Supporting Information for:

Total synthesis of (±)-Maistemonine and (±)-Stemonamide

Zhi-Hua Chen, Yong-Qiang Zhang, Zhi-Min Chen, Yong-Qiang Tu,* and Fu-Min Zhang*

State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou

University, Lanzhou 730000, P R China

E-mail: tuyq@lzu.edu.cn

Supporting Information

Experimental details for new compounds	S2-S12
X-Ray Ellipsoid Plots of 2 and 1e	-S13-S14
Copies of ¹ H and ¹³ C spectra of new compounds	S15-S48

Experimental Details

General information

For product purification by flash column chromatography, silica gel (200~300 mesh) and light petroleum ether (bp. 60~90 °C) and ethyl acetate are used. All solvents were purified and dried by standard techniques, and distilled prior to use. All organic extracts were dried over MgSO4, unless otherwise noted. IR spectra were recorded on a fourier transform infrared spectrometer. ¹H and ¹³C NMR spectra were taken on a *Bruker*, AM-400 or AM-600 spectrometer with TMS as an internal standard and CDCl₃ as solvent. The MS data were obtained with EI (70 eV). HRMS data were determined on a *Bruker Daltonics* APEXII 47e FT-ICR spectrometer. Melting points were measured on a melting point apparatus and are uncorrected. Starting material **6** is known compound.

Compound 7. To a solution of 5.0261 g (21.30 mmol) of dione **6** in THF (140 mL) at -78 °C under argon was added ethynylmagnesium chloride (0.6 M, 35.5 mL, 21.30 mmol). The mixture was stirred for 7.5 h at -78 °C and then quenched with water (5 mL). After warming up to room temperature, the reaction mixture was diluted with Et_2O (100 mL) and saturated aqueous NH₄Cl (50 mL). The aqueous phase was extracted with Et_2O (3 x 50 mL), then the combined organic extracts were dried over MgSO₄, filtered and concentrated. Chromatography (15% EtOAc/petroleum ether) afforded the crude product as a yellow oil (3.5014 g).

The above crude product was dissolved in pyridine (35 mL) at 40 °C under argon, DMAP (350 mg, 2.87 mmol) and methanesulfonyl chloride (7.0 mL, 90.44 mmol) was added. After stirring for 30min, the solution allowed to cool on ice-water bath. The reaction was diluted with Et₂O (30 mL) and quenched with water (10 mL). The biphasic mixture was vigorously stirred for 30 min prior to separation of the layers. The organic phase was washed with water (2 x 20 mL) followed by back-extraction of the combined aqueous extracts with Et₂O (3 x 50 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated to yield a yellow oil which was then purified via column chromatography (15% EtOAc/petroleum ether to 25% EtOAc/petroleum ether) to afford compound **7** (3.6205 g, 50% yield, two steps) as a light yellow oil; ¹H NMR (400MHz, CDCl₃) δ 0.93-0.97 (t, *J* = 6.4 Hz, 3H), 1.63-1.69 (m, 2H), 1.84-1.88 (m, 3H), 1.89-2.04 (m, 3H), 2.51 (s, 2H), 2.59-2.62 (m, 4H), 2.71-2.72 (d, *J* = 2.4 Hz, 1H), 3.09 (s, 3H), 4.54 (s, 1H), 4.81-4.82 (d, *J* = 1.2 Hz,

1H), 5.05-5.08 (dt, J = 6.4, 2 Hz, 1H); ¹³C NMR (100M, CDCl₃) δ 12.2, 16.7, 30.0, 30.9, 31.0, 39.1, 39.6, 43.6, 67.7, 70.5, 77.3, 78.6, 113.0, 146.2, 210.2, 210.3; IR (neat) 903, 1360, 1691, 3269 cm⁻¹; MS (EI) m/z 340, 311, 261, 245, 201, 173, 131; HRMS (ESI) Calcd. for C₁₇H₂₈NO₅S (M+NH₄)⁺: 358.1683, Found 358.1676, Error: 2.0 ppm.

