | 0.000031         |
| 411   | 0.008604  | 0.001065   | 0.000359         | 0.000900        | 0.000095         |
| 714   | 0.007390  | 0.002138   | 0.000723         | 0.001720        | 0.000155         |
| 1020  | 0.006279  | 0.003106   | 0.001135         | 0.002336        | 0.000202         |
| 1323  | 0.005323  | 0.003947   | 0.001566         | 0.002784        | 0.000277         |
| 1630  | 0.004506  | 0.004668   | 0.001995         | 0.003078        | 0.000400         |
| 1932  | 0.003827  | 0.005258   | 0.002386         | 0.003207        | 0.000523         |
| 2236  | 0.003271  | 0.005739   | 0.002704         | 0.003288        | 0.000705         |
| 2539  | 0.002826  | 0.006132   | 0.002909         | 0.003303        | 0.000928         |
| 2842  | 0.002483  | 0.006425   | 0.003030         | 0.003311        | 0.001145         |
| 3145  | 0.002204  | 0.006651   | 0.003098         | 0.003326        | 0.001357         |
| 3447  | 0.001981  | 0.006816   | 0.003126         | 0.003322        | 0.001554         |
| 3749  | 0.001798  | 0.006934   | 0.003150         | 0.003323        | 0.001716         |
| 4051  | 0.001646  | 0.007024   | 0.003157         | 0.003334        | 0.001870         |
| 4354  | 0.001520  | 0.007084   | 0.003182         | 0.003347        | 0.001990         |
| 4656  | 0.001417  | 0.007120   | 0.003179         | 0.003348        | 0.002098         |
| 4958  | 0.001316  | 0.007145   | 0.003180         | 0.003337        | 0.002170         |
| 5260  | 0.001234  | 0.007134   | 0.003189         | 0.003344        | 0.002237         |
| 5563  | 0.001186  | 0.007115   | 0.003199         | 0.003351        | 0.002292         |
| 5865  | 0.001125  | 0.007093   | 0.003196         | 0.003338        | 0.002366         |
| 6170  | 0.001085  | 0.007062   | 0.003207         | 0.003361        | 0.002398         |
| 6472  | 0.001039  | 0.007021   | 0.003209         | 0.003358        | 0.002444         |
| 6774  | 0.001016  | 0.006990   | 0.003215         | 0.003361        | 0.002480         |
| 7077  | 0.000984  | 0.006939   | 0.003214         | 0.003352        | 0.002504         |
| 7379  | 0.000957  | 0.006891   | 0.003214         | 0.003359        | 0.002527         |
| 7681  | 0.000939  | 0.006837   | 0.003226         | 0.003365        | 0.002535         |
| 7983  | 0.000922  | 0.006781   | 0.003232         | 0.003362        | 0.002563         |
| 8285  | 0.000911  | 0.006736   | 0.003224         | 0.003369        | 0.002574         |
| 8587  | 0.000890  | 0.006674   | 0.003219         | 0.003353        | 0.002591         |
| 8890  | 0.000879  | 0.006613   | 0.003227         | 0.003358        | 0.002598         |
| 9192  | 0.000877  | 0.006570   | 0.003237         | 0.003366        | 0.002598         |
| 9494  | 0.000862  | 0.006511   | 0.003231         | 0.003360        | 0.002617         |
| 9796  | 0.000844  | 0.006460   | 0.003226         | 0.003359        | 0.002631         |
| 10098 | 0.000846  | 0.006412   | 0.003226         | 0.003365        | 0.002635         |
| 10400 | 0.000837  | 0.006363   | 0.003238         | 0.003371        | 0.002637         |
| 10702 | 0.000829  | 0.006306   | 0.003238         | 0.003365        | 0.002656         |
| 11004 | 0.000819  | 0.006263   | 0.003244         | 0.003366        | 0.002659         |
| 11307 | 0.000812  | 0.006201   | 0.003240         | 0.003374        | 0.002658         |
| 11609 | 0.000809  | 0.006168   | 0.003242         | 0.003368        | 0.002660         |
| 11911 | 0.000802  | 0.006117   | 0.003238         | 0.003368        | 0.002673         |
| 12213 | 0.000799  | 0.006077   | 0.003246         | 0.003373        | 0.002675         |
| 12515 | 0.000792  | 0.006025   | 0.003243         | 0.003370        | 0.002686         |
| 12818 | 0.000786  | 0.005972   | 0.003252         | 0.003376        | 0.002693         |
| 13122 | 0.000776  | 0.005908   | 0.003239         | 0.003363        | 0.002688         |

| 13424 | 0.000774 | 0.005864 | 0.003244 | 0.003376 | 0.002705 |
|-------|----------|----------|----------|----------|----------|
| 13726 | 0.000763 | 0.005817 | 0.003247 | 0.003369 | 0.002718 |
| 14028 | 0.000773 | 0.005787 | 0.003256 | 0.003375 | 0.002715 |
| 14331 | 0.000765 | 0.005747 | 0.003251 | 0.003375 | 0.002715 |
| 14633 | 0.000760 | 0.005699 | 0.003260 | 0.003374 | 0.002728 |
| 14935 | 0.000758 | 0.005652 | 0.003263 | 0.003371 | 0.002730 |
| 15237 | 0.000752 | 0.005603 | 0.003257 | 0.003380 | 0.002723 |
| 15539 | 0.000744 | 0.005567 | 0.003259 | 0.003378 | 0.002741 |
| 15841 | 0.000739 | 0.005519 | 0.003255 | 0.003372 | 0.002750 |
| 16144 | 0.000737 | 0.005479 | 0.003258 | 0.003376 | 0.002757 |
| 16446 | 0.000729 | 0.005430 | 0.003262 | 0.003378 | 0.002759 |
| 16722 | 0.000726 | 0.005391 | 0.003264 | 0.003388 | 0.002759 |
| 17050 | 0.000722 | 0.005343 | 0.003261 | 0.003391 | 0.002762 |
| 17353 | 0.000724 | 0.005314 | 0.003261 | 0.003380 | 0.002763 |
| 17655 | 0.000716 | 0.005273 | 0.003251 | 0.003377 | 0.002774 |

## Ternary Competition RCM in Dichloromethane

3.4 mM heptadiene 7b, 3.4 mM octadiene 7c, 3.5 mM nonadiene 7d, 0.1 mM pre-catalyst 9

Analysis was by <sup>1</sup>H NMR at 600 MHz using a Bruker AV600 equipped with BBO-z-ATMA

probe; the temperature was maintained at 298 K throughout.

Sample spectra:

(1) Before pre-catalyst addition.



(2) Approx 2 h after addition.





Pre-catalyst 9 cannot be detected due to the lower sensitivity of the BBO-z-ATMA probe.

Concentration/time data for the RCM of heptadiene 7**b**, octadiene 7**c**, nonadiene 7**d** with precatalyst **9** in  $CD_2Cl_2$  at 298 K (AV600, BBO-z-ATMA probe); 4 scans with  $D_1 = 35$  s; TE =298 K; concentrations obtained by integration of the appropriate signal and the internal standard (see above).



Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

| t (s) | Diene (M) | Ethene (M) | Cyclopentene (M) | Cyclohexene (M) | Cycloheptene (M) |
|-------|-----------|------------|------------------|-----------------|------------------|
| 0     | 0.009822  | 0.000030   | -0.000030        | 0.000004        | -0.000001        |
| 331   | 0.009621  | 0.000178   | 0.000052         | 0.000117        | 0.000010         |
| 655   | 0.009025  | 0.000707   | 0.000199         | 0.000524        | 0.000017         |
| 981   | 0.007410  | 0.002327   | 0.000680         | 0.001642        | 0.000009         |
| 1305  | 0.005787  | 0.003878   | 0.001294         | 0.002563        | 0.000177         |
| 1628  | 0.004646  | 0.005017   | 0.001880         | 0.003049        | 0.000305         |
| 1951  | 0.003768  | 0.005793   | 0.002427         | 0.003240        | 0.000445         |
| 2274  | 0.003222  | 0.006396   | 0.002769         | 0.003320        | 0.000629         |
| 2598  | 0.002806  | 0.006806   | 0.002982         | 0.003316        | 0.000824         |
| 2921  | 0.002499  | 0.007052   | 0.003100         | 0.003323        | 0.000998         |
| 3245  | 0.002309  | 0.007137   | 0.003106         | 0.003378        | 0.001196         |
| 3569  | 0.002112  | 0.007471   | 0.003189         | 0.003355        | 0.001312         |
| 3892  | 0.001945  | 0.007609   | 0.003217         | 0.003335        | 0.001454         |
| 4215  | 0.001817  | 0.007734   | 0.003204         | 0.003359        | 0.001563         |
| 4538  | 0.001717  | 0.007807   | 0.003259         | 0.003353        | 0.001697         |
| 4861  | 0.001639  | 0.007923   | 0.003248         | 0.003372        | 0.001779         |
| 5184  | 0.001562  | 0.007944   | 0.003274         | 0.003341        | 0.001837         |
| 5507  | 0.001524  | 0.007955   | 0.003256         | 0.003368        | 0.001928         |
| 5830  | 0.001420  | 0.008012   | 0.003331         | 0.003344        | 0.001951         |
| 6153  | 0.001385  | 0.008085   | 0.003357         | 0.003363        | 0.002026         |
| 6476  | 0.001353  | 0.008079   | 0.003261         | 0.003365        | 0.002037         |
| 6799  | 0.001317  | 0.008132   | 0.003310         | 0.003374        | 0.002096         |
| 7122  | 0.001284  | 0.008130   | 0.003291         | 0.003364        | 0.002159         |
| 7445  | 0.001223  | 0.008156   | 0.003346         | 0.003370        | 0.002159         |
| 7768  | 0.001223  | 0.008107   | 0.003301         | 0.003360        | 0.002251         |
| 8091  | 0.001172  | 0.008105   | 0.003357         | 0.003355        | 0.002212         |
| 8414  | 0.001160  | 0.008090   | 0.003369         | 0.003381        | 0.002260         |
| 8737  | 0.001131  | 0.008088   | 0.003373         | 0.003382        | 0.002217         |
| 9060  | 0.001156  | 0.008086   | 0.003402         | 0.003386        | 0.002319         |
| 9382  | 0.001087  | 0.008035   | 0.003375         | 0.003373        | 0.002273         |
| 9706  | 0.001089  | 0.008052   | 0.003381         | 0.003377        | 0.002324         |
| 10026 | 0.001066  | 0.007990   | 0.003371         | 0.003388        | 0.002378         |
| 10352 | 0.001072  | 0.007984   | 0.003402         | 0.003373        | 0.002346         |
| 10675 | 0.001025  | 0.007969   | 0.003387         | 0.003375        | 0.002331         |
| 10998 | 0.001022  | 0.007970   | 0.003408         | 0.003404        | 0.002403         |
| 11321 | 0.001021  | 0.007913   | 0.003458         | 0.003394        | 0.002391         |
| 11644 | 0.001004  | 0.007865   | 0.003409         | 0.003382        | 0.002399         |
| 11967 | 0.001027  | 0.007829   | 0.003412         | 0.003401        | 0.002413         |
| 12290 | 0.000998  | 0.007813   | 0.003394         | 0.003369        | 0.002397         |
| 12613 | 0.000976  | 0.007766   | 0.003440         | 0.003373        | 0.002445         |
| 12936 | 0.001004  | 0.007736   | 0.003446         | 0.003383        | 0.002443         |
| 13259 | 0.000987  | 0.007707   | 0.003423         | 0.003397        | 0.002462         |
| 13582 | 0.000949  | 0.007650   | 0.003386         | 0.003382        | 0.002446         |
| 13905 | 0.000961  | 0.007632   | 0.003457         | 0.003362        | 0.002425         |

| 14228 | 0.000936 | 0.007581 | 0.003410 | 0.003385 | 0.002441 |
|-------|----------|----------|----------|----------|----------|
| 14551 | 0.000956 | 0.007518 | 0.003381 | 0.003371 | 0.002442 |
| 14874 | 0.000959 | 0.007525 | 0.003417 | 0.003379 | 0.002440 |
| 15197 | 0.000932 | 0.007540 | 0.003407 | 0.003396 | 0.002490 |
| 15520 | 0.000963 | 0.007467 | 0.003393 | 0.003388 | 0.002465 |
| 15843 | 0.000931 | 0.007394 | 0.003444 | 0.003379 | 0.002498 |
| 16166 | 0.000943 | 0.007355 | 0.003398 | 0.003383 | 0.002544 |

## Heptadiene RCM in Chloroform

9.1 mM heptadiene 7b (dataset 1) or 9.2 mM heptadiene 7b (dataset 2); both with 0.1 mM

pre-catalyst 9. Analysis was by <sup>1</sup>H NMR at 400 MHz using a Bruker AV400 equipped with

BBFO-z-ATMA probe; the temperature was maintained at 298 K throughout.

Sample Spectra

(1) Before pre-catalyst addition



(2) Approx. 1 h after addition





Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010



Concentration/time data for the RCM of heptadiene 7b with pre-catalyst 9 in  $CDCl_3$  at 298 K

(AV400, BBFO-z-ATMA probe); 4 scans with  $D_1 = 35$  s; TE = 298 K; concentrations

obtained by integration of the appropriate signal and the internal standard (see above).

| t (s) | Diene (M) | Cyclopentene (M) | Ethene (M) |
|-------|-----------|------------------|------------|
| 0     | 0.009111  | 0.000044         | 0.000097   |
| 303   | 0.008802  | 0.000456         | 0.000347   |
| 598   | 0.008188  | 0.000954         | 0.000993   |
| 893   | 0.007422  | 0.001796         | 0.001724   |
| 1188  | 0.006596  | 0.002562         | 0.002525   |
| 1482  | 0.005776  | 0.003404         | 0.003314   |
| 1777  | 0.004943  | 0.004200         | 0.004011   |
| 2072  | 0.004247  | 0.004894         | 0.004727   |
| 2367  | 0.003573  | 0.005512         | 0.005337   |
| 2661  | 0.002989  | 0.006133         | 0.005857   |
| 2956  | 0.002442  | 0.006604         | 0.006273   |
| 3250  | 0.001987  | 0.007051         | 0.006676   |
| 3545  | 0.001680  | 0.007379         | 0.007035   |
| 3839  | 0.001382  | 0.007651         | 0.007310   |
| 4134  | 0.001181  | 0.007925         | 0.007547   |
| 4429  | 0.000946  | 0.008115         | 0.007703   |
| 4724  | 0.000757  | 0.008278         | 0.007845   |
| 5019  | 0.000624  | 0.008436         | 0.007928   |
| 5313  | 0.000545  | 0.008546         | 0.007992   |
| 5608  | 0.000375  | 0.008653         | 0.007993   |
| 5903  | 0.000344  | 0.008677         | 0.008031   |
| 6197  | 0.000216  | 0.008769         | 0.008000   |
| 6492  | 0.000201  | 0.008818         | 0.007996   |
| 6787  | 0.000295  | 0.008826         | 0.008074   |
| 7081  | 0.000179  | 0.008885         | 0.008030   |

Concentration/time data for the RCM of heptadiene 7b with pre-catalyst 9 in CDCl<sub>3</sub> at 298 K

(AV400, BBFO-z-ATMA probe); 4 scans with  $D_1 = 35$  s; TE = 298 K; concentrations

obtained by integration of the appropriate signal and the internal standard (see above).

| Dataset | 2 |
|---------|---|
|---------|---|

| <b>t</b> ( <b>s</b> ) | Diene (M) | Cyclopentene (M) | Ethene (M) |
|-----------------------|-----------|------------------|------------|
| 0                     | 0.009155  | 0.000071         | 0.000052   |
| 319                   | 0.008723  | 0.000433         | 0.000377   |
| 613                   | 0.008165  | 0.000988         | 0.000937   |
| 908                   | 0.007425  | 0.001720         | 0.001669   |
| 1203                  | 0.006601  | 0.002536         | 0.002402   |
| 1497                  | 0.005805  | 0.003291         | 0.003159   |
| 1792                  | 0.005028  | 0.004024         | 0.003831   |
| 2087                  | 0.004333  | 0.004721         | 0.004521   |
| 2381                  | 0.003701  | 0.005359         | 0.005074   |
| 2676                  | 0.003162  | 0.005908         | 0.005604   |
| 2970                  | 0.002631  | 0.006410         | 0.006011   |
| 3265                  | 0.002230  | 0.006763         | 0.006402   |
| 3560                  | 0.001904  | 0.007121         | 0.006724   |
| 3854                  | 0.001594  | 0.007411         | 0.006978   |
| 4149                  | 0.001357  | 0.007653         | 0.007203   |
| 4443                  | 0.001092  | 0.007943         | 0.007333   |

### Heptadiene RCM in Dichloromethane

9.6 mM heptadiene 7b (dataset 1) or 9.2 mM heptadiene 7b (dataset 2); both with 0.1 mM

pre-catalyst 9. Analysis was by <sup>1</sup>H NMR at 600 MHz using a Bruker AV600 equipped with

BBO-z-ATMA probe; the temperature was maintained at 298 K throughout.

