Diazirine-containing RNA photocrosslinking probes for the study of siRNA-protein interactions

Satoru Kuboe^a, Mayuko Yoda^{c,d}, Aya Ogata^a, Yukio Kitade^{a,b}, Yukihide Tomari^{*c,d} and Yoshihito Ueno^{*a,b}

^aDepartment of Biomolecular Science, Faculty of Engineering, Gifu University; ^bUnited Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; ^cInstitute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan; ^dDepartment of Medical Genome Sciences, The University of Tokyo, 113-0032, Japan

Supplementary Data

General remarks

Thin-layer chromatography was carried out on Merck coated plates $60F_{254}$. Silica gel column chromatography was carried out on Wakogel C-300. ¹H, ¹³C, and ¹⁹F NMR spectra were obtained with a JEOL JNM AL–400 spectrometer. CDCl₃ (CIL) or DMSO-*d*₆ (CIL) was used as a solvent for obtaining NMR spectra. Chemical shifts (δ) are given in parts per million (ppm) downfield from (CH₃)₄Si (δ 0.00 for ¹H NMR in CDCl₃), CF₃CO₂H (δ 0.00 for ¹⁹F NMR), or a solvent (for ¹³C NMR and ¹H NMR in DMSO-*d*₆) as an internal reference with coupling constants (*J*) in Hz. The abbreviations s, d, and q signify singlet, doublet, and quartet, respectively.

3',5'-Bis(*tert*-butyldimethylsilyloxymethyl)-2,2,2-trifluoromethylacetophenone (5). To a solution of 1,3-bis(*tert*-butyldimethylsilyloxymethyl)-5-iodobenzene (4)¹ (3.94 g, 8.00 mmol) in THF (80 mL) at -78 °C was added dropwise over 30 min *n*-BuLi (1.65 M in hexane, 10.2 ml, 16.8 mmol). The solution was stirred for 15 min then ethyl trifluoroacetate (1.14 ml, 9.58 mmol) was added over 15 min. The resulting mixture was stirred at -78 °C for 1 h, quenched at -78 °C using saturated NaHCO₃ (50 mL) then extracted three times with EtOAc. The combined organic layer was washed with saturated NaHCO₃, brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography (SiO₂, 70% toluene in hexane) to give **5** (2.46 g, 5.32 mmol, 67%): ¹H NMR (400 MHz, CDCl₃) δ 0.13 (s, 12H), 0.97 (s, 18H), 4.80 (s, 4H), 7.65 (s, 1H), 7.92 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ -5.4, 18.3, 25.9, 64.2, 116.7 (q, ¹*J*_{C-F} = 311 Hz), 126.0, 129.9, 130.5, 142.8, 180.2 (q, ²*J*_{C-F} = 31 Hz); ¹⁹F NMR (372 MHz, CDCl₃) δ -87.5. Anal. Calcd for C₂₂H₃₇F₃O₃Si₂: C, 57.11; H, 8.06. Found: C, 57.17; H,

7.84.

3',5'-Bis(tert-butyldimethylsilyloxymethyl)-2,2,2-trifluoromethylacetophenone

O-tosyl-oxime (6). To a solution of 5 (0.47 g, 1.00 mmol) in pyridine (5 mL) and EtOH (5 mL) was added HONH₂•HCl (0.10 g, 1.44 mmol). The resulting mixture was srirred at 60 °C overnight, cooled to room temperature and concentrated. The residual oil was dissolved in CHCl₃. The organic layer was washed with H₂O, brine, dried (Na₂SO₄), and concentrated. The residual oil was dissolved in CHCl₃ (10 mL) then Et₃N (0.41 g, 4.05 mmol), a catalytic amount of DMAP and *p*-toluenesulfonyl chloride (0.28 g, 1.47 mmol) were added. The final mixture was allowed to react at room temperature overnight. The volatiles were evaporated and the residue was dissolved in CHCl₃. The organic layer was washed with saturated NaHCO₃, brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography (SiO₂, 17% MeOH in CHCl₃) to give **6** (0.54 g, 0.85 mmol, 85 %): ¹H NMR (400 MHz, CDCl₃) δ 0.10 (s, 12H), 0.94 (s, 18H), 2.46 (s, major stereoisomer, 3/5H), 2.48 (s, minor stereoisomer, 2/5H), 4.81–4.73 (m, 4H), 7.92–7.18 (m, 7H); ¹⁹F NMR (372 MHz, CDCl₃) δ –87.5. Anal. Calcd for C₂₉H₄₄F₃NO₅SSi₂: C, 55.12; H, 7.02; N, 2.22. Found: C, 54.93; H, 7.12; N, 2.23.