Compound 5. The mesylate **7** (406.6 mg, 1.20 mmol) was treated with NaN₃ (233.2 mg, 3.59 mmol) in 4 mL of DMF at 40 °C under argon. After 1.5 h, the mixture was diluted with Et₂O (10 mL) at 0 °C, and washed with water (2 x 10 mL). The organic phase was dried over MgSO₄, filtered and concentrated to yield a yellow oil which was purified via column chromatography (15% EtOAc/ petroleum ether) to give the desired azide **5** (288.3 mg, 84% yield) as a light yellow oil; ¹H NMR (400MHz, CDCl₃) δ 0.93-0.97 (t, *J* = 6.4 Hz, 3H), 1.42-1.49 (m, 2H), 1.82-1.93 (m, 5H), 1.95-2.03 (m, 1H), 2.50 (s, 2H), 2.57-2.61 (m, 5H), 3.98-4.02 (dt, *J* = 6.8, 2.4 Hz, 1H), 4.53-4.54 (d, *J* = 0.8 Hz, 1H), 4.81-4.82 (d, *J* = 1.6 Hz, 1H); ¹³C NMR (100M, CDCl₃) δ 12.2, 16.7, 30.0, 30.5, 32.3, 39.6, 39.7, 43.7, 52.5, 67.8, 75.4, 78.5, 112.9, 146.3, 210.4; IR (neat) 906, 1693, 2104, 3268 cm⁻¹; MS (EI) *m/z* 287, 258, 244, 216, 188, 136; HRMS (ESI) Calcd. for C₁₆H₂₅N₄O₂ (M+NH₄)⁺: 305.1972, Found 305.1969, Error: 1.0 ppm.

Compound 4. To a solution of the azide **5** (2.5755 g, 8.97 mmol) in CH₂Cl₂ (90 mL) at -15 °C under argon was added TiCl₄ (10.83 mL, 1M in CH₂Cl₂). The resulting mixture was stirred at-15 °C for 20 min, then it was quenched with 15 mL water. The aqueous phase was extracted with CH₂Cl₂ (3 x 20 mL), then the combined organic extracts were dried over MgSO₄, filtered and concentrated to give a solid. Chromatography (20% EtOAc/petroleum ether to 35% EtOAc/petroleum ether) afforded **4** (1.6647 g , 72% yield) as an amorphous yellow solid; ¹H NMR (400MHz, CDCl₃) δ 0.98-1.01 (t, *J* = 3.2 Hz, 3H), 1.92-2.08 (m, 5H), 2.16-2.34 (m, 5H), 2.41-2.56 (m, 1H), 2.53-2.72 (m, 3H), 3.25-3.33 (m, 1H), 4.80-4.81 (d, *J* = 6.4 Hz, 1H), 4.86 (s, 1H), 4.91-4.92 (d, *J* = 1.6 Hz, 1H); ¹³C NMR (100M, CDCl₃) δ 12.2, 22.6, 29.1, 29.6, 33.0, 34.8, 35.9, 40.5, 50.0, 71.0, 74.5, 82.7, 114.6, 146.2, 171.1,

211.9; IR (neat) 907, 1661, 1713, 3254 cm⁻¹; MS (EI) m/z 259, 230, 217, 202, 190, 162, 136; HRMS (ESI) Calcd. for C₁₆H₂₂NO₂ (M+H)⁺: 260.1645, Found 260.1649, Error: 1.5 ppm.

Compound 8. Alkene **4** (201 mg, 0.77 mmol) was dissolved in CH₂Cl₂ (12 mL) at room temperature. The reaction mixture was cooled to -78 °C, after a brief oxygen purge (ca., 5 min), ozone was bubbled through the reaction mixture very slowly until the reaction was completed by tlc (approximately 11 h). After dimethylsulfide (5 mL) addition, the reaction was stirred at room temperature for 3 days. Concentration of the reaction mixture to give a yellow oil. Chromatography afforded **8** (165.4 mg, 82% yield) as a sticky oil; ¹H NMR (400MHz, CDCl₃) δ 1.05-1.08 (t, *J* = 6.4 Hz, 3H), 2.00-2.14 (m, 2H), 2.17-2.36 (m, 5H), 2.38-2.54 (m, 4H), 2.62-2.72 (m, 1H), 2.77-2.92 (m, 2H), 3.19-3.27 (m, 1H), 4.79-4.81 (d, *J* = 5.6 Hz, 1H); ¹³C NMR (100M, CDCl₃) δ 7.6, 22.9, 29.4, 33.4, 33.5, 34.4, 38.8, 44.4, 49.7, 71.2, 74.6, 82.5, 170.3, 207.4, 211.4; IR (neat) 1661, 1712, 3302 cm⁻¹; MS (EI) *m*/z 261, 232, 204, 190, 176, 148, 108; HRMS (ESI) Calcd. for C₁₅H₂₀NO₃ (M+H)⁺: 262.1438, Found 262.1431, Error: 1.5 ppm.