Sample Spectra

(1) Before pre-catalyst addition



(2) Approx. 1 h after addition





Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010



Concentration/time data for the RCM of heptadiene 7b with pre-catalyst 9 in  $CD_2Cl_2$  at 298 K (AV600, BBO-z-ATMA probe); 4 scans with  $D_1 = 35$  s; TE = 298 K; concentrations obtained by integration of the appropriate signal and the internal standard (see above). **Dataset 1** 

| t (s) | Diene (M) | Cyclopentene (M) | Ethene (M) |
|-------|-----------|------------------|------------|
| 0     | 0.009641  | 0.000000         | 0.000084   |
| 364   | 0.008293  | 0.001266         | 0.001322   |
| 687   | 0.006322  | 0.003282         | 0.003284   |
| 1010  | 0.004710  | 0.004861         | 0.004847   |
| 1333  | 0.003529  | 0.006091         | 0.005999   |
| 1656  | 0.002691  | 0.006952         | 0.006814   |
| 1978  | 0.002053  | 0.007598         | 0.007427   |
| 2300  | 0.001635  | 0.007977         | 0.007826   |
| 2623  | 0.001304  | 0.008300         | 0.008136   |
| 2945  | 0.001028  | 0.008642         | 0.008389   |
| 3267  | 0.000902  | 0.008819         | 0.008467   |
| 3589  | 0.000768  | 0.008955         | 0.008600   |
| 3911  | 0.000660  | 0.009008         | 0.008731   |
| 4234  | 0.000609  | 0.009101         | 0.008792   |
| 4556  | 0.000517  | 0.009229         | 0.008857   |
| 4878  | 0.000505  | 0.009270         | 0.008899   |
| 5200  | 0.000447  | 0.009230         | 0.008824   |
| 5523  | 0.000411  | 0.009287         | 0.008843   |
| 5845  | 0.000404  | 0.009290         | 0.008834   |
| 6167  | 0.000422  | 0.009334         | 0.008780   |
| 6490  | 0.000393  | 0.009386         | 0.008717   |
| 6812  | 0.000369  | 0.009391         | 0.008715   |
| 7134  | 0.000349  | 0.009357         | 0.008728   |
| 7456  | 0.000341  | 0.009411         | 0.008676   |
| 7779  | 0.000338  | 0.009428         | 0.008625   |
| 8101  | 0.000342  | 0.009409         | 0.008590   |
| 8423  | 0.000340  | 0.009382         | 0.008502   |
| 8746  | 0.000314  | 0.009427         | 0.008515   |
| 9068  | 0.000296  | 0.009414         | 0.008424   |
| 9390  | 0.000300  | 0.009444         | 0.008421   |
| 9712  | 0.000290  | 0.009434         | 0.008363   |
| 10034 | 0.000322  | 0.009400         | 0.008251   |
| 10357 | 0.000298  | 0.009449         | 0.008225   |
| 10679 | 0.000297  | 0.009398         | 0.008167   |
| 11001 | 0.000318  | 0.009435         | 0.008160   |
| 11323 | 0.000276  | 0.009432         | 0.008091   |
| 11645 | 0.000303  | 0.009490         | 0.008060   |
| 11968 | 0.000299  | 0.009426         | 0.007941   |

Concentration/time data for the RCM of heptadiene 7b with pre-catalyst 9 in  $CD_2Cl_3$  at 298

K (AV600, BBO-z-ATMA probe); 4 scans with  $D_1 = 35$  s; TE = 298 K; concentrations

obtained by integration of the appropriate signal and the internal standard (see above).

| t (s) | Diene (M) | Cyclopentene<br>(M) | Ethene (M) |
|-------|-----------|---------------------|------------|
| 0     | 0.009168  | 0.000000            | 0.000040   |
| 354   | 0.007844  | 0.001253            | 0.001277   |
| 678   | 0.005991  | 0.003157            | 0.003094   |
| 1001  | 0.004573  | 0.004567            | 0.004498   |
| 1324  | 0.003487  | 0.005590            | 0.005488   |
| 1647  | 0.002717  | 0.006424            | 0.006261   |
| 1970  | 0.002141  | 0.006985            | 0.006840   |
| 2293  | 0.001671  | 0.007442            | 0.007318   |
| 2616  | 0.001383  | 0.007717            | 0.007584   |
| 2939  | 0.001146  | 0.008001            | 0.007839   |
| 3262  | 0.000948  | 0.008174            | 0.007976   |
| 3585  | 0.000839  | 0.008319            | 0.008121   |
| 3908  | 0.000703  | 0.008434            | 0.008234   |
| 4231  | 0.000651  | 0.008564            | 0.008258   |
| 4554  | 0.000575  | 0.008591            | 0.008342   |
| 4877  | 0.000546  | 0.008653            | 0.008365   |
| 5200  | 0.000486  | 0.008723            | 0.008318   |
| 5523  | 0.000482  | 0.008767            | 0.008283   |
| 5846  | 0.000450  | 0.008776            | 0.008288   |
| 6169  | 0.000413  | 0.008806            | 0.008291   |
| 6491  | 0.000410  | 0.008836            | 0.008276   |
| 6814  | 0.000390  | 0.008856            | 0.008285   |
| 7137  | 0.000363  | 0.008856            | 0.008219   |
| 7460  | 0.000338  | 0.008922            | 0.008304   |
| 7783  | 0.000346  | 0.008922            | 0.008133   |
| 8106  | 0.000334  | 0.008879            | 0.008120   |
| 8428  | 0.000335  | 0.008948            | 0.008107   |
| 8751  | 0.000302  | 0.008897            | 0.008104   |
| 9074  | 0.000323  | 0.008867            | 0.008025   |
| 9397  | 0.000299  | 0.008899            | 0.007928   |

## Octadiene RCM in Chloroform

9.3 mM octadiene 7c (dataset 1) or 8.8 mM octadiene 7c (dataset 2); both using 0.1 mM pre-

catalyst 9. Analysis was by <sup>1</sup>H NMR at 400 MHz using a Bruker AV400 equipped with BBFO-

z-ATMA probe; the temperature was maintained at 298 K throughout.

Sample Spectra

(1) Before pre-catalyst addition



(2) Approx. 1 h after addition





Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010



Concentration/time data for the RCM of octadiene 7c with pre-catalyst 9 in CDCl<sub>3</sub> at 298 K

(AV400, BBFO-z-ATMA probe); 4 scans with  $D_1 = 35$  s; TE = 298 K; concentrations

obtained by integration of the appropriate signal and the internal standard (see above).

| t (s) | Diene (M) | Cyclohexene (M) | Ethene (M) |
|-------|-----------|-----------------|------------|
| 0     | 0.009325  | 0.000109        | 0.000040   |
| 332   | 0.007914  | 0.001409        | 0.001225   |
| 617   | 0.006562  | 0.002857        | 0.002595   |
| 901   | 0.005399  | 0.003989        | 0.003749   |
| 1186  | 0.004385  | 0.004983        | 0.004722   |
| 1471  | 0.003529  | 0.005788        | 0.005558   |
| 1755  | 0.002814  | 0.006512        | 0.006297   |
| 2040  | 0.002231  | 0.007106        | 0.006881   |
| 2324  | 0.001752  | 0.007576        | 0.007363   |
| 2609  | 0.001321  | 0.008005        | 0.007705   |
| 2893  | 0.001007  | 0.008318        | 0.007995   |
| 3178  | 0.000780  | 0.008521        | 0.008254   |
| 3468  | 0.000603  | 0.008733        | 0.008467   |
| 3747  | 0.000414  | 0.008901        | 0.008587   |
| 4031  | 0.000302  | 0.009025        | 0.008735   |
| 4316  | 0.000193  | 0.009116        | 0.008740   |
| 4601  | 0.000131  | 0.009164        | 0.008822   |
| 4885  | 0.000126  | 0.009209        | 0.008933   |
| 5170  | 0.000064  | 0.009265        | 0.008912   |
| 5455  | 0.000062  | 0.009288        | 0.008945   |
| 5739  | 0.000029  | 0.009296        | 0.008960   |
| 6024  | 0.000019  | 0.009315        | 0.008994   |
| 6308  | 0.000045  | 0.009265        | 0.008956   |
| 6593  | -0.000008 | 0.009329        | 0.008942   |
| 6878  | 0.000030  | 0.009351        | 0.008946   |
| 7162  | 0.000020  | 0.009355        | 0.008945   |
| 7447  | -0.000013 | 0.009355        | 0.008877   |
| 7732  | -0.000021 | 0.009372        | 0.008900   |
| 8016  | 0.000048  | 0.009318        | 0.008886   |
| 8301  | 0.000036  | 0.009335        | 0.008900   |
| 8585  | -0.000007 | 0.009399        | 0.008826   |
| 8870  | 0.000021  | 0.009329        | 0.008843   |
| 9155  | 0.000004  | 0.009370        | 0.008810   |
| 9439  | -0.000004 | 0.009365        | 0.008816   |
| 9724  | -0.000014 | 0.009339        | 0.008778   |
| 10009 | 0.000013  | 0.009330        | 0.008783   |
| 10293 | 0.000000  | 0.009372        | 0.008719   |

| 10578 | -0.000022 | 0.009384 | 0.008735 |
|-------|-----------|----------|----------|
| 10862 | -0.000031 | 0.009402 | 0.008669 |
| 11147 | -0.000002 | 0.009373 | 0.008669 |
| 11431 | 0.000005  | 0.009384 | 0.008635 |
| 11716 | -0.000012 | 0.009389 | 0.008611 |
| 12000 | -0.000001 | 0.009410 | 0.008580 |
| 12285 | 0.000007  | 0.009397 | 0.008582 |
| 12569 | 0.000004  | 0.009388 | 0.008551 |
| 12854 | -0.000002 | 0.009377 | 0.008533 |
| 13138 | 0.000017  | 0.009370 | 0.008503 |
| 13423 | 0.000007  | 0.009376 | 0.008464 |
| 13707 | 0.000009  | 0.009436 | 0.008463 |
| 13992 | -0.000003 | 0.009383 | 0.008438 |
| 14278 | -0.000004 | 0.009389 | 0.008405 |
| 34416 | 0.000023  | 0.009465 | 0.002364 |
| 73906 | 0.000005  | 0.009511 | 0.000384 |

Concentration/time data for the RCM of octadiene 7c with pre-catalyst 9 in CDCl<sub>3</sub> at 298 K

(AV400, BBFO-z-ATMA probe); 4 scans with  $D_1 = 35$  s; TE = 298 K; concentrations

obtained by integration of the appropriate signal and the internal standard (see above).

| t (s) | Diene (M) | Cyclohexene (M) | Ethene (M) |
|-------|-----------|-----------------|------------|
| 0     | 0.008844  | 0.000206        | 0.000061   |
| 285   | 0.007728  | 0.001271        | 0.000948   |
| 630   | 0.006140  | 0.002930        | 0.002262   |
| 915   | 0.004961  | 0.004134        | 0.003226   |
| 1200  | 0.003977  | 0.005099        | 0.003984   |
| 1484  | 0.003138  | 0.005982        | 0.004677   |
| 1769  | 0.002464  | 0.006638        | 0.005223   |
| 2053  | 0.001896  | 0.007202        | 0.005681   |
| 2338  | 0.001480  | 0.007673        | 0.006045   |
| 2622  | 0.001098  | 0.008028        | 0.006298   |
| 2907  | 0.000825  | 0.008299        | 0.006544   |
| 3191  | 0.000614  | 0.008543        | 0.006729   |
| 3476  | 0.000482  | 0.008682        | 0.006866   |
| 3760  | 0.000339  | 0.008809        | 0.006932   |
| 4045  | 0.000240  | 0.008897        | 0.007007   |
| 4329  | 0.000192  | 0.008971        | 0.007047   |
| 4614  | 0.000140  | 0.009025        | 0.007087   |
| 4898  | 0.000110  | 0.009014        | 0.007057   |
| 5183  | 0.000062  | 0.009031        | 0.007054   |

| 5468  | 0.000111  | 0.009056 | 0.007064 |
|-------|-----------|----------|----------|
| 5753  | 0.000029  | 0.009084 | 0.007035 |
| 6037  | 0.000017  | 0.009104 | 0.007024 |
| 6322  | 0.000068  | 0.009106 | 0.007039 |
| 6607  | 0.000024  | 0.009118 | 0.006985 |
| 6891  | 0.000056  | 0.009119 | 0.006996 |
| 7176  | 0.000052  | 0.009142 | 0.006992 |
| 7460  | 0.000024  | 0.009129 | 0.006955 |
| 9811  | -0.000011 | 0.009414 | 0.006997 |
| 10154 | 0.000008  | 0.009387 | 0.006897 |
| 11390 | 0.000023  | 0.009366 | 0.006135 |
| 86144 | 0.000015  | 0.009656 | 0.001627 |

### Octadiene RCM in Dichloromethane

10.1 mM octadiene 7c (dataset 1) or 10.3 mM octadiene 7c (dataset 2); both using 0.1 mM

pre-catalyst 9. Analysis was by <sup>1</sup>H NMR at 600 MHz using a Bruker AV600 equipped with

BBO-z-ATMA probe; the temperature was maintained at 298 K throughout.

