Electronic Supplementary Information

for

Oligosaccharide sensing with chromophore-modified curdlan in aqueous media Gaku Fukuhara* and Yoshihisa Inoue*

Department of Applied Chemistry, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan

Fax: +81 6 6879 7923; Tel: +81 6 6879 7922

E-mail: gaku@chem.eng.osaka-u.ac.jp

Experimental

Instruments

¹H NMR spectra at 600 MHz, ¹³C NMR spectra at 150 MHz, and 2D-COSY, HSQC, and HMBC spectra at 600 MHz were recorded in DMSO- d_6 on a Varian INOVA-600 instrument. IR spectrum was recorded on a JASCO FT/IR-460 plus spectrometer. UV/vis and CD spectra were measured in a quartz cell (with light path of 1 cm) by using JASCO V-560 and J-720WI spectrometers equipped with an ETC-505T temperature controller.

Materials

Curdlan, purchased from Wako, was dried under high vacuum at 80 °C prior to use. D-Glucose (1), L-glucose (2), D-galactose (3), D-mannose (4), D-allose (5), D-fructose (6), D-sorbose (7), D-tagatose (8), D-fucose (9), D-ribose (10), 2-deoxy-D-ribose (11), D-arabinose (12), L-arabinose (13), sucrose (14), lactose (15), D-maltose (16), D-trehalose (17), D-turanose (18), D-cellobiose (19), D-raffinose (20), D-melezitose (21), D-maltotriose (22), stachyose (23), and acarbose (24) were purchased from Wako, SIGMA, Across Organics or Alfa Aesar and used without further purification.

Synthesis and Characterization of Modified Communications

6-O-(4-(Dimethylamino)benzoyl)curdlan (DABz-Cur). Curdlan (344 mg, 2.12 mmol based on the glucose unit) was added to dry *N*-methyl-2-pyrrolidinone (NMP) (20 mL) placed in a 50 mL three-necked flask. The resulting highly viscous solution was heated to 100 °C and stirred overnight at that temperature, to which 4-(dimethylamino)benzoyl chloride (195 mg, 1.06 mmol) dissolved in dry NMP (10 mL) and pyridine (2 mL) were added. The reaction mixture was stirred for 16 h at room temperature and then slowly poured onto methanol (400 mL) to give a white precipitate, which was collected, washed with methanol (2 × 20 mL, centrifuged at 3000 rpm for 15 min), and then dried under high vacuum to afford 6-*O*-(4-(dimethylamino)benzoyl)curdlan (**DABz-Cur**) as white solid (352 mg, 1.96 mmol in monomer unit) in 92% yield. ¹H NMR (DMSO-*d*₆, 600 MHz, 15 °C) $\delta_{\rm H}$ 7.82 (H_a), 6.70 (H_b), 5.29 (-OH), 5.19 (-OH), 4.90 (-OH), 4.64 (-OH, H_{6b'}), 4.51 (H1,1'), 4.12 (H_{6a'}), 3.69 (H_{6b}), 3.52-3.39 (H_{6a}, H_{3/3'}), 3.30-3.17 (H_{5/5'}, H_{2/2'}, H_{4/4'}), 3.00 (Me-N); ¹³C NMR (DMSO-*d*₆, 150 MHz, 15 °C) $\delta_{\rm C}$ 165.8 (C=O), 153.4 (C_c), 131.2 (C_a), 115.6 (C_d), 110.7 (C_b), 103.1 (C_{1/1'}), 86.2 (C_{3/3'}), 76.4 (C_{5/5'}), 72.9 (C_{2/2'}), 68.5 (C_{4/4'}), 63.2 (C_{6a'/b}), 60.9 (C_{6a/b}), Me-N (overlapped with DMSO peak by HSQC spectrum); Anal. Calcd for (C₅₉H₉₂NO₄₃·2H₂O)_n: C, 46.03; H, 6.29; N, 0.91%; Found: C, 45.99; H, 6.28; N, 1.09%; IR (KBr) v 3412, 2904, 1684, 1605, 1532, 1437, 1373, 1316, 1284, 1188, 1160, 1081, 1043, 991, 891, 767 cm⁻¹.

Figure S1. (a) ¹H and (b) ¹³C NMR spectra of 6-O-(4-(dimethylamino)-benzoyl)curdlan (**DABz-Cur**) in DMSO- d_6 at room temperature.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Figure S2. HSQC spectrum of DABz-Cur in DMSO-*d*₆ at room temperature.

Figure S3. CD spectral changes of **DABz-Cur** (0.462 mM in monomer unit) in 1:9 DMSO-H₂O upon addition of (a) acarbose (0-150 mM), (b) stachyose (0-150 mM), (c) D-maltose (0-150 mM), (d) D-fructose (0-144 mM), (e) sucrose (0-150 mM), and (f) lactose (0-150 mM) at 25 °C.

The new band emerging at 250-280 nm in Figure S3a is assignable to the CD of added acarbose, while the increasing CD intensity at 250-300 nm for fructose (Figure S3d) is due to the equilibrium to the keto form.

CD intensity change as a function of the concentration of D-fructose, sucrose, and lactose

Figure S4. Plots of molar ellipticity at 330 nm of **DABz-Cur** (0.462 mM in monomer unit) in 1:9 DMSO-H₂O as a function of disaccharide concentration; D-fructose (circle), sucrose (square), and lactose (triangle).