Compound 3. To a solution of **8** (421 mg, 1.61 mmol) in 10 mL of CH_2Cl_2 was added Lindlar catalyst (299.1 mg) and quinoline (38.4 μ L, 0.32 mmol). The mixture was exposed to an atmosphere of H_2 at room temperature. After 1.5 h, the resulting mixture was filtered and concentrated to give the crude product as a yellow oil.

The above crude product was dissolved in MeOH (10 mL), followed by addition of K_2CO_3 (262.4 mg, 1.90mmol). After stirring at room temperature for 1 h, the solution was diluted with CHCl₃ (20 mL) and water (10 mL). The aqueous phase was extracted with CHCl₃ (3 x 10 mL), then the combined organic extracts were dried over MgSO₄, filtered and evaporated under reduced pressure. The residue was purified by column chromatography (50% EtOAc/petroleum ether to 75% EtOAc/ petroleum ether) to give cyclic enone **3** (367.5 mg, 93% yield, two steps) as a white crystalline solid:

mp 152-154 °C; ¹H NMR (400MHz, CDCl₃) δ 1.42-1.50 (m, 1H), 1.76 (s, 3H), 1.83-1.93 (m, 2H), 2.10-2.32 (m, 5H), 2.41-2.48 (m, 1H), 2.58-2.67 (m, 2H), 2.81-2.86 (dd, J = 4.8, 8.0 Hz, 1H), 4.59-4.63 (t, J = 6.8 Hz, 1H), 5.15-5.23 (m, 2H), 5.80-5.89 (ddd, J = 6.4, 10.4, 16.8 Hz, 1H); ¹³C NMR (100M, CDCl₃) δ 8.1, 22.3, 23.9, 29.1, 33.1, 38.6, 50.7, 60.0, 70.7, 115.4, 135.9, 137.4, 170.7, 172.3, 203.0; IR (neat) 1000, 1654, 1700 cm⁻¹; MS (EI) *m/z* 245, 230, 202, 178, 135, 91; HRMS (ESI) Calcd. for C₁₅H₂₀NO₂ (M+H)⁺: 246.1489, Found 246.1482, Error: 2.8 ppm.

Compound 14'. To a solution of 123.6 mg (0.50 mmol) of ketone **3** in THF (5 mL) at -78 °C under argon was added LHMDS (1.0 M, 757 μ L, 0.76 mmol). After stirring at -78 °C for 30 min, CNCO₂Me (68 μ L, 0.86 mmol) was added and followed HMPA (132 μ L, 0.76 mmol). The resulting mixture was stirred for 30 min and then quenched with water (1 mL). After warming up to room temperature, the reaction mixture was diluted with CH₂Cl₂ (10 mL) and water (5 mL). The aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL), then the combined organic extracts were dried over MgSO₄, filtered and concentrated to give the crude product as a yellow oil.

The above yellow oil was dissolved in dry THF (7 mL) at -15 °C under argon followed by addition of KHMDS (0.91 M, 666 μ L, 0.61 mmol). After stirring for 30 min, Davis' reagent (167 mg, 0.86 mmol) was added. The resulting mixture was stirred for 1.5 h and then quenched with water (1 mL). After warming up to room temperature, the reaction mixture was diluted with CH₂Cl₂ (10 mL) and water (5 mL). The aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL), then the combined organic extracts were dried over MgSO₄, filtered and concentrated. The residue was purified via silica gel chromatography (20% EtOAc/petroleum ether to 50% EtOAc/petroleum ether) to give compound **14'** (140mg, 87% yield, two steps) as a white amorphous solid; ¹H NMR (400MHz, CDCl₃) δ 1.72-1.77 (dd, *J* = 6.4, 6.4 Hz, 1H), 1.89 (s, 3H), 1.94-2.00 (m, 2H), 2.09-2.22 (m, 3H), 2.44-2.58 (m, 2H), 2.73-2.81 (ddd, *J* = 6.4, 14, 14 Hz, 1H), 2.88-2.93 (dd, *J* = 10.4, 12.4 Hz, 1H), 3.72 (s, 3H), 3.84 (brs, 1H), 4.46-4.50 (t, *J* = 8 Hz, 1H), 5.12-5.21 (m, 2H), 5.74-5.83 (ddd, *J* = 7.2, 10, 17.2 Hz, 1H); ¹³C NMR (100M, CDCl₃) δ 8.7, 22.5, 22.9, 29.3, 33.1, 34.1, 53.4, 60.8, 77.4, 84.4 115.1, 136.9, 138.7, 170.3, 170.8,172.4, 199.6; MS (EI) *m*/z 319, 301, 260, 231, 203, 175, 91; HRMS (ESI) Calcd. for

C₁₇H₂₂NO₅ (M+H)⁺: 320.1492, Found 320.1486, Error: 1.9 ppm.