Sample Spectra

(1) Before pre-catalyst addition



(2) Approx. 1 h after addition



(3) Signals used for quantification



Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010



Concentration/time data for the RCM of octadiene 7c with pre-catalyst 9 in CD<sub>2</sub>Cl<sub>2</sub> at 298 K

(AV600, BBO-z-ATMA probe); 4 scans with  $D_1 = 35$  s; TE = 298 K; concentrations obtained

by integration of the appropriate signal and the internal standard (see above).

| t (s) | Diene (M) | Cyclohexene (M) | Ethene (M) |
|-------|-----------|-----------------|------------|
| 0     | 0.010148  | 0.000004        | 0.000044   |
| 325   | 0.007012  | 0.003050        | 0.002870   |
| 648   | 0.004665  | 0.005476        | 0.005151   |
| 970   | 0.003078  | 0.007063        | 0.006668   |
| 1293  | 0.002033  | 0.008122        | 0.007633   |
| 1615  | 0.001356  | 0.008808        | 0.008311   |
| 1937  | 0.000894  | 0.009264        | 0.008754   |
| 2260  | 0.000607  | 0.009544        | 0.009077   |
| 2582  | 0.000440  | 0.009714        | 0.009172   |
| 2904  | 0.000284  | 0.009855        | 0.009419   |
| 3226  | 0.000212  | 0.009945        | 0.009475   |
| 3548  | 0.000173  | 0.010004        | 0.009476   |
| 3870  | 0.000119  | 0.009990        | 0.009461   |
| 4193  | 0.000109  | 0.010056        | 0.009403   |
| 4515  | 0.000109  | 0.010063        | 0.009468   |
| 4837  | 0.000049  | 0.010082        | 0.009481   |
| 5159  | 0.000064  | 0.010096        | 0.009434   |
| 5482  | 0.000072  | 0.010096        | 0.009333   |
| 5804  | 0.000049  | 0.010098        | 0.009347   |
| 6126  | 0.000063  | 0.010119        | 0.009355   |
| 6450  | 0.000044  | 0.010101        | 0.009219   |
| 6773  | 0.000039  | 0.010116        | 0.009270   |
| 7095  | 0.000035  | 0.010123        | 0.009196   |
| 7417  | 0.000052  | 0.010129        | 0.009148   |
| 7740  | 0.000029  | 0.010080        | 0.009164   |
| 8063  | 0.000049  | 0.010100        | 0.009098   |
| 8385  | 0.000038  | 0.010093        | 0.009090   |
| 8707  | 0.000051  | 0.010104        | 0.009022   |
| 9030  | 0.000059  | 0.010129        | 0.008927   |
| 9352  | 0.000062  | 0.010086        | 0.008908   |
| 9675  | 0.000049  | 0.010121        | 0.008881   |
| 9997  | 0.000046  | 0.010123        | 0.008737   |
| 10319 | 0.000031  | 0.010129        | 0.008674   |

Concentration/time data for the RCM of octadiene 7c with pre-catalyst 9 in CD<sub>2</sub>Cl<sub>2</sub> at 298 K

(AV600, BBO-z-ATMA probe); 4 scans with  $D_1 = 35$  s; TE = 298 K; concentrations obtained

by integration of the appropriate signal and the internal standard (see above).

| t (s) | Diene (M) | Cyclohexene (M) | Ethene (M) |
|-------|-----------|-----------------|------------|
| 0     | 0.010318  | 0.000023        | 0.000028   |
| 324   | 0.007448  | 0.002827        | 0.002681   |
| 648   | 0.004978  | 0.005366        | 0.005126   |
| 971   | 0.003325  | 0.006960        | 0.006695   |
| 1294  | 0.002241  | 0.008061        | 0.007791   |
| 1617  | 0.001480  | 0.008789        | 0.008549   |
| 1940  | 0.000979  | 0.009301        | 0.008979   |
| 2264  | 0.000674  | 0.009580        | 0.009250   |
| 2587  | 0.000455  | 0.009792        | 0.009486   |
| 2910  | 0.000316  | 0.009979        | 0.009623   |
| 3233  | 0.000217  | 0.010021        | 0.009668   |
| 3556  | 0.000164  | 0.010125        | 0.009742   |
| 3879  | 0.000074  | 0.010151        | 0.009811   |
| 4202  | 0.000082  | 0.010208        | 0.009752   |
| 4525  | 0.000088  | 0.010215        | 0.009717   |
| 4848  | 0.000075  | 0.010196        | 0.009759   |
| 5171  | 0.000036  | 0.010233        | 0.009734   |
| 5494  | 0.000042  | 0.010229        | 0.009737   |
| 5817  | 0.000039  | 0.010216        | 0.009730   |
| 6140  | 0.000025  | 0.010237        | 0.009647   |
| 6463  | 0.000004  | 0.010241        | 0.009677   |
| 6786  | 0.000036  | 0.010268        | 0.009674   |
| 7110  | 0.000055  | 0.010215        | 0.009548   |
| 7433  | 0.000024  | 0.010220        | 0.009550   |
| 7756  | 0.000049  | 0.010230        | 0.009511   |
| 8079  | 0.000016  | 0.010279        | 0.009475   |
| 8402  | 0.000028  | 0.010238        | 0.009411   |

### Nonadiene RCM in Chloroform

10.2 mM nonadiene **7d** (dataset 1) or 9.7 mM nonadiene **7d** (dataset 2); both using 0.1 mM pre-catalyst **9**. Analysis was by <sup>1</sup>H NMR at 600 MHz using a Brüker AV600 equipped with BBO-z-ATMA probe or 400 MHz using a Brüker AV400 equipped with BBFO-z-ATMA probe; the temperature was maintained at 298 K throughout.

Sample Spectra

(1) Before pre-catalyst addition



(2) Approx. 1 h after addition






Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

 Dataset 1 O Dataset 2 0.008 0.007 0 0.006 **Concentration /M** 0.005 0.004 0.003 0.002 0.001 0.000 2000 4000 6000 8000 10000 12000 14000 16000 0 Time/s Dataset 1 0.008 0.007 0.006 Concentration /M 0.005 0.004 0.003 0.002 0.001 0.000 0 2000 4000 6000 8000 16000 10000 12000 14000 Time /s o Dataset 2 0.008 0.007 0.006 Concentration /M 0.005 0 0.004 0 0.003 0 o 0.002 0 0.001 0 0 0.000

0

Concentration/time data for the RCM of nonadiene 7d with pre-catalyst 9 in CDCl<sub>3</sub> at 298 K (AV600, BBO-z-ATMA probe); 4 scans with  $D_1 = 35$  s; TE = 298 K; concentrations obtained by integration of the appropriate signal and the internal standard (see above).

### Dataset 1

| t (s) | Diene (M) | Cycloheptene (M) | Ethene (M) |
|-------|-----------|------------------|------------|
| 0     | 0.010177  | 0.000022         | 0.000000   |
| 354   | 0.009900  | 0.000168         | 0.000198   |
| 678   | 0.009479  | 0.000553         | 0.000610   |
| 1000  | 0.008867  | 0.001123         | 0.001225   |
| 1323  | 0.008130  | 0.001860         | 0.001975   |
| 1646  | 0.007318  | 0.002579         | 0.002766   |
| 1968  | 0.006618  | 0.003234         | 0.003476   |
| 2290  | 0.005958  | 0.003844         | 0.004110   |
| 2612  | 0.005419  | 0.004399         | 0.004650   |
| 2934  | 0.004927  | 0.004857         | 0.005117   |
| 3257  | 0.004525  | 0.005232         | 0.005520   |
| 3579  | 0.004181  | 0.005563         | 0.005855   |
| 3901  | 0.003862  | 0.005829         | 0.006165   |
| 4224  | 0.003591  | 0.006053         | 0.006430   |
| 4546  | 0.003371  | 0.006286         | 0.006617   |
| 4868  | 0.003212  | 0.006423         | 0.006801   |
| 5191  | 0.003027  | 0.006618         | 0.006969   |
| 5513  | 0.002907  | 0.006726         | 0.007105   |
| 5836  | 0.002784  | 0.006800         | 0.007186   |
| 6158  | 0.002708  | 0.006879         | 0.007280   |
| 6480  | 0.002652  | 0.006989         | 0.007358   |
| 6803  | 0.002539  | 0.007017         | 0.007414   |
| 7126  | 0.002480  | 0.007063         | 0.007471   |
| 7448  | 0.002439  | 0.007083         | 0.007491   |
| 7770  | 0.002413  | 0.007137         | 0.007528   |
| 8093  | 0.002386  | 0.007171         | 0.007547   |
| 8415  | 0.002335  | 0.007188         | 0.007576   |
| 8738  | 0.002316  | 0.007215         | 0.007580   |
| 9060  | 0.002294  | 0.007266         | 0.007597   |
| 9382  | 0.002251  | 0.007231         | 0.007599   |
| 9707  | 0.002273  | 0.007285         | 0.007611   |
| 10029 | 0.002231  | 0.007260         | 0.007580   |
| 10351 | 0.002226  | 0.007306         | 0.007584   |
| 10674 | 0.002230  | 0.007297         | 0.007595   |
| 10996 | 0.002184  | 0.007295         | 0.007569   |
| 11318 | 0.002182  | 0.007368         | 0.007556   |
| 11641 | 0.002150  | 0.007336         | 0.007527   |

| 11963 | 0.002172 | 0.007354 | 0.007528 |
|-------|----------|----------|----------|
| 12286 | 0.002180 | 0.007391 | 0.007550 |
| 12608 | 0.002136 | 0.007336 | 0.007506 |
| 12930 | 0.002127 | 0.007356 | 0.007469 |
| 13253 | 0.002137 | 0.007371 | 0.007429 |
| 13576 | 0.002104 | 0.007367 | 0.007392 |
| 13898 | 0.002119 | 0.007417 | 0.007388 |
| 14221 | 0.002118 | 0.007406 | 0.007378 |
| 14543 | 0.002108 | 0.007442 | 0.007364 |
| 14866 | 0.002084 | 0.007438 | 0.007311 |
| 15188 | 0.002088 | 0.007459 | 0.007281 |
| 15510 | 0.002086 | 0.007427 | 0.007267 |
| 15833 | 0.002066 | 0.007458 | 0.007247 |
| 16155 | 0.002059 | 0.007464 | 0.007219 |
| 16477 | 0.002059 | 0.007435 | 0.007154 |
| 16799 | 0.002051 | 0.007463 | 0.007163 |
| 17122 | 0.002029 | 0.007517 | 0.007116 |
| 17444 | 0.002036 | 0.007469 | 0.007070 |
| 17766 | 0.002017 | 0.007513 | 0.007085 |
| 18089 | 0.002030 | 0.007507 | 0.007017 |
| 18412 | 0.002012 | 0.007562 | 0.007021 |
| 18734 | 0.001990 | 0.007537 | 0.006953 |
| 19056 | 0.001993 | 0.007539 | 0.006968 |
| 19379 | 0.001982 | 0.007542 | 0.006922 |
| 19701 | 0.001961 | 0.007515 | 0.006881 |
| 20023 | 0.001986 | 0.007520 | 0.006860 |

Concentration/time data for the RCM of nonadiene 7d with pre-catalyst 9 in CDCl<sub>3</sub> at 298 K

(AV400, BBFO-z-ATMA probe); 4 scans with  $D_1 = 35$  s; TE = 298 K; concentrations

obtained by integration of the appropriate signal and the internal standard (see above).

Dataset 2

| <b>t</b> (c) | Diene      | Cycloheptene | Ethene       |
|--------------|------------|--------------|--------------|
| ι (8)        | <b>(M)</b> | ( <b>M</b> ) | ( <b>M</b> ) |
| 0            | 0.009717   | 0.000016     | 0.000018     |
| 298          | 0.009585   | 0.000086     | 0.000124     |
| 741          | 0.009196   | 0.000525     | 0.000514     |
| 1058         | 0.008715   | 0.000954     | 0.000962     |
| 1373         | 0.008127   | 0.001596     | 0.001535     |
| 1688         | 0.007456   | 0.002326     | 0.002186     |
| 2004         | 0.006811   | 0.002859     | 0.002768     |
| 2320         | 0.006186   | 0.003298     | 0.003285     |
| 2635         | 0.005682   | 0.003863     | 0.003770     |
| 2950         | 0.005270   | 0.004265     | 0.004193     |
| 3266         | 0.004881   | 0.004632     | 0.004578     |
| 3581         | 0.004492   | 0.004956     | 0.004860     |
| 3897         | 0.004208   | 0.005292     | 0.005121     |
| 4212         | 0.003921   | 0.005472     | 0.005347     |
| 4527         | 0.003675   | 0.005698     | 0.005554     |
| 4842         | 0.003489   | 0.005904     | 0.005714     |
| 5158         | 0.003335   | 0.006027     | 0.005886     |
| 5473         | 0.003159   | 0.006244     | 0.006002     |
| 5788         | 0.003037   | 0.006361     | 0.006107     |
| 6104         | 0.002939   | 0.006422     | 0.006213     |
| 6419         | 0.002810   | 0.006527     | 0.006281     |
| 6735         | 0.002724   | 0.006620     | 0.006349     |
| 7050         | 0.002672   | 0.006742     | 0.006415     |
| 7365         | 0.002550   | 0.006758     | 0.006417     |
| 7681         | 0.002508   | 0.006796     | 0.006465     |
| 7996         | 0.002488   | 0.006872     | 0.006492     |
| 8311         | 0.002407   | 0.006967     | 0.006489     |
| 8627         | 0.002355   | 0.006985     | 0.006495     |
| 8942         | 0.002298   | 0.007055     | 0.006493     |
| 9258         | 0.002278   | 0.007094     | 0.006487     |
| 9573         | 0.002221   | 0.007090     | 0.006479     |
| 9888         | 0.002199   | 0.007148     | 0.006455     |
| 10204        | 0.002207   | 0.007167     | 0.006479     |
| 10519        | 0.002138   | 0.007156     | 0.006442     |
| 10834        | 0.002110   | 0.007226     | 0.006445     |
| 11149        | 0.002128   | 0.007253     | 0.006425     |

| 11465 | 0.002094 | 0.007274 | 0.006411 |
|-------|----------|----------|----------|
| 11780 | 0.002077 | 0.007250 | 0.006372 |
| 12096 | 0.002026 | 0.007286 | 0.006343 |
| 12411 | 0.002011 | 0.007340 | 0.006308 |
| 12726 | 0.002013 | 0.007320 | 0.006281 |
| 13042 | 0.001944 | 0.007296 | 0.006254 |
| 13357 | 0.001973 | 0.007299 | 0.006208 |
| 13673 | 0.001954 | 0.007356 | 0.006208 |
| 13988 | 0.001957 | 0.007358 | 0.006178 |
| 14303 | 0.001966 | 0.007412 | 0.006142 |

## Nonadiene RCM in Dichloromethane

9.8 mM nonadiene 7d (dataset 1) or 9.9 mM nonadiene 7d (dataset 2); both using 0.1 mM pre-catalyst 9. Analysis was by <sup>1</sup>H NMR at 600 MHz using a Bruker AV600 equipped with BBO-z-ATMA probe; the temperature was maintained at 298 K throughout.

Sample Spectra (600 MHz)

(1) Before pre-catalyst addition







Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010



Concentration/time data for the RCM of nonadiene 7d with pre-catalyst 9 in CD<sub>2</sub>Cl<sub>2</sub> at 298 K

(AV600, BBO-z-ATMA probe); 4 scans with  $D_1 = 35$  s; TE = 298 K; concentrations obtained

by integration of the appropriate signal and the internal standard (see above).