3-[3,5-Bis(tert-butyldimethylsilyloxymethyl)phenyl]-3-trifluoromethyldiaziridine

(7). NH₃ gas was bubbled through a solution of oxime **6** (0.33g, 0.52mmol) in 5% NH₃/THF (30 mL) at -78 °C. The tube was sealed and the resulting solution was stirred at room temperature for 2 days. After cooling the mixture, the tube was opened and the excess NH₃ was allowed to escape slowly. The mixture was concentrated. The residue was purified by column chromatography (SiO₂, 10-30% EtOAc in hexane) to give 7 (0.15g, 0.31 mmol, 60 %): ¹H NMR (CDCl₃) δ 0.11 (s, 12H), 0.94 (s, 18H), 2.20 (d, 1H, J = 8 Hz), 2.77 (d, 1H, J = 8 Hz), 4.76 (s, 4H), 7.39 (s, 1H), 7.45 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ -5.3, 18.4, 25.9, 58.0 (q, ² $_{C-F} = 35$ Hz), 64.5, 123.5 (q, ¹ $_{C-F} = 279$ Hz), 124.1, 125.2, 131.5, 142.3; ¹⁹F NMR (372 MHz, CDCl₃) δ -91.6. Anal. Calcd for C₂₂H₃₉F₃N₂O₂Si₂: C, 55.43; H, 8.25; N, 5.88. Found: C, 55.64; H, 8.01; N, 5.77.

3-[3,5-Bis(*tert*-butyldimethylsilyloxymethyl)phenyl]-**3-trifluoromethyl-***3H*-diazirine (8). To a solution of diaziridine 7 (95 mg, 0.20 mmol) in MeOH (4 mL) was added Et₃N (70 μ L, 0.50 mmol) and I₂ (56 mg, 0.22 mmol). The whole was stirred at room temperature for 30 min. The mixture was partitioned between Et₂O and aqueous Na₂S₂O₃. The organic layer was washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography (SiO₂, 10% EtOAc in hexane) to give **8** (70 mg, 0.15 mmol, 74%): ¹H NMR (400 MHz, CDCl₃) δ 0.10 (s, 12H), 0.95 (s, 18H), 4.72 (s, 4H), 7.03 (s, 2H), 7.31 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ –5.4, 18.4,

25.9, 28.52 (q, ${}^{2}J_{C-F} = 40$ Hz), 64.4, 122.2 (q, ${}^{1}J_{C-F} = 276$ Hz), 122.4, 124.5, 129.4, 142.4; ${}^{19}F$ NMR (372 MHz, CDCl₃) δ –81.2. Anal. Calcd for C₂₂H₃₇F₃N₂O₂Si₂: C, 55.66; H, 7.86; N, 5.90. Found: C, 55.50; H, 7.69; N, 5.92.

3-[3,5-Bis(hydroxymethyl)phenyl]-3-trifluoromethyl-3H-diazirine (9). To a solution of diazirine 8 (91 mg, 0.19 mmol) in THF (3.8 mL) was added TBAF (1 M in THF, 0.4 mL), and the mixture was stirred at room temperature for 2 h. The solvent was evaporated in vacuo, and the resulting residue was purified by column chromatography (SiO₂, 10–50% EtOAc in hexane) to give 9 (40 mg, 0.16 mmol, 85%): ¹H NMR (400 MHz, DMSO-*d*₆) δ 3.20 (s, 2H), 4.52 (s, 4H), 7.06 (s, 2H), 7.33 (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 28.1 (q, ${}^2J_{C-F}$ = 40 Hz), 62.2, 122.0 (q, ${}^1J_{C-F}$ = 275 Hz), 122.2, 126.0, 127.3, 143.9; ¹⁹F NMR (372 MHz, DMSO-*d*₆) δ -80.3. Anal. Calcd for C₁₀H₉F₃N₂O₂·1/10H₂O: C, 48.43; H, 3.74; N, 11.30. Found: C, 48.45; H, 3.83; N, 11.11. 3-[3-(4,4'-dimethoxytrityl)oxymethyl-5-hydroxymethylphenyl]-3-trifluoromethyl-3 H-diazirine (10). A mixture of 9 (0.20 g, 0.81 mmol) and DMTrCl (0.40 g, 1.18 mmol) in pyridine (11 mL) was stirred at room temperature for 5 h. The mixture was partitioned between EtOAc and aqueous NaHCO₃ (saturated). The organic layer was washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography (SiO₂, 40% EtOAc in hexane) to give 10 (0.17 g, 0.31 mmol, 38%): ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 6H), 4.17 (s, 2H), 4.67 (d, 2H, J = 4 Hz), 6.80–7.47 (m, 16H); ¹³C NMR (100 MHz, CDCl₃) δ 28.4 (q, ² J_{C-F} = 40 Hz), 55.2, 64.7, 65.0, 86.7, 113.2, 122.1 (q, ${}^{1}J_{C-F} = 274$ Hz), 123.3, 124.1, 126.5, 126.9, 127.9, 128.1, 129.3, 130.0, 136.0, 140.7, 141.7, 144.8, 158.5; ¹⁹F NMR (372 MHz, CDCl₃) δ –98.0.