Dataset 1

| t (s) | Diene<br>(M) | Cycloheptene<br>(M) | Ethene<br>(M) |
|-------|--------------|---------------------|---------------|
| 0     | 0 009774     | 0 000000            | 0 000012      |
| 334   | 0.009753     | 0.000000            | 0.000021      |
| 657   | 0.009704     | 0.000000            | 0.000036      |
| 981   | 0.009571     | 0.000181            | 0.000215      |
| 1305  | 0.009194     | 0.000525            | 0.000569      |
| 1627  | 0.008687     | 0.000989            | 0.001066      |
| 1950  | 0.008143     | 0.001496            | 0.001634      |
| 2272  | 0.007629     | 0.001995            | 0.002112      |
| 2595  | 0.007156     | 0.002436            | 0.002579      |
| 2917  | 0.006780     | 0.002819            | 0.002966      |
| 3239  | 0.006398     | 0.003103            | 0.003392      |
| 3562  | 0.006078     | 0.003433            | 0.003657      |
| 3884  | 0.005764     | 0.003714            | 0.003962      |
| 4207  | 0.005489     | 0.003957            | 0.004213      |
| 4529  | 0.005255     | 0.004210            | 0.004456      |
| 4851  | 0.005054     | 0.004386            | 0.004660      |
| 5173  | 0.004841     | 0.004580            | 0.004829      |
| 5496  | 0.004647     | 0.004766            | 0.005044      |
| 5818  | 0.004508     | 0.004885            | 0.005170      |
| 6141  | 0.004388     | 0.005044            | 0.005326      |
| 6463  | 0.004259     | 0.005151            | 0.005419      |
| 6785  | 0.004120     | 0.005300            | 0.005566      |
| 7108  | 0.004011     | 0.005402            | 0.005674      |
| 7430  | 0.003884     | 0.005461            | 0.005751      |
| 7752  | 0.003810     | 0.005563            | 0.005817      |
| 8074  | 0.003727     | 0.005632            | 0.005903      |
| 8397  | 0.003659     | 0.005697            | 0.005971      |
| 8719  | 0.003573     | 0.005777            | 0.006027      |
| 9044  | 0.003487     | 0.005824            | 0.006096      |
| 9367  | 0.003452     | 0.005914            | 0.006112      |
| 9689  | 0.003376     | 0.005930            | 0.006159      |
| 10012 | 0.003366     | 0.005988            | 0.006223      |
| 10334 | 0.003287     | 0.006007            | 0.006255      |
| 10656 | 0.003243     | 0.006068            | 0.006305      |
| 10979 | 0.003191     | 0.006143            | 0.006327      |
| 11302 | 0.003174     | 0.006183            | 0.006360      |
| 11625 | 0.003140     | 0.006218            | 0.006352      |

| 11947 | 0.003072 | 0.006228 | 0.006375 |
|-------|----------|----------|----------|
| 12269 | 0.003081 | 0.006259 | 0.006361 |
| 12592 | 0.003031 | 0.006300 | 0.006398 |
| 12914 | 0.002981 | 0.006307 | 0.006425 |
| 13237 | 0.002991 | 0.006312 | 0.006433 |
| 13559 | 0.002953 | 0.006339 | 0.006412 |
| 13882 | 0.002919 | 0.006386 | 0.006442 |
| 14204 | 0.002880 | 0.006381 | 0.006470 |
| 14526 | 0.002875 | 0.006410 | 0.006458 |

Concentration/time data for the RCM of nonadiene 7d with pre-catalyst 9 in CD<sub>2</sub>Cl<sub>2</sub> at 298 K

(AV600, BBO-z-ATMA probe); 4 scans with  $D_1 = 35$  s; TE = 298 K; concentrations obtained

by integration of the appropriate signal and the internal standard (see above).

Dataset 2

| t (s) | Diene<br>(M) | Cycloheptene<br>(M) | Ethene<br>(M) |
|-------|--------------|---------------------|---------------|
| 0     | 0.009887     | 0.000000            | 0.000037      |
| 330   | 0.009804     | 0.000000            | 0.000072      |
| 653   | 0.009806     | 0.000006            | 0.000086      |
| 976   | 0.009594     | 0.000178            | 0.000287      |
| 1298  | 0.009139     | 0.000613            | 0.000716      |
| 1620  | 0.008634     | 0.001088            | 0.001205      |
| 1943  | 0.008090     | 0.001605            | 0.001791      |
| 2265  | 0.007557     | 0.002078            | 0.002267      |
| 2588  | 0.007039     | 0.002526            | 0.002751      |
| 2911  | 0.006683     | 0.002899            | 0.003141      |
| 3234  | 0.006334     | 0.003245            | 0.003499      |
| 3557  | 0.006000     | 0.003555            | 0.003792      |
| 3879  | 0.005710     | 0.003814            | 0.004070      |
| 4201  | 0.005424     | 0.004064            | 0.004318      |
| 4524  | 0.005223     | 0.004255            | 0.004552      |
| 4847  | 0.005014     | 0.004461            | 0.004774      |
| 5170  | 0.004820     | 0.004599            | 0.004926      |
| 5492  | 0.004643     | 0.004827            | 0.005133      |
| 5815  | 0.004484     | 0.004948            | 0.005273      |
| 6137  | 0.004314     | 0.005104            | 0.005421      |
| 6459  | 0.004208     | 0.005184            | 0.005516      |
| 6781  | 0.004074     | 0.005324            | 0.005617      |
| 7104  | 0.004010     | 0.005424            | 0.005709      |
| 7426  | 0.003880     | 0.005491            | 0.005788      |
| 7748  | 0.003824     | 0.005558            | 0.005852      |
| 8070  | 0.003686     | 0.005640            | 0.005952      |
| 8392  | 0.003637     | 0.005750            | 0.006020      |
| 8715  | 0.003623     | 0.005777            | 0.005987      |
| 9037  | 0.003541     | 0.005832            | 0.006060      |
| 9362  | 0.003471     | 0.005901            | 0.006209      |
| 9685  | 0.003412     | 0.005948            | 0.006222      |
| 10007 | 0.003340     | 0.006006            | 0.006251      |
| 10329 | 0.003299     | 0.006053            | 0.006282      |
| 10652 | 0.003254     | 0.006113            | 0.006308      |
| 10974 | 0.003201     | 0.006121            | 0.006358      |
| 11296 | 0.003196     | 0.006152            | 0.006322      |
| 11619 | 0.003154     | 0.006175            | 0.006377      |

| 11941 | 0.003105 | 0.006215 | 0.006361 |
|-------|----------|----------|----------|
| 12263 | 0.003103 | 0.006235 | 0.006374 |
| 12585 | 0.003013 | 0.006277 | 0.006413 |

## Attempted Hexadiene Metathesis in Chloroform

8.7 mM hexadiene 7a, 0.1 mM pre-catalyst 9. Analysis was by <sup>1</sup>H NMR at 400 MHz using a

Brüker AV400 equipped with BBFO-z-ATMA probe; the temperature was maintained at 298

K throughout.



## Hexadiene Metathesis, Concentrated Solution in Chloroform

252.6 mM hexadiene **7a**, 4.7 mM pre-catalyst **9**. Analysis by <sup>1</sup>H NMR at 400 MHz using a

Brüker AV400 equipped with BBFO-z-ATMA probe; the sample was analysed periodically at

298K and stored on an auto-sampler carousel in a temperature controlled room 294 K when

analysis was not being performed.

(1) Before pre-catalyst addition



(2) Approx 8 h after addition



(3) Approx. 8 h after addition (continued)



## Heptadiene/Octadiene Competition RCM in Chloroform

4.4 mM heptadiene 7b and 4.5 mM octadiene 7c (dataset 1) and 4.5 mM heptadiene 7b and

4.6 mM octadiene 7c; both with 0.1 mM pre-catalyst 9. Analysis by <sup>1</sup>H NMR at 400 MHz

using a Brüker AV400 equipped with BBFO-z-ATMA probe; the sample temperature was

maintained at 298K throughout.

2) Approx. 1 h after addition





(3) Signals used for quantification





Concentration/time data for the RCM of heptadiene 7**b** and octadiene 7**c** with pre-catalyst 9 in CDCl<sub>3</sub> at 298 K (AV400, BBFO-z-ATMA probe); 4 scans with  $D_1 = 35$  s; TE = 298 K; concentrations obtained by integration of the appropriate signal and the internal standard (see above), with the exception of heptadiene which was calculated from [diene]-[octadiene].

Dataset 1

| t (s) | Cyclohexene (M) | Octadiene (M) | Cyclopentene (M) | Heptadiene (M) |
|-------|-----------------|---------------|------------------|----------------|
| 0     | 0.000085        | 0.004503      | 0.000047         | 0.004389       |
| 311   | 0.000537        | 0.004061      | 0.000313         | 0.004244       |
| 606   | 0.001297        | 0.003327      | 0.000641         | 0.003899       |
| 901   | 0.001978        | 0.002671      | 0.000992         | 0.003547       |
| 1196  | 0.002599        | 0.002085      | 0.001293         | 0.003241       |
| 1491  | 0.003034        | 0.001654      | 0.001648         | 0.002864       |
| 1786  | 0.003387        | 0.001299      | 0.002022         | 0.002492       |
| 2080  | 0.003749        | 0.000951      | 0.002299         | 0.002221       |
| 2375  | 0.003959        | 0.000740      | 0.002576         | 0.001923       |
| 2670  | 0.004133        | 0.000575      | 0.002889         | 0.001626       |
| 2965  | 0.004257        | 0.000459      | 0.003118         | 0.001379       |
| 3259  | 0.004368        | 0.000375      | 0.003380         | 0.001117       |
| 3554  | 0.004386        | 0.000322      | 0.003568         | 0.000943       |
| 3849  | 0.004491        | 0.000238      | 0.003730         | 0.000808       |
| 4144  | 0.004524        | 0.000208      | 0.003884         | 0.000644       |
| 4439  | 0.004555        | 0.000192      | 0.004005         | 0.000505       |
| 4733  | 0.004510        | 0.000156      | 0.004081         | 0.000450       |
| 5028  | 0.004564        | 0.000184      | 0.004202         | 0.000311       |
| 5323  | 0.004553        | 0.000165      | 0.004228         | 0.000233       |
| 5618  | 0.004574        | 0.000152      | 0.004336         | 0.000205       |
| 5913  | 0.004588        | 0.000135      | 0.004361         | 0.000167       |
| 6207  | 0.004574        | 0.000141      | 0.004390         | 0.000139       |

Concentration/time data for the RCM of heptadiene 7**b** and octadiene 7**c** with pre-catalyst 9 in CDCl<sub>3</sub> at 298 K (AV400, BBFO-z-ATMA probe); 4 scans with  $D_1 = 35$  s; TE = 298 K; concentrations obtained by integration of the appropriate signal and the internal standard (see above), with the exception of heptadiene which was calculated from [diene]-[octadiene].

| Dataset | 2 |
|---------|---|
|---------|---|

| t (s) | Cyclohexene (M) | Octadiene (M) | Cyclopentene (M) | Heptadiene (M) |
|-------|-----------------|---------------|------------------|----------------|
| 0     | 0.000084        | 0.004642      | 0.000073         | 0.004456       |
| 319   | 0.000554        | 0.004158      | 0.000305         | 0.004154       |
| 614   | 0.001284        | 0.003438      | 0.000629         | 0.003855       |
| 908   | 0.001953        | 0.002774      | 0.000973         | 0.003515       |
| 1203  | 0.002505        | 0.002210      | 0.001257         | 0.003188       |
| 1498  | 0.002984        | 0.001734      | 0.001612         | 0.002871       |
| 1793  | 0.003322        | 0.001416      | 0.001965         | 0.002524       |
| 2088  | 0.003617        | 0.001094      | 0.002200         | 0.002225       |
| 2382  | 0.003840        | 0.000903      | 0.002550         | 0.001913       |
| 2677  | 0.004078        | 0.000668      | 0.002777         | 0.001723       |
| 2971  | 0.004216        | 0.000564      | 0.003042         | 0.001419       |
| 3265  | 0.004318        | 0.000430      | 0.003271         | 0.001232       |
| 3560  | 0.004401        | 0.000341      | 0.003437         | 0.001087       |
| 3855  | 0.004466        | 0.000322      | 0.003627         | 0.000858       |
| 4149  | 0.004499        | 0.000275      | 0.003777         | 0.000719       |
| 4444  | 0.004508        | 0.000256      | 0.003876         | 0.000583       |
| 4739  | 0.004560        | 0.000205      | 0.003980         | 0.000486       |
| 5033  | 0.004568        | 0.000197      | 0.004104         | 0.000391       |
| 5328  | 0.004582        | 0.000201      | 0.004188         | 0.000340       |
| 5622  | 0.004589        | 0.000164      | 0.004196         | 0.000253       |
| 5917  | 0.004623        | 0.000151      | 0.004287         | 0.000208       |
| 6212  | 0.004605        | 0.000143      | 0.004319         | 0.000199       |

## Inhibited Octadiene RCM in Chloroform

5.7 mM hexadiene **7a** and 5.0 mM octadiene **7c** with 0.1 mM pre-catalyst **9**. Analysis by  ${}^{1}H$ 

NMR at 400 MHz using a Brüker AV400 equipped with BBFO-z-ATMA probe; the sample

temperature was maintained at 298K throughout.



(1) Before pre-catalyst addition







Concentration/time data for the RCM of octadiene 7c with pre-catalyst 9 in the presence of

hexadiene 7a, in  $CDCl_3$  at 298 K (AV400, BBFO-z-ATMA probe); 4 scans with  $D_1 = 35$  s; TE

= 298 K; concentrations obtained by integration of the appropriate signal and the internal

| t (s) | Cyclohexene (M) | Octadiene<br>(M) | Hexadiene (M) |
|-------|-----------------|------------------|---------------|
| 0     | 0.000023        | 0.005038         | 0.005702      |
| 292   | 0.000405        | 0.004847         | 0.005766      |
| 608   | 0.000980        | 0.004260         | 0.005716      |
| 924   | 0.001497        | 0.003763         | 0.005746      |
| 1239  | 0.001905        | 0.003328         | 0.005701      |
| 1555  | 0.002309        | 0.002945         | 0.005720      |
| 1870  | 0.002625        | 0.002584         | 0.005733      |
| 2186  | 0.002907        | 0.002362         | 0.005685      |
| 2501  | 0.003158        | 0.002086         | 0.005680      |
| 2817  | 0.003362        | 0.001891         | 0.005674      |
| 3133  | 0.003532        | 0.001701         | 0.005689      |
| 3448  | 0.003691        | 0.001557         | 0.005680      |
| 3763  | 0.003824        | 0.001423         | 0.005654      |
| 4078  | 0.003955        | 0.001314         | 0.005661      |
| 4394  | 0.004051        | 0.001199         | 0.005670      |
| 4709  | 0.004170        | 0.001071         | 0.005682      |
| 5024  | 0.004234        | 0.001007         | 0.005665      |
| 5340  | 0.004296        | 0.000958         | 0.005644      |
| 5655  | 0.004380        | 0.000872         | 0.005690      |
| 5971  | 0.004422        | 0.000838         | 0.005650      |
| 6286  | 0.004493        | 0.000762         | 0.005667      |
| 6602  | 0.004547        | 0.000687         | 0.005722      |
| 6917  | 0.004570        | 0.000693         | 0.005646      |
| 7233  | 0.004604        | 0.000694         | 0.005643      |
| 7548  | 0.004613        | 0.000648         | 0.005632      |
| 7863  | 0.004653        | 0.000597         | 0.005635      |
| 8179  | 0.004678        | 0.000589         | 0.005611      |
| 8494  | 0.004707        | 0.000548         | 0.005622      |
| 8810  | 0.004706        | 0.000543         | 0.005607      |
| 9125  | 0.004770        | 0.000517         | 0.005634      |
| 9440  | 0.004773        | 0.000527         | 0.005613      |
| 9756  | 0.004778        | 0.000497         | 0.005630      |
| 10071 | 0.004789        | 0.000390         | 0.005676      |
| 10387 | 0.004821        | 0.000486         | 0.005626      |
| 10702 | 0.004840        | 0.000445         | 0.005631      |
| 11018 | 0.004832        | 0.000453         | 0.005609      |

# Coordinates (Å) and Energies (au)

## Hexadiene-derived 14e Propagating Carbene 10a

Energy: -2135.863489

| 1  | 6  | 0 | -3.545370 | -0.853234 | 0.949496  |
|----|----|---|-----------|-----------|-----------|
| 2  | 6  | 0 | -2.762773 | -0.820096 | -0.215486 |
| 3  | 6  | 0 | -3.169154 | -0.102841 | -1.353495 |
| 4  | 6  | 0 | -4.319791 | 0.675244  | -1.259204 |
| 5  | 6  | 0 | -5.078271 | 0.730527  | -0.091225 |
| 6  | 6  | 0 | -4.688851 | -0.057990 | 0.989323  |
| 7  | 7  | 0 | -1.548730 | -1.575551 | -0.262100 |
| 8  | 6  | 0 | -0.311979 | -1.025756 | -0.083429 |
| 9  | 7  | 0 | 0.598490  | -1.970012 | -0.435257 |
| 10 | 6  | 0 | -0.022071 | -3.254545 | -0.773027 |
| 11 | 6  | 0 | -1.496000 | -2.891229 | -0.896510 |
| 12 | 6  | 0 | 2.011858  | -1.871220 | -0.295516 |
| 13 | 6  | 0 | 2.607544  | -2.227189 | 0.920117  |
| 14 | 6  | 0 | 3.992801  | -2.108750 | 1.027218  |
| 15 | 6  | 0 | 4.775229  | -1.641812 | -0.029407 |
| 16 | 6  | 0 | 4.139940  | -1.277563 | -1.217169 |
| 17 | 6  | 0 | 2.758986  | -1.383060 | -1.373651 |
| 18 | 6  | 0 | 1.765788  | -2.616937 | 2.095761  |
| 19 | 6  | 0 | 2.078342  | -0.915112 | -2.621414 |
| 20 | 6  | 0 | 6.264686  | -1.545362 | 0.101205  |
| 21 | 44 | 0 | -0.104742 | 0.777264  | 0.558672  |
| 22 | 6  | 0 | 2.794002  | 5.358062  | -0.679551 |
| 23 | 6  | 0 | 3.267184  | 4.392721  | 0.102010  |
| 24 | 6  | 0 | -2.454656 | -0.215927 | -2.666244 |
| 25 | 6  | 0 | -6.276733 | 1.623544  | 0.004155  |
| 26 | 6  | 0 | -3.221335 | -1.753736 | 2.101408  |
| 27 | 17 | 0 | -0.368329 | 1.951248  | -1.448337 |
| 28 | 17 | 0 | -0.820896 | 0.387487  | 2.740124  |
| 29 | 1  | 0 | 3.908516  | 4.652769  | 0.945397  |
| 30 | 1  | 0 | 3.036555  | 6.402072  | -0.513497 |
| 31 | 1  | 0 | -2.158773 | -3.593623 | -0.381967 |

| 32 | 1 | 0 | -1.824485 | -2.823562 | -1.942449 |
|----|---|---|-----------|-----------|-----------|
| 33 | 1 | 0 | 0.162709  | -3.988312 | 0.022303  |
| 34 | 1 | 0 | 0.405293  | -3.654651 | -1.697337 |
| 35 | 1 | 0 | 4.470460  | -2.369502 | 1.969143  |
| 36 | 1 | 0 | 4.733483  | -0.890076 | -2.042436 |
| 37 | 1 | 0 | -4.629979 | 1.254698  | -2.125558 |
| 38 | 1 | 0 | -5.291438 | -0.056454 | 1.894748  |
| 39 | 1 | 0 | -3.911260 | -2.605937 | 2.118017  |
| 40 | 1 | 0 | -3.324898 | -1.229729 | 3.053298  |
| 41 | 1 | 0 | -2.202838 | -2.138763 | 2.052361  |
| 42 | 1 | 0 | -1.402620 | -0.482626 | -2.557169 |
| 43 | 1 | 0 | -2.488595 | 0.727201  | -3.213295 |
| 44 | 1 | 0 | -2.935968 | -0.977399 | -3.292658 |
| 45 | 1 | 0 | 1.135197  | -3.487194 | 1.888560  |
| 46 | 1 | 0 | 1.089806  | -1.800887 | 2.379437  |
| 47 | 1 | 0 | 2.384549  | -2.857498 | 2.961315  |
| 48 | 1 | 0 | 1.486221  | -0.012003 | -2.428456 |
| 49 | 1 | 0 | 1.381929  | -1.661885 | -3.015254 |
| 50 | 1 | 0 | 2.802695  | -0.682402 | -3.403609 |
| 51 | 1 | 0 | -7.049237 | 1.197696  | 0.648594  |
| 52 | 1 | 0 | -6.717694 | 1.815987  | -0.976080 |
| 53 | 1 | 0 | -6.005029 | 2.594920  | 0.430945  |
| 54 | 1 | 0 | 6.573631  | -1.444228 | 1.143616  |
| 55 | 1 | 0 | 6.664725  | -0.695333 | -0.456354 |
| 56 | 1 | 0 | 6.753660  | -2.442673 | -0.293395 |
| 57 | 1 | 0 | 2.138367  | 5.132878  | -1.516991 |
| 58 | 6 | 0 | 2.942837  | 2.945574  | -0.062272 |
| 59 | 1 | 0 | 3.860706  | 2.344303  | -0.103455 |
| 60 | 1 | 0 | 2.411409  | 2.785711  | -1.006723 |
| 61 | 6 | 0 | 2.066651  | 2.411825  | 1.090498  |
| 62 | 1 | 0 | 2.610879  | 2.466342  | 2.044831  |
| 63 | 1 | 0 | 1.188216  | 3.065000  | 1.200720  |
| 64 | 6 | 0 | 1.666360  | 1.003860  | 0.808402  |
| 65 | 1 | 0 | 2.470271  | 0.263538  | 0.749637  |

# Hexadiene-derived $\eta^2$ -complex 11a

Energy: -2135.880350

| 1  | 6  | 0 | -3.024457 | -1.352089 | 0.923278  |
|----|----|---|-----------|-----------|-----------|
| 2  | 6  | 0 | -2.266880 | -1.370406 | -0.260861 |
| 3  | 6  | 0 | -2.833211 | -1.013137 | -1.497770 |
| 4  | 6  | 0 | -4.116312 | -0.471386 | -1.494999 |
| 5  | 6  | 0 | -4.851507 | -0.323607 | -0.319570 |
| 6  | 6  | 0 | -4.303974 | -0.802597 | 0.869309  |
| 7  | 7  | 0 | -0.902234 | -1.798520 | -0.211291 |
| 8  | 6  | 0 | 0.137849  | -0.937310 | -0.084261 |
| 9  | 7  | 0 | 1.266375  | -1.671256 | -0.132892 |
| 10 | 6  | 0 | 1.013775  | -3.117058 | -0.239372 |
| 11 | 6  | 0 | -0.494228 | -3.183888 | -0.450583 |
| 12 | 6  | 0 | 2.607440  | -1.196148 | -0.045560 |
| 13 | 6  | 0 | 3.216609  | -1.096935 | 1.210153  |
| 14 | 6  | 0 | 4.531147  | -0.634562 | 1.260408  |
| 15 | 6  | 0 | 5.228517  | -0.274975 | 0.107223  |
| 16 | 6  | 0 | 4.579122  | -0.376557 | -1.123989 |
| 17 | 6  | 0 | 3.267690  | -0.836175 | -1.226399 |
| 18 | 6  | 0 | 2.442705  | -1.395065 | 2.455824  |
| 19 | 6  | 0 | 2.549384  | -0.883742 | -2.538130 |
| 20 | 6  | 0 | 6.650253  | 0.192097  | 0.183713  |
| 21 | 44 | 0 | -0.368036 | 1.033793  | 0.158085  |
| 22 | 6  | 0 | -1.901597 | 2.741760  | 0.188570  |
| 23 | 6  | 0 | -0.766304 | 3.302444  | 0.706437  |
| 24 | 6  | 0 | -2.140211 | -1.287497 | -2.796535 |
| 25 | 6  | 0 | -6.196056 | 0.335193  | -0.334322 |
| 26 | 6  | 0 | -2.528784 | -1.978561 | 2.189775  |
| 27 | 17 | 0 | -0.499234 | 1.381460  | -2.233728 |
| 28 | 17 | 0 | -0.793723 | 0.674481  | 2.481119  |
| 29 | 1  | 0 | -0.642264 | 3.298860  | 1.789158  |
| 30 | 1  | 0 | -2.673710 | 2.361813  | 0.854848  |
| 31 | 1  | 0 | -0.997695 | -3.858989 | 0.248587  |
| 32 | 1  | 0 | -0.768009 | -3.489968 | -1.468467 |
| 33 | 1  | 0 | 1.337835  | -3.621879 | 0.678933  |

| 34 | 1 | 0 | 1.587510  | -3.542167 | -1.068526 |
|----|---|---|-----------|-----------|-----------|
| 35 | 1 | 0 | 5.017527  | -0.541264 | 2.228768  |
| 36 | 1 | 0 | 5.104535  | -0.081961 | -2.029789 |
| 37 | 1 | 0 | -4.552234 | -0.159819 | -2.441527 |
| 38 | 1 | 0 | -4.888296 | -0.751430 | 1.785216  |
| 39 | 1 | 0 | -2.958953 | -2.982373 | 2.296045  |
| 40 | 1 | 0 | -2.825069 | -1.397024 | 3.063688  |
| 41 | 1 | 0 | -1.442554 | -2.064525 | 2.214503  |
| 42 | 1 | 0 | -1.055559 | -1.324146 | -2.697335 |
| 43 | 1 | 0 | -2.366075 | -0.517662 | -3.535291 |
| 44 | 1 | 0 | -2.483450 | -2.248492 | -3.200264 |
| 45 | 1 | 0 | 1.998632  | -2.395668 | 2.437157  |
| 46 | 1 | 0 | 1.609737  | -0.692293 | 2.581236  |
| 47 | 1 | 0 | 3.077629  | -1.329662 | 3.340652  |
| 48 | 1 | 0 | 1.698650  | -0.190949 | -2.547258 |
| 49 | 1 | 0 | 2.141201  | -1.879051 | -2.745260 |
| 50 | 1 | 0 | 3.213386  | -0.618416 | -3.362216 |
| 51 | 1 | 0 | -6.829426 | -0.017524 | 0.482463  |
| 52 | 1 | 0 | -6.722919 | 0.162108  | -1.275443 |
| 53 | 1 | 0 | -6.098447 | 1.420232  | -0.218947 |
| 54 | 1 | 0 | 6.885735  | 0.613237  | 1.163253  |
| 55 | 1 | 0 | 6.868225  | 0.949212  | -0.572980 |
| 56 | 1 | 0 | 7.346499  | -0.636292 | 0.013850  |
| 57 | 1 | 0 | -2.163241 | 2.859054  | -0.858691 |
| 58 | 6 | 0 | 0.308747  | 3.972365  | -0.082389 |
| 59 | 1 | 0 | 0.431270  | 5.019527  | 0.216412  |
| 60 | 1 | 0 | 0.061815  | 3.948974  | -1.147189 |
| 61 | 6 | 0 | 1.598388  | 3.187458  | 0.171603  |
| 62 | 1 | 0 | 2.374983  | 3.380796  | -0.583562 |
| 63 | 1 | 0 | 2.053248  | 3.479085  | 1.133461  |
| 64 | 6 | 0 | 1.313244  | 1.734567  | 0.251987  |
| 65 | 1 | 0 | 2.186507  | 1.087335  | 0.385431  |

# Heptadiene-derived 14e Propagating Carbene 10b

Energy: -2175.155185

| 1  | 44 | 0 | -0.508283 | -0.337861 | -0.934876 |
|----|----|---|-----------|-----------|-----------|
| 2  | 17 | 0 | 0.137242  | -0.561593 | -3.160840 |
| 3  | 17 | 0 | -0.997090 | -1.378879 | 1.103750  |
| 4  | 6  | 0 | -3.260865 | -0.035170 | -1.337601 |
| 5  | 1  | 0 | -3.700474 | 0.276651  | -2.297403 |
| 6  | 6  | 0 | -5.562271 | -0.467498 | -0.334774 |
| 7  | 1  | 0 | -6.048709 | -0.179464 | -1.274949 |
| 8  | 6  | 0 | -4.230060 | 0.266034  | -0.188921 |
| 9  | 1  | 0 | -4.405176 | 1.348569  | -0.137078 |
| 10 | 1  | 0 | -3.751311 | -0.013282 | 0.758067  |
| 11 | 1  | 0 | -3.104024 | -1.121749 | -1.411229 |
| 12 | 6  | 0 | 0.869997  | 0.854128  | -0.312187 |
| 13 | 7  | 0 | 0.896582  | 2.204164  | -0.147484 |
| 14 | 7  | 0 | 2.101778  | 0.383970  | 0.038241  |
| 15 | 6  | 0 | 2.154058  | 2.672578  | 0.444231  |
| 16 | 1  | 0 | 2.534404  | 3.542409  | -0.099355 |
| 17 | 1  | 0 | 1.991345  | 2.979166  | 1.486152  |
| 18 | 6  | 0 | 3.056086  | 1.450603  | 0.331327  |
| 19 | 1  | 0 | 3.787083  | 1.542583  | -0.483270 |
| 20 | 1  | 0 | 3.607299  | 1.235008  | 1.251928  |
| 21 | 6  | 0 | 2.515943  | -0.973926 | -0.130870 |
| 22 | 6  | 0 | 3.232976  | -3.647777 | -0.473086 |
| 23 | 6  | 0 | 2.432469  | -1.849457 | 0.963409  |
| 24 | 6  | 0 | 3.041431  | -1.389002 | -1.366133 |
| 25 | 6  | 0 | 3.376357  | -2.732659 | -1.514495 |
| 26 | 6  | 0 | 2.782449  | -3.182619 | 0.760310  |
| 27 | 1  | 0 | 3.761967  | -3.071501 | -2.473284 |
| 28 | 1  | 0 | 2.698914  | -3.876708 | 1.593560  |
| 29 | 6  | 0 | -0.235847 | 3.069433  | -0.176047 |
| 30 | 6  | 0 | -2.484842 | 4.709334  | -0.280347 |