Solid Support Synthesis. A mixture of **10** (0.17 g, 0.31 mmol), succinic anhydride (93 mg, 0.93 mmol), and DMAP (2.4 mg, 20 μ mol) in pyridine (3 mL) was stirred at room temperature. After 2 days, the solution was partitioned between CHCl₃ and H₂O, and the organic layer was washed with H₂O and brine. The separated organic phase was dried (Na₂SO₄) and concentrated to give a succinate. Aminopropyl controlled pore glass (0.65 g, 78 μ mol) was added to a solution of the succinate and EDCI (60 mg, 0.31 mmol) in DMF (8 mL), and the mixture was kept for 3 days at room temperature. After the resin was washed with pyridine, a capping solution (15 mL, 0.1 M DMAP in pyridine:Ac₂O = 9:1, v/v) was added and the whole mixture was kept for 12 h at room temperature. The resin was washed with MeOH and acetone, and dried *in vacuo*. Amount of loaded compound **10** to solid support was 28 μ mol/g from calculation of released dimethoxytrityl cation by a solution of 70% HClO₄:EtOH (3:2, v/v).

RNA Synthesis. Synthesis was carried out with a DNA/RNA synthesizer by phosphoramidite method. Deprotection of bases and phosphates was performed in

concentrated NH₄OH:EtOH (3:1, v/v) at room temperature for 12 h. 2'-TBDMS groups were removed by TBAF (Aldrich) in THF at room temperature for 12 h. The reaction was quenched with 0.1 M TEAA buffer (pH 7.0) and desalted on a Sep-Pak C18 cartridge. Deprotected ONs were purified by 20% PAGE containing 7 M urea to give the highly purified ON**5** (14), ON**9** (11). The yields are indicated in parentheses as OD units at 260 nm starting from 1.0 μ mol scale.

MALDI-TOF/MS Analysis of RNAs. Spectra were obtained with a SHIMAZU/KRATOS time-of-flight mass spectrometer equipped with a nitrogen laser (337 nm, 3-ns pulse). A solution of 3-hydroxypicolinic acid (3-HPA) and diammonium hydrogen citrate in H₂O was used as the matrix. ON**5**: m/z = 6708.2 ([M–H]⁻, calculated 6707.9; C₂₀₃H₂₄₃F₃N₈₄O₁₃₆P₂₀ (MW = 6708.9). ON**9**: m/z = 6790.0 ([M–H]⁻, calculated 6792.9; C₂₀₃H₂₄₂F₃N₈₁O₁₄₄P₂₀ (MW = 6793.9).

Dual-Luciferase Assay. HeLa cells were grown at 37 °C in a humidified atmosphere of 5% CO₂ in air in Minimum Essential Medium (MEM) (Invitrogen) supplemented with 10% fetal bovine serum (FBS). Twenty-four hours before transfection, HeLa cells (4 \times 10^4 /mL) were transferred to 96-well plates (100 µL per well). They were transfected, using TransFast (Promega), according to instructions for transfection of adherent cell lines. Cells in each well were transfected with a solution (35 μ L) of 20 ng of psiCHECK-2 vector (Promega), the indicated amounts of siRNAs, and 0.3 µg of TransFast in Opti-MEM I Reduced-Serum Medium (Invitrogen), and incubated at 37 °C. Transfection without siRNA was used as a control. After 1 hour, MEM (100 μ L) containing 10% FBS and antibiotics was added to each well, and the whole was further incubated at 37 °C. After 24 h, cell extracts were prepared in Passive Lysis Buffer (Promega). Activities of firefly and Renilla luciferases in cell lysates were determined with a dual-luciferase assay system (Promega) according to a manufacturer's protocol. The results were confirmed by at least three independent transfection experiments with two cultures each and are expressed as the average from four experiments as mean \pm SD.

In vitro RISC assembly and photocrosslinking. *Drosophila* embryo lysate, lysis buffer, and 40x reaction mix were prepared as described before.² RISC assembly was typically performed in 50 μ L reaction, containing 25 μ L of embyo lysate, 15 μ L of 40× reaction mix and 5 μ L of 100 nM ³²P radiolabeled siRNA duplexes at 25 °C. 10- μ L aliquots were then taken at indicated time points, irradiated with 302 nm UV-B or 365 nm UV-A for 5 min (~1 cm under 6W UV-B or UV-A bulb), and subjected to SDS-PAGE.

References for supplementary data

- 1. Y. Ueno, A. Kawamura, K. Takasu, S. Komatsuzaki, T. Kato, S. Kuboe, Y. Kitamura and Y. Kitade, *Org. Biomol. Chem.*, 2009, **7**, 2761–2769.
- 2. B. Haley, G. Tang and P. D. Zamore, *Methods*, 2003, **30**, 330–336.