| 31 | 6 | 0 | -0.494087 | 3.791991  | -1.344641 |
|----|---|---|-----------|-----------|-----------|
| 32 | 6 | 0 | -1.077971 | 3.137519  | 0.941577  |
| 33 | 6 | 0 | -2.195265 | 3.965642  | 0.865129  |
| 34 | 6 | 0 | -1.624470 | 4.609586  | -1.372697 |
| 35 | 1 | 0 | -2.868034 | 4.017303  | 1.718494  |
| 36 | 1 | 0 | -1.846518 | 5.169278  | -2.278395 |
| 37 | 6 | 0 | 0.371941  | 3.608596  | -2.551690 |
| 38 | 1 | 0 | 1.426463  | 3.806999  | -2.336424 |
| 39 | 1 | 0 | 0.065033  | 4.269504  | -3.363734 |
| 40 | 1 | 0 | 0.318384  | 2.575448  | -2.914780 |
| 41 | 6 | 0 | -0.840251 | 2.274049  | 2.140209  |
| 42 | 1 | 0 | -1.000649 | 1.216811  | 1.896768  |
| 43 | 1 | 0 | -1.516696 | 2.537408  | 2.954978  |
| 44 | 1 | 0 | 0.183603  | 2.353320  | 2.518530  |
| 45 | 6 | 0 | 3.319059  | -0.421156 | -2.475792 |
| 46 | 1 | 0 | 4.361324  | -0.081957 | -2.427789 |
| 47 | 1 | 0 | 2.673327  | 0.457342  | -2.443440 |
| 48 | 1 | 0 | 3.172819  | -0.888442 | -3.450477 |
| 49 | 6 | 0 | 2.045727  | -1.377771 | 2.331434  |
| 50 | 1 | 0 | 1.483981  | -0.444120 | 2.307668  |
| 51 | 1 | 0 | 2.942895  | -1.220248 | 2.942753  |
| 52 | 1 | 0 | 1.427618  | -2.117587 | 2.842861  |
| 53 | 6 | 0 | -3.692155 | 5.595668  | -0.325924 |
| 54 | 1 | 0 | -3.919629 | 5.916735  | -1.344003 |
| 55 | 1 | 0 | -3.543815 | 6.497888  | 0.276607  |
| 56 | 1 | 0 | -4.575560 | 5.091327  | 0.074932  |
| 57 | 6 | 0 | 3.545350  | -5.098080 | -0.678312 |
| 58 | 1 | 0 | 2.665180  | -5.638872 | -1.042060 |
| 59 | 1 | 0 | 3.855795  | -5.580531 | 0.251061  |
| 60 | 1 | 0 | 4.335886  | -5.241453 | -1.418125 |
| 61 | 6 | 0 | -1.976788 | 0.691421  | -1.124494 |
| 62 | 1 | 0 | -2.043501 | 1.783282  | -1.097600 |
| 63 | 6 | 0 | -6.481752 | -0.213319 | 0.812189  |
| 64 | 1 | 0 | -6.108459 | -0.514500 | 1.792171  |

| 65 | 6 | 0 | -7.679200 | 0.356423  | 0.724400  |
|----|---|---|-----------|-----------|-----------|
| 66 | 1 | 0 | -8.087720 | 0.673453  | -0.231989 |
| 67 | 1 | 0 | -8.301358 | 0.522947  | 1.597083  |
| 68 | 1 | 0 | -5.357795 | -1.544817 | -0.409451 |

# Heptadiene-derived $\eta^2$ -complex 11b

Energy: -2175.173473

| 1  | 44 | 0 | -0.408964 | -0.741531 | 0.206990  |
|----|----|---|-----------|-----------|-----------|
| 2  | 17 | 0 | -0.627399 | -1.180287 | -2.177652 |
| 3  | 17 | 0 | -0.132200 | -0.674073 | 2.612525  |
| 4  | 6  | 0 | -3.125543 | 0.252607  | -0.535740 |
| 5  | 1  | 0 | -3.668682 | 1.202650  | -0.448819 |
| 6  | 6  | 0 | -3.346511 | -2.251860 | -0.195688 |
| 7  | 1  | 0 | -4.069315 | -3.037986 | 0.065839  |
| 8  | 1  | 0 | -3.031379 | -2.440121 | -1.227817 |
| 9  | 6  | 0 | -4.043640 | -0.900867 | -0.085362 |
| 10 | 1  | 0 | -4.951875 | -0.891507 | -0.696016 |
| 11 | 1  | 0 | -4.363247 | -0.733477 | 0.951572  |
| 12 | 1  | 0 | -2.851146 | 0.096852  | -1.583587 |
| 13 | 6  | 0 | 0.951564  | 0.714575  | 0.030324  |
| 14 | 7  | 0 | 0.872074  | 2.056086  | -0.081398 |
| 15 | 7  | 0 | 2.262698  | 0.377804  | 0.078577  |
| 16 | 6  | 0 | 2.194065  | 2.696024  | -0.000637 |
| 17 | 1  | 0 | 2.300098  | 3.457389  | -0.777964 |
| 18 | 1  | 0 | 2.316262  | 3.187871  | 0.972299  |
| 19 | 6  | 0 | 3.146282  | 1.517026  | -0.173822 |
| 20 | 1  | 0 | 3.562717  | 1.461409  | -1.188888 |
| 21 | 1  | 0 | 3.979587  | 1.528998  | 0.534470  |
| 22 | 6  | 0 | 2.667476  | -0.993659 | 0.003129  |
| 23 | 6  | 0 | 3.243646  | -3.719360 | -0.130648 |
| 24 | 6  | 0 | 2.999286  | -1.678679 | 1.183148  |
| 25 | 6  | 0 | 2.721793  | -1.621918 | -1.254714 |
| 26 | 6  | 0 | 2.993876  | -2.986705 | -1.291008 |
| 27 | 6  | 0 | 3.268722  | -3.044409 | 1.087499  |
| 28 | 1  | 0 | 3.011808  | -3.488849 | -2.255684 |
| 29 | 1  | 0 | 3.506628  | -3.593046 | 1.996107  |
| 30 | 6  | 0 | -0.329188 | 2.824515  | -0.131897 |
| 31 | 6  | 0 | -2.673738 | 4.326593  | -0.259300 |

| 32 | 6 | 0 | -0.935065 | 3.037082  | -1.378712 |
|----|---|---|-----------|-----------|-----------|
| 33 | 6 | 0 | -0.860993 | 3.355914  | 1.049998  |
| 34 | 6 | 0 | -2.034670 | 4.103565  | 0.959309  |
| 35 | 6 | 0 | -2.106450 | 3.789950  | -1.415299 |
| 36 | 1 | 0 | -2.465665 | 4.512799  | 1.870265  |
| 37 | 1 | 0 | -2.589893 | 3.958445  | -2.375200 |
| 38 | 6 | 0 | -0.354431 | 2.445209  | -2.622961 |
| 39 | 1 | 0 | 0.711002  | 2.676992  | -2.725467 |
| 40 | 1 | 0 | -0.866736 | 2.818884  | -3.511251 |
| 41 | 1 | 0 | -0.438585 | 1.351487  | -2.617871 |
| 42 | 6 | 0 | -0.219236 | 3.079769  | 2.373340  |
| 43 | 1 | 0 | -0.040608 | 2.007185  | 2.516589  |
| 44 | 1 | 0 | -0.848794 | 3.428280  | 3.193630  |
| 45 | 1 | 0 | 0.748141  | 3.584344  | 2.472062  |
| 46 | 6 | 0 | 2.582789  | -0.848814 | -2.529661 |
| 47 | 1 | 0 | 3.563861  | -0.474442 | -2.848682 |
| 48 | 1 | 0 | 1.906198  | 0.001170  | -2.436305 |
| 49 | 1 | 0 | 2.192145  | -1.478185 | -3.329707 |
| 50 | 6 | 0 | 3.143819  | -0.974292 | 2.495715  |
| 51 | 1 | 0 | 2.607581  | -0.026366 | 2.517418  |
| 52 | 1 | 0 | 4.204457  | -0.780358 | 2.697810  |
| 53 | 1 | 0 | 2.758427  | -1.581625 | 3.316324  |
| 54 | 6 | 0 | -3.956911 | 5.097300  | -0.327287 |
| 55 | 1 | 0 | -4.816037 | 4.424434  | -0.425549 |
| 56 | 1 | 0 | -3.981155 | 5.765945  | -1.191298 |
| 57 | 1 | 0 | -4.116994 | 5.697419  | 0.570432  |
| 58 | 6 | 0 | 3.469931  | -5.198582 | -0.194384 |
| 59 | 1 | 0 | 2.516775  | -5.738156 | -0.213822 |
| 60 | 1 | 0 | 4.027167  | -5.560791 | 0.671944  |
| 61 | 1 | 0 | 4.015332  | -5.486795 | -1.095992 |
| 62 | 6 | 0 | -0.986396 | -2.970382 | 0.388626  |
| 63 | 1 | 0 | -0.269449 | -3.229540 | 1.165560  |
| 64 | 1 | 0 | -0.827023 | -3.372267 | -0.608430 |
| 65 | 6 | 0 | -2.180326 | -2.396249 | 0.724465  |

| 66 | 1 | 0 | -2.344370 | -2.135051 | 1.770888 |
|----|---|---|-----------|-----------|----------|
| 67 | 6 | 0 | -1.913021 | 0.295528  | 0.323504 |
| 68 | 1 | 0 | -1.993979 | 0.942194  | 1.213862 |

# Octadiene-derived 14e Propagating Carbene 10c

## Energy: -2214.44627021

| 1  | 44 | 0 | 1.447375  | 1.978688  | -0.238018 |
|----|----|---|-----------|-----------|-----------|
| 2  | 17 | 0 | 0.932421  | 0.574984  | 1.560570  |
| 3  | 17 | 0 | 2.261567  | 2.204467  | -2.409467 |
| 4  | 6  | 0 | -1.260388 | 2.094739  | -0.854193 |
| 5  | 1  | 0 | -1.657438 | 2.549660  | -1.774717 |
| 6  | 1  | 0 | -0.955410 | 1.073249  | -1.130093 |
| 7  | 6  | 0 | -4.638496 | 1.127001  | 0.860150  |
| 8  | 1  | 0 | -4.196192 | 0.740105  | 1.789181  |
| 9  | 1  | 0 | -4.994354 | 2.139244  | 1.089171  |
| 10 | 6  | 0 | -2.352213 | 2.028559  | 0.219296  |
| 11 | 1  | 0 | -1.915557 | 1.620387  | 1.139756  |
| 12 | 1  | 0 | -2.677927 | 3.049641  | 0.461166  |
| 13 | 6  | 0 | -3.545887 | 1.188335  | -0.205562 |
| 14 | 1  | 0 | -3.969815 | 1.583789  | -1.137887 |
| 15 | 1  | 0 | -3.207864 | 0.170218  | -0.439989 |
| 16 | 6  | 0 | 2.666503  | 3.143804  | 0.691082  |
| 17 | 7  | 0 | 2.570179  | 4.451845  | 1.047500  |
| 18 | 7  | 0 | 3.892341  | 2.705488  | 1.102608  |
| 19 | 6  | 0 | 3.725614  | 4.907335  | 1.827155  |
| 20 | 1  | 0 | 4.078211  | 5.876196  | 1.461562  |
| 21 | 1  | 0 | 3.446564  | 5.033265  | 2.881888  |
| 22 | 6  | 0 | 4.731687  | 3.783112  | 1.622677  |
| 23 | 1  | 0 | 5.508449  | 4.046249  | 0.892229  |
| 24 | 1  | 0 | 5.229979  | 3.475391  | 2.546871  |
| 25 | 6  | 0 | 4.435975  | 1.430587  | 0.750680  |
| 26 | 6  | 0 | 5.403116  | -1.084992 | 0.034524  |
| 27 | 6  | 0 | 4.361829  | 0.380999  | 1.679306  |
| 28 | 6  | 0 | 5.073772  | 1.270849  | -0.491229 |
| 29 | 6  | 0 | 5.529945  | -0.000258 | -0.831428 |
| 30 | 6  | 0 | 4.840577  | -0.868199 | 1.290596  |
| 31 | 1  | 0 | 6.002333  | -0.142917 | -1.800567 |
| 32 | 1  | 0 | 4.765897  | -1.696462 | 1.991413  |
| 33 | 6  | 0 | 1.384615  | 5.241069  | 1.019028  |
| 34 | 6  | 0 | -0.935852 | 6.778698  | 0.933062  |
| 35 | 6  | 0 | 1.178554  | 6.097085  | -0.067948 |
| 36 | 6 | 0 | 0.449327  | 5.114812  | 2.053509  |
|----|---|---|-----------|-----------|-----------|
| 37 | 6 | 0 | -0.702044 | 5.898188  | 1.989606  |
| 38 | 6 | 0 | 0.011220  | 6.858747  | -0.088933 |
| 39 | 1 | 0 | -1.444051 | 5.805132  | 2.779604  |
| 40 | 1 | 0 | -0.169353 | 7.520344  | -0.933280 |
| 41 | 6 | 0 | 2.148663  | 6.113182  | -1.207631 |
| 42 | 1 | 0 | 3.171876  | 6.314798  | -0.875153 |
| 43 | 1 | 0 | 1.879516  | 6.868650  | -1.947355 |
| 44 | 1 | 0 | 2.172397  | 5.137912  | -1.708726 |
| 45 | 6 | 0 | 0.633458  | 4.099005  | 3.137529  |
| 46 | 1 | 0 | 0.561556  | 3.080731  | 2.735589  |
| 47 | 1 | 0 | -0.126081 | 4.208310  | 3.913127  |
| 48 | 1 | 0 | 1.613739  | 4.170982  | 3.618585  |
| 49 | 6 | 0 | 5.347560  | 2.430421  | -1.400007 |
| 50 | 1 | 0 | 6.349153  | 2.832771  | -1.203184 |
| 51 | 1 | 0 | 4.626492  | 3.240992  | -1.286288 |
| 52 | 1 | 0 | 5.318403  | 2.124349  | -2.446453 |
| 53 | 6 | 0 | 3.844556  | 0.588283  | 3.069619  |
| 54 | 1 | 0 | 3.164975  | 1.437833  | 3.137322  |
| 55 | 1 | 0 | 4.678154  | 0.760162  | 3.761764  |
| 56 | 1 | 0 | 3.303677  | -0.291477 | 3.422374  |
| 57 | 6 | 0 | -2.167621 | 7.631308  | 0.902437  |
| 58 | 1 | 0 | -2.494371 | 7.832654  | -0.120148 |
| 59 | 1 | 0 | -1.985733 | 8.602140  | 1.376006  |
| 60 | 1 | 0 | -2.996357 | 7.164415  | 1.438682  |
| 61 | 6 | 0 | 5.851343  | -2.452721 | -0.379611 |
| 62 | 1 | 0 | 5.064569  | -2.967215 | -0.941299 |
| 63 | 1 | 0 | 6.091411  | -3.077880 | 0.482804  |
| 64 | 1 | 0 | 6.729962  | -2.412431 | -1.027418 |
| 65 | 6 | 0 | -7.048832 | 0.676633  | 0.336864  |
| 66 | 1 | 0 | -7.844692 | 0.005914  | 0.031880  |
| 67 | 1 | 0 | -7.332057 | 1.705991  | 0.542292  |
| 68 | 6 | 0 | -5.790590 | 0.266967  | 0.459666  |
| 69 | 1 | 0 | -5.550124 | -0.774156 | 0.238777  |
| 70 | 6 | 0 | -0.099001 | 2.894920  | -0.370013 |
| 71 | 1 | 0 | -0.295997 | 3.943212  | -0.126119 |

## Octadiene-derived $\eta^2$ -complex 11c

## Energy: -2214.4567771

| 1  | 44 | 0 | -0.238614 | -0.791504 | -0.114933 |
|----|----|---|-----------|-----------|-----------|
| 2  | 17 | 0 | 0.054953  | -1.451097 | 2.203568  |
| 3  | 17 | 0 | -0.508643 | -0.472410 | -2.509704 |
| 4  | 6  | 0 | -3.079571 | 0.252244  | -0.459654 |
| 5  | 1  | 0 | -3.357011 | 1.292785  | -0.236058 |
| 6  | 1  | 0 | -2.932478 | 0.172501  | -1.539589 |
| 7  | 6  | 0 | -2.945786 | -2.607167 | -1.193269 |
| 8  | 1  | 0 | -3.146842 | -3.605700 | -1.604397 |
| 9  | 1  | 0 | -2.555294 | -2.028677 | -2.039533 |
| 10 | 6  | 0 | -4.193876 | -0.687802 | 0.042457  |
| 11 | 1  | 0 | -4.043654 | -0.857178 | 1.116791  |
| 12 | 1  | 0 | -5.161774 | -0.183890 | -0.037665 |
| 13 | 6  | 0 | -4.269319 | -2.026650 | -0.696760 |
| 14 | 1  | 0 | -4.773757 | -2.756539 | -0.052272 |
| 15 | 1  | 0 | -4.915892 | -1.913023 | -1.573929 |
| 16 | 6  | 0 | 0.940549  | 0.815623  | -0.039360 |
| 17 | 7  | 0 | 0.686770  | 2.143036  | -0.061018 |
| 18 | 7  | 0 | 2.280486  | 0.649957  | -0.119017 |
| 19 | 6  | 0 | 1.923763  | 2.936121  | 0.000742  |
| 20 | 1  | 0 | 1.880454  | 3.775638  | -0.697730 |
| 21 | 1  | 0 | 2.058413  | 3.345769  | 1.011480  |
| 22 | 6  | 0 | 2.990441  | 1.908523  | -0.354499 |
| 23 | 1  | 0 | 3.305140  | 1.975968  | -1.404894 |
| 24 | 1  | 0 | 3.883991  | 1.977367  | 0.271330  |
| 25 | 6  | 0 | 2.899136  | -0.639949 | -0.111972 |
| 26 | 6  | 0 | 3.983242  | -3.205477 | 0.001542  |
| 27 | 6  | 0 | 3.346986  | -1.141388 | 1.124398  |
| 28 | 6  | 0 | 3.062843  | -1.359859 | -1.303288 |
| 29 | 6  | 0 | 3.591282  | -2.652073 | -1.211705 |
| 30 | 6  | 0 | 3.875658  | -2.424069 | 1.156345  |
| 31 | 1  | 0 | 3.709671  | -3.231130 | -2.125191 |
| 32 | 1  | 0 | 4.205369  | -2.831257 | 2.109231  |
| 33 | 6  | 0 | -0.580385 | 2.752360  | 0.182905  |
| 34 | 6  | 0 | -3.035311 | 3.985008  | 0.659238  |
| 35 | 6  | 0 | -1.283401 | 3.305124  | -0.894458 |

| 36 | 6 | 0 | -1.069010 | 2.812741  | 1.496840  |
|----|---|---|-----------|-----------|-----------|
| 37 | 6 | 0 | -2.304327 | 3.422123  | 1.706780  |
| 38 | 6 | 0 | -2.507124 | 3.919869  | -0.629409 |
| 39 | 1 | 0 | -2.701007 | 3.465688  | 2.718846  |
| 40 | 1 | 0 | -3.067448 | 4.348796  | -1.457246 |
| 41 | 6 | 0 | -0.754420 | 3.197588  | -2.288780 |
| 42 | 1 | 0 | 0.255470  | 3.611257  | -2.377890 |
| 43 | 1 | 0 | -1.394865 | 3.729921  | -2.994077 |
| 44 | 1 | 0 | -0.690617 | 2.148471  | -2.599218 |
| 45 | 6 | 0 | -0.297094 | 2.214521  | 2.630676  |
| 46 | 1 | 0 | -0.208660 | 1.125298  | 2.535360  |
| 47 | 1 | 0 | -0.776433 | 2.428000  | 3.587453  |
| 48 | 1 | 0 | 0.725079  | 2.605100  | 2.677195  |
| 49 | 6 | 0 | 2.785738  | -0.765880 | -2.649774 |
| 50 | 1 | 0 | 3.732179  | -0.542177 | -3.156021 |
| 51 | 1 | 0 | 2.196263  | 0.148409  | -2.599177 |
| 52 | 1 | 0 | 2.229617  | -1.457257 | -3.286120 |
| 53 | 6 | 0 | 3.264731  | -0.302897 | 2.360635  |
| 54 | 1 | 0 | 2.231765  | -0.018272 | 2.574064  |
| 55 | 1 | 0 | 3.852829  | 0.616745  | 2.260524  |
| 56 | 1 | 0 | 3.643905  | -0.847186 | 3.226862  |
| 57 | 6 | 0 | -4.344080 | 4.665487  | 0.922811  |
| 58 | 1 | 0 | -4.932217 | 4.779677  | 0.010149  |
| 59 | 1 | 0 | -4.191218 | 5.667571  | 1.337438  |
| 60 | 1 | 0 | -4.947155 | 4.113675  | 1.648276  |
| 61 | 6 | 0 | 4.511978  | -4.604699 | 0.079583  |
| 62 | 1 | 0 | 3.787890  | -5.272024 | 0.558329  |
| 63 | 1 | 0 | 5.427360  | -4.656844 | 0.675136  |
| 64 | 1 | 0 | 4.728303  | -5.011600 | -0.909880 |
| 65 | 6 | 0 | -0.556385 | -3.030571 | -0.542353 |
| 66 | 1 | 0 | 0.152865  | -3.377491 | 0.205426  |
| 67 | 1 | 0 | -0.292463 | -3.137889 | -1.592430 |
| 68 | 6 | 0 | -1.847717 | -2.756561 | -0.186233 |
| 69 | 1 | 0 | -2.106052 | -2.797794 | 0.872720  |
| 70 | 6 | 0 | -1.841620 | -0.026188 | 0.316721  |
| 71 | 1 | 0 | -1.983144 | 0.174962  | 1.396508  |

## Metallocyclobutane 12b from heptadiene

Energy: -2175.171237 au

| 1  | 44 | 0 | -0.057572 | 0.782994  | 0.141920  |
|----|----|---|-----------|-----------|-----------|
| 2  | 17 | 0 | -0.886641 | 0.494102  | 2.400702  |
| 3  | 17 | 0 | 0.613455  | 1.141175  | -2.166701 |
| 4  | 6  | 0 | -1.141214 | 2.438952  | 0.087749  |
| 5  | 1  | 0 | -1.361913 | 2.782863  | -0.924787 |
| 6  | 1  | 0 | -1.973980 | 2.464203  | 0.789550  |
| 7  | 6  | 0 | 1.379806  | 1.828665  | 0.909777  |
| 8  | 1  | 0 | 1.471694  | 1.655268  | 1.987216  |
| 9  | 6  | 0 | 0.193557  | 2.948979  | 0.636143  |
| 10 | 1  | 0 | -0.000460 | 3.280261  | 1.661283  |
| 11 | 6  | 0 | 2.628367  | 2.336824  | 0.220679  |
| 12 | 1  | 0 | 2.745084  | 1.876269  | -0.763435 |
| 13 | 1  | 0 | 3.514435  | 2.093000  | 0.813987  |
| 14 | 6  | 0 | 0.915953  | 3.960704  | -0.253627 |
| 15 | 1  | 0 | 0.744320  | 3.690316  | -1.299464 |
| 16 | 1  | 0 | 0.509660  | 4.963837  | -0.095964 |
| 17 | 6  | 0 | 2.397472  | 3.844863  | 0.081482  |
| 18 | 1  | 0 | 3.042591  | 4.305668  | -0.671517 |
| 19 | 1  | 0 | 2.607203  | 4.342845  | 1.036627  |
| 20 | 6  | 0 | -0.277674 | -1.190186 | -0.272772 |
| 21 | 7  | 0 | -1.438226 | -1.831011 | -0.462122 |
| 22 | 7  | 0 | 0.738686  | -2.051839 | -0.419098 |
| 23 | 6  | 0 | -1.240969 | -3.248576 | -0.800534 |
| 24 | 1  | 0 | -1.799568 | -3.882793 | -0.106181 |
| 25 | 1  | 0 | -1.613838 | -3.448801 | -1.811365 |
| 26 | 6  | 0 | 0.275632  | -3.421539 | -0.678272 |
| 27 | 1  | 0 | 0.565893  | -4.081793 | 0.147426  |
| 28 | 1  | 0 | 0.734465  | -3.808967 | -1.592860 |
| 29 | 6  | 0 | 2.116318  | -1.672650 | -0.343347 |
| 30 | 6  | 0 | 4.752008  | -0.789828 | -0.185001 |
| 31 | 6  | 0 | 2.836695  | -1.473571 | -1.528467 |
| 32 | 6  | 0 | 2.698721  | -1.496568 | 0.920580  |
| 33 | 6  | 0 | 4.016300  | -1.047071 | 0.971235  |
| 34 | 6  | 0 | 4.152530  | -1.027340 | -1.420081 |

| 35 | 1 | 0 | 4.479721  | -0.896317 | 1.943855  |
|----|---|---|-----------|-----------|-----------|
| 36 | 1 | 0 | 4.718066  | -0.843622 | -2.330868 |
| 37 | 6 | 0 | -2.721425 | -1.242305 | -0.223253 |
| 38 | 6 | 0 | -5.159344 | -0.004105 | 0.298660  |
| 39 | 6 | 0 | -3.339327 | -1.454220 | 1.018444  |
| 40 | 6 | 0 | -3.311632 | -0.461308 | -1.224326 |
| 41 | 6 | 0 | -4.530411 | 0.153328  | -0.933517 |
| 42 | 6 | 0 | -4.554894 | -0.821616 | 1.254385  |
| 43 | 1 | 0 | -5.000216 | 0.769022  | -1.697246 |
| 44 | 1 | 0 | -5.033309 | -0.954465 | 2.222028  |
| 45 | 6 | 0 | -2.719918 | -2.331735 | 2.061846  |
| 46 | 1 | 0 | -3.065125 | -2.051002 | 3.057897  |
| 47 | 1 | 0 | -1.630377 | -2.252224 | 2.065808  |
| 48 | 1 | 0 | -2.988386 | -3.384492 | 1.907958  |
| 49 | 6 | 0 | -2.667676 | -0.284093 | -2.564105 |
| 50 | 1 | 0 | -3.385171 | 0.104707  | -3.288758 |
| 51 | 1 | 0 | -2.271170 | -1.226218 | -2.954255 |
| 52 | 1 | 0 | -1.818170 | 0.406736  | -2.530185 |
| 53 | 6 | 0 | 1.935171  | -1.784186 | 2.175640  |
| 54 | 1 | 0 | 1.448562  | -2.764160 | 2.135817  |
| 55 | 1 | 0 | 1.140858  | -1.051459 | 2.357742  |
| 56 | 1 | 0 | 2.598448  | -1.777368 | 3.042171  |
| 57 | 6 | 0 | 2.233103  | -1.742618 | -2.871677 |
| 58 | 1 | 0 | 1.155667  | -1.568365 | -2.876368 |
| 59 | 1 | 0 | 2.419589  | -2.777472 | -3.184913 |
| 60 | 1 | 0 | 2.667309  | -1.090069 | -3.630595 |
| 61 | 6 | 0 | -6.452631 | 0.688740  | 0.601854  |
| 62 | 1 | 0 | -7.209070 | -0.012475 | 0.965449  |
| 63 | 1 | 0 | -6.857201 | 1.193242  | -0.277452 |
| 64 | 1 | 0 | -6.321660 | 1.442854  | 1.384219  |
| 65 | 6 | 0 | 6.141209  | -0.236842 | -0.099919 |
| 66 | 1 | 0 | 6.657548  | -0.572838 | 0.802120  |
| 67 | 1 | 0 | 6.121418  | 0.858660  | -0.068499 |
| 68 | 1 | 0 | 6.745455  | -0.519889 | -0.964261 |

## Metallocyclobutane fragmentation transition structure 13b from heptadiene

| 1  | 44 | 0 | 0.148615  | 0.711667  | 0.255523  |
|----|----|---|-----------|-----------|-----------|
| 2  | 17 | 0 | -0.449634 | 0.290168  | 2.573759  |
| 3  | 17 | 0 | 0.731699  | 1.153416  | -2.065504 |
| 4  | 6  | 0 | -1.247738 | 1.887007  | 0.145282  |
| 5  | 1  | 0 | -1.399093 | 2.498713  | -0.754714 |
| 6  | 1  | 0 | -1.987145 | 1.990610  | 0.950598  |
| 7  | 6  | 0 | 1.659144  | 2.091891  | 0.987264  |
| 8  | 1  | 0 | 1.994687  | 1.458359  | 1.808977  |
| 9  | 6  | 0 | 0.506551  | 2.893014  | 1.143923  |
| 10 | 1  | 0 | -0.073124 | 2.853518  | 2.060503  |
| 11 | 6  | 0 | 2.641409  | 2.758600  | 0.056351  |
| 12 | 1  | 0 | 3.073348  | 2.074296  | -0.679199 |
| 13 | 1  | 0 | 3.473055  | 3.139567  | 0.667312  |
| 14 | 6  | 0 | 0.666724  | 4.164962  | 0.347466  |
| 15 | 1  | 0 | -0.236327 | 4.500437  | -0.167748 |
| 16 | 1  | 0 | 0.907306  | 4.948942  | 1.079558  |
| 17 | 6  | 0 | 1.847741  | 3.900858  | -0.594355 |
| 18 | 1  | 0 | 1.479138  | 3.571781  | -1.566112 |
| 19 | 1  | 0 | 2.454725  | 4.795100  | -0.754125 |
| 20 | 6  | 0 | -0.321122 | -1.184994 | -0.277898 |
| 21 | 7  | 0 | -1.501117 | -1.816088 | -0.386354 |
| 22 | 7  | 0 | 0.663970  | -2.058945 | -0.563463 |
| 23 | 6  | 0 | -1.333960 | -3.180356 | -0.915756 |
| 24 | 1  | 0 | -1.963066 | -3.886982 | -0.369456 |
| 25 | 1  | 0 | -1.632240 | -3.208811 | -1.971858 |
| 26 | 6  | 0 | 0.159447  | -3.425307 | -0.727155 |
| 27 | 1  | 0 | 0.377213  | -4.017905 | 0.172156  |
| 28 | 1  | 0 | 0.628415  | -3.917408 | -1.582817 |
| 29 | 6  | 0 | 2.037779  | -1.690949 | -0.408789 |
| 30 | 6  | 0 | 4.638124  | -0.722144 | -0.128038 |
| 31 | 6  | 0 | 2.797197  | -1.427742 | -1.561771 |
| 32 | 6  | 0 | 2.581403  | -1.562615 | 0.879251  |
| 33 | 6  | 0 | 3.879219  | -1.053121 | 0.988827  |
| 34 | 6  | 0 | 4.088933  | -0.942912 | -1.393554 |
| 35 | 1  | 0 | 4.307370  | -0.930625 | 1.981480  |
| 36 | 1  | 0 | 4.678085  | -0.709562 | -2.277430 |
| 37 | 6  | 0 | -2.785376 | -1.208821 | -0.219312 |

Energy: -2175.149707 au

| 38 | 6 | 0 | -5.272413 | -0.012261 | 0.147964  |
|----|---|---|-----------|-----------|-----------|
| 39 | 6 | 0 | -3.472490 | -1.427604 | 0.981641  |
| 40 | 6 | 0 | -3.324354 | -0.436751 | -1.255380 |
| 41 | 6 | 0 | -4.569452 | 0.156596  | -1.042707 |
| 42 | 6 | 0 | -4.713313 | -0.816082 | 1.141885  |
| 43 | 1 | 0 | -5.002418 | 0.761033  | -1.836851 |
| 44 | 1 | 0 | -5.255465 | -0.969285 | 2.072345  |
| 45 | 6 | 0 | -2.881438 | -2.275502 | 2.063001  |
| 46 | 1 | 0 | -3.579900 | -2.393374 | 2.893041  |
| 47 | 1 | 0 | -1.965943 | -1.817985 | 2.451703  |
| 48 | 1 | 0 | -2.621417 | -3.277186 | 1.704083  |
| 49 | 6 | 0 | -2.590533 | -0.247738 | -2.545339 |
| 50 | 1 | 0 | -3.222677 | 0.247522  | -3.284505 |
| 51 | 1 | 0 | -2.265852 | -1.201936 | -2.973510 |
| 52 | 1 | 0 | -1.682400 | 0.352344  | -2.420032 |
| 53 | 6 | 0 | 1.875329  | -2.049334 | 2.108808  |
| 54 | 1 | 0 | 2.291310  | -3.018563 | 2.408853  |
| 55 | 1 | 0 | 0.800367  | -2.166031 | 1.975261  |
| 56 | 1 | 0 | 2.009447  | -1.363395 | 2.947496  |
| 57 | 6 | 0 | 2.249788  | -1.681166 | -2.930757 |
| 58 | 1 | 0 | 1.171206  | -1.524296 | -2.970719 |
| 59 | 1 | 0 | 2.460577  | -2.710523 | -3.246896 |
| 60 | 1 | 0 | 2.706034  | -1.013743 | -3.663013 |
| 61 | 6 | 0 | -6.594322 | 0.659902  | 0.363860  |
| 62 | 1 | 0 | -6.488518 | 1.539799  | 1.007222  |
| 63 | 1 | 0 | -7.310130 | -0.004723 | 0.854212  |
| 64 | 1 | 0 | -7.034716 | 0.996931  | -0.576568 |
| 65 | 6 | 0 | 6.005684  | -0.128352 | 0.016978  |
| 66 | 1 | 0 | 6.420933  | -0.306705 | 1.010685  |
| 67 | 1 | 0 | 5.979182  | 0.956405  | -0.134564 |
| 68 | 1 | 0 | 6.702929  | -0.532690 | -0.720754 |

## Metallocyclobutane 12c from octadiene

Energy: -2214.462541 au

1 44 0 0.045934 0.672910 -0.092661

| 2  | 17 | 0 | 0.810124  | 0.446981  | -2.388788 |
|----|----|---|-----------|-----------|-----------|
| 3  | 17 | 0 | -0.612906 | 0.997309  | 2.210462  |
| 4  | 6  | 0 | 1.104751  | 2.316188  | -0.028251 |
| 5  | 1  | 0 | 1.929370  | 2.372360  | -0.738749 |
| 6  | 1  | 0 | 1.321651  | 2.679006  | 0.979204  |
| 7  | 6  | 0 | -1.420502 | 1.743474  | -0.820207 |
| 8  | 1  | 0 | -1.532570 | 1.574831  | -1.897809 |
| 9  | 6  | 0 | -0.250427 | 2.839794  | -0.591279 |
| 10 | 1  | 0 | -0.019589 | 3.135520  | -1.620169 |
| 11 | 6  | 0 | -2.719449 | 2.079573  | -0.140028 |
| 12 | 1  | 0 | -3.462666 | 1.324775  | -0.415890 |
| 13 | 1  | 0 | -2.619805 | 2.047650  | 0.946592  |
| 14 | 6  | 0 | -0.818823 | 3.968250  | 0.268652  |
| 15 | 1  | 0 | -0.979590 | 3.579841  | 1.280150  |
| 16 | 1  | 0 | -0.064605 | 4.756219  | 0.357838  |
| 17 | 6  | 0 | -3.171274 | 3.467374  | -0.608093 |
| 18 | 1  | 0 | -3.376752 | 3.427771  | -1.684176 |
| 19 | 6  | 0 | -2.108089 | 4.543170  | -0.313112 |
| 20 | 1  | 0 | -1.868494 | 5.093619  | -1.230183 |
| 21 | 6  | 0 | 0.403582  | -1.300527 | 0.152384  |
| 22 | 7  | 0 | 1.611404  | -1.885456 | 0.150018  |
| 23 | 7  | 0 | -0.545384 | -2.249004 | 0.202240  |
| 24 | 6  | 0 | 1.506611  | -3.340696 | 0.337740  |
| 25 | 1  | 0 | 2.175414  | -3.866346 | -0.347397 |
| 26 | 1  | 0 | 1.791817  | -3.605564 | 1.365041  |
| 27 | 6  | 0 | 0.030908  | -3.593787 | 0.053570  |
| 28 | 1  | 0 | -0.140734 | -3.962448 | -0.966154 |
| 29 | 1  | 0 | -0.434198 | -4.293492 | 0.751674  |
| 30 | 6  | 0 | -1.949651 | -1.980630 | 0.277712  |
| 31 | 6  | 0 | -4.660277 | -1.384087 | 0.492212  |
| 32 | 6  | 0 | -2.546808 | -1.975955 | 1.545734  |
| 33 | 6  | 0 | -2.683672 | -1.740564 | -0.892012 |
| 34 | 6  | 0 | -4.038745 | -1.440815 | -0.754203 |
| 35 | 6  | 0 | -3.902273 | -1.669158 | 1.626880  |
| 36 | 1  | 0 | -4.621408 | -1.239068 | -1.650657 |
| 37 | 1  | 0 | -4.374685 | -1.641162 | 2.605997  |
| 38 | 6  | 0 | 2.849108  | -1.170016 | 0.128916  |
| 39 | 6  | 0 | 5.195392  | 0.332056  | 0.027184  |

| 40 | 6 | 0 | 3.606456  | -1.166188 | -1.054361 |
|----|---|---|-----------|-----------|-----------|
| 41 | 6 | 0 | 3.272333  | -0.491466 | 1.279457  |
| 42 | 6 | 0 | 4.445542  | 0.261162  | 1.196410  |
| 43 | 6 | 0 | 4.767460  | -0.402209 | -1.080840 |
| 44 | 1 | 0 | 4.782122  | 0.799915  | 2.079487  |
| 45 | 1 | 0 | 5.350472  | -0.370751 | -1.998569 |
| 46 | 6 | 0 | 3.199223  | -1.970699 | -2.249530 |
| 47 | 1 | 0 | 2.114638  | -2.058678 | -2.331637 |
| 48 | 1 | 0 | 3.626705  | -2.980469 | -2.206883 |
| 49 | 1 | 0 | 3.557532  | -1.507210 | -3.169994 |
| 50 | 6 | 0 | 2.521468  | -0.557494 | 2.573066  |
| 51 | 1 | 0 | 1.907095  | -1.457150 | 2.654592  |
| 52 | 1 | 0 | 1.835482  | 0.287147  | 2.693452  |
| 53 | 1 | 0 | 3.215069  | -0.541513 | 3.417000  |
| 54 | 6 | 0 | -2.049044 | -1.821930 | -2.245924 |
| 55 | 1 | 0 | -2.701123 | -1.389627 | -3.007194 |
| 56 | 1 | 0 | -1.865991 | -2.863644 | -2.534131 |
| 57 | 1 | 0 | -1.090045 | -1.297106 | -2.295971 |
| 58 | 6 | 0 | -1.744148 | -2.274088 | 2.772160  |
| 59 | 1 | 0 | -2.374648 | -2.271087 | 3.662341  |
| 60 | 1 | 0 | -0.963685 | -1.520477 | 2.912277  |
| 61 | 1 | 0 | -1.255475 | -3.252851 | 2.713179  |
| 62 | 6 | 0 | 6.434656  | 1.170428  | -0.048910 |
| 63 | 1 | 0 | 6.293596  | 2.023036  | -0.720884 |
| 64 | 1 | 0 | 7.282912  | 0.600923  | -0.439141 |
| 65 | 1 | 0 | 6.715784  | 1.565408  | 0.929011  |
| 66 | 6 | 0 | -6.099003 | -0.985029 | 0.610284  |
| 67 | 1 | 0 | -6.557528 | -1.381099 | 1.518702  |
| 68 | 1 | 0 | -6.687016 | -1.324856 | -0.245303 |
| 69 | 1 | 0 | -6.196519 | 0.105871  | 0.651935  |
| 70 | 1 | 0 | -4.123340 | 3.717568  | -0.130188 |
| 71 | 1 | 0 | -2.500424 | 5.289903  | 0.383716  |

# Metallocyclobutane fragmentation transition structure 13c from octadiene

Energy: -2214.445284 au

| 1  | 6 | 0 | 0.414892  | -1.328147 | 0.340542  |
|----|---|---|-----------|-----------|-----------|
| 2  | 7 | 0 | -0.564124 | -2.204849 | 0.644999  |
| 3  | 7 | 0 | 1.599251  | -1.950156 | 0.469200  |
| 4  | 6 | 0 | -0.047550 | -3.563553 | 0.836529  |
| 5  | 1 | 0 | -0.520098 | -4.047541 | 1.694666  |
| 6  | 1 | 0 | -0.249237 | -4.172974 | -0.055430 |
| 7  | 6 | 0 | 1.439983  | -3.299083 | 1.036349  |
| 8  | 1 | 0 | 1.724477  | -3.294154 | 2.096803  |
| 9  | 1 | 0 | 2.082936  | -4.014852 | 0.518602  |
| 10 | 6 | 0 | 2.880628  | -1.340654 | 0.293946  |
| 11 | 6 | 0 | 5.363797  | -0.142525 | -0.089745 |
| 12 | 6 | 0 | 3.572921  | -1.582821 | -0.899305 |
| 13 | 6 | 0 | 3.410896  | -0.541831 | 1.313893  |
| 14 | 6 | 0 | 4.654178  | 0.052127  | 1.093364  |
| 15 | 6 | 0 | 4.812663  | -0.971191 | -1.067575 |
| 16 | 1 | 0 | 5.080648  | 0.677510  | 1.874703  |
| 17 | 1 | 0 | 5.359955  | -1.143353 | -1.991719 |
| 18 | 6 | 0 | -1.942542 | -1.865543 | 0.471410  |
| 19 | 6 | 0 | -4.582415 | -1.022546 | 0.158841  |
| 20 | 6 | 0 | -2.709241 | -1.579396 | 1.614741  |
| 21 | 6 | 0 | -2.490910 | -1.810064 | -0.819663 |
| 22 | 6 | 0 | -3.811263 | -1.365988 | -0.945586 |
| 23 | 6 | 0 | -4.021028 | -1.158239 | 1.431392  |
| 24 | 1 | 0 | -4.244544 | -1.298758 | -1.941343 |
| 25 | 1 | 0 | -4.616704 | -0.908018 | 2.306089  |
| 26 | 6 | 0 | -2.135774 | -1.738973 | 2.987316  |
| 27 | 1 | 0 | -2.163641 | -2.789028 | 3.303043  |
| 28 | 1 | 0 | -2.705091 | -1.162652 | 3.717898  |
| 29 | 1 | 0 | -1.099550 | -1.397688 | 3.029814  |
| 30 | 6 | 0 | -1.760238 | -2.299694 | -2.033054 |
| 31 | 1 | 0 | -1.905438 | -1.631764 | -2.884383 |
| 32 | 1 | 0 | -2.145187 | -3.285467 | -2.320097 |
| 33 | 1 | 0 | -0.683614 | -2.381596 | -1.888229 |
| 34 | 6 | 0 | 2.667606  | -0.325634 | 2.594366  |
| 35 | 1 | 0 | 2.349391  | -1.271375 | 3.045587  |
| 36 | 1 | 0 | 1.755414  | 0.263624  | 2.447662  |
| 37 | 1 | 0 | 3.290306  | 0.195036  | 3.324029  |
| 38 | 6 | 0 | 2.983324  | -2.448398 | -1.967303 |

| 39 | 1  | 0 | 2.101388  | -1.966907 | -2.403556 |
|----|----|---|-----------|-----------|-----------|
| 40 | 1  | 0 | 2.663659  | -3.421151 | -1.578988 |
| 41 | 1  | 0 | 3.703172  | -2.629380 | -2.767129 |
| 42 | 6  | 0 | -5.968596 | -0.480982 | -0.006575 |
| 43 | 1  | 0 | -5.969799 | 0.611061  | 0.086906  |
| 44 | 1  | 0 | -6.648888 | -0.864331 | 0.757718  |
| 45 | 1  | 0 | -6.384893 | -0.723111 | -0.986312 |
| 46 | 6  | 0 | 6.684130  | 0.529649  | -0.315031 |
| 47 | 1  | 0 | 7.123997  | 0.880448  | 0.620581  |
| 48 | 1  | 0 | 6.576101  | 1.400684  | -0.970029 |
| 49 | 1  | 0 | 7.401205  | -0.139887 | -0.796637 |
| 50 | 44 | 0 | -0.048694 | 0.554483  | -0.227559 |
| 51 | 17 | 0 | -0.627310 | 1.162470  | 2.050202  |
| 52 | 17 | 0 | 0.521874  | 0.091115  | -2.545673 |
| 53 | 6  | 0 | 1.377869  | 1.702221  | -0.191082 |
| 54 | 1  | 0 | 2.081369  | 1.781406  | -1.030131 |
| 55 | 1  | 0 | 1.593674  | 2.313365  | 0.695433  |
| 56 | 6  | 0 | -1.533464 | 1.923001  | -1.042112 |
| 57 | 1  | 0 | -1.663012 | 1.416781  | -1.999125 |
| 58 | 6  | 0 | -0.414155 | 2.783989  | -0.966918 |
| 59 | 1  | 0 | 0.175624  | 2.861621  | -1.878186 |
| 60 | 6  | 0 | -0.449275 | 3.969389  | -0.028251 |
| 61 | 1  | 0 | 0.243774  | 4.736808  | -0.385081 |
| 62 | 1  | 0 | -0.116025 | 3.675818  | 0.973277  |
| 63 | 6  | 0 | -2.799280 | 2.167434  | -0.256061 |
| 64 | 1  | 0 | -3.062025 | 1.281386  | 0.334042  |
| 65 | 1  | 0 | -3.596749 | 2.258256  | -1.008616 |
| 66 | 6  | 0 | -2.781994 | 3.409010  | 0.638756  |
| 67 | 1  | 0 | -3.805716 | 3.778545  | 0.759895  |
| 68 | 1  | 0 | -2.425088 | 3.129874  | 1.634298  |
| 69 | 6  | 0 | -1.877845 | 4.500313  | 0.087074  |
| 70 | 1  | 0 | -2.232378 | 4.836302  | -0.897337 |
| 71 | 1  | 0 | -1.895445 | 5.378040  | 0.740372  |

## Basis Set Details.

The calculations were carried out using a locally modified version of GAUSSIAN 03.1

Ru has the SDD pseudopotential and SDD basis set. In addition it has an f-function with exponent 0.57800.

C, N, Cl and H have the 6-311G\*\* basis set.

The functional is M06-L and the solvation model is COSMO (with the default Klamt radii

and DCM as solvent).

The frequencies are with the B1 basis set.

Ru has the LANL2DZ pseudo potential and LANL2DZ basis set with an addition f-function of exponent 0.57800.

C, N, Cl and H have the 6-31G\* basis set

(The frequencies were used to provide thermodynamic corrections to the solvation energies)

## Reference

 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, *Gaussian 03, Revision D.02*, Gaussian Inc., Wallingford, CT, 2004.