Compound 14. A solution of **14'** (140 mg, 0.44 mmol) in anhydrous CH₂Cl₂ (8 mL) under argon was treated with Et₃N (366 μ L, 2.63 mmol), DMAP (33.1 mg, 0.27 mmol), and propionic anhydride (281 μ L, 2.19 mmol) at room temperature. The reaction mixture was stirred for 48 h and then concentrated. The residue was purified via silica gel chromatography (15% EtOAc/petroleum ether to 35% EtOAc/petroleum ether) to give **14** (164mg, 99% yield) as a white amorphous solid; ¹H NMR (400MHz, CDCl₃) δ 1.15-1.19 (t, *J* = 7.6 Hz, 3H), 1.72-1.77 (dd, *J* = 6.4, 6.4 Hz, 1H), 1.86 (s, 3H), 1.94-2.01 (m, 2H), 2.03-2.15 (m, 3H), 2.35-2.48 (m, 3H), 2.50-2.65 (m, 2H), 2.79-2.85 (dd, *J* = 9.2, 12.4 Hz, 1H), 3.63 (s, 3H), 4.52-4.56 (t, *J* = 8 Hz, 1H), 5.10-5.20 (m, 2H), 5.75-5.84 (ddd, *J* = 7.2, 10.4, 17.6 Hz, 1H); ¹³C NMR (100M, CDCl₃) δ 8.5, 8.8, 22.1, 23.3, 27.5, 28.9, 32.6, 35.2, 52.9, 60.8, 75.9, 88.1, 115.0, 136.7, 138.6, 166.2, 167.3, 171.9, 172.1, 194.7; MS (EI) *m/z* 375, 319, 301, 260, 231, 203, 175; HRMS (ESI) Calcd. for C₂₀H₂₆NO₆ (M+H)⁺: 376.1755, Found 376.1750, Error: 1.3 ppm.

Compound 9. To a solution of 172 mg (0.70 mmol) of ketone **3** in THF (10 mL) at -78 °C under argon was added LHMDS (1.0 M, 1.06 mL, 1.06 mmol). After stirring at -78 °C for 1 h, propanal (103 μ L, 1.41 mmol) was added. The resulting mixture was stirred for 1 h and then quenched with water (1 mL). After warming up to room temperature, the reaction mixture was diluted with CH₂Cl₂ (10 mL) and water (5 mL). The aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL), then the combined organic extracts were dried over MgSO₄, filtered and concentrated. Chromatography (40% EtOAc/ petroleum ether to 75% EtOAc/petroleum ether) afforded **9** (208.2 mg, 98% yield) as a white crystalline solid: mp 161-163 °C; ¹H NMR (400MHz, CDCl₃) δ 0.94-0.97 (t, *J* = 6.4 Hz, 3H), 1.38-1.42 (dd, *J* = 11.6, 4.8 Hz, 1H), 1.75 (s, 3H), 1.79-1.91 (m, 4H), 1.99-2.13 (m, 3H), 2.15-2.30 (m, 3H), 2.41-2.49 (m, 1H), 2.82-2.88 (dd, *J* = 9.6, 12.4 Hz, 1H), 3.00-3.09 (m, 1H), 3.55-3.59 (ddd, *J* = 2.4, 5.6, 8.0 Hz, 1H), 4.54-4.58 (t, *J* = 7.2 Hz, 1H), 5.13-5.21 (m, 2H), 5.79-5.88 (ddd, *J* = 6.8, 10.4, 17.2 Hz, 1H); ¹³C NMR (100M, CDCl₃) δ 7.9, 10.5, 22.4, 22.6, 29.2, 29.4, 33.5, 40.0, 60.6, 61.2, 73.0, 73.4, 115.0, 137.3, 138.2, 170.6, 173.3, 205.3; IR (neat) 1000, 1629, 1702, 3333 cm⁻¹; MS (EI) *m/z* 303, 274, 246, 204, 175, 148, 91; HRMS (ESI) Calcd. for C₁₈H₂₆NO₃ (M+H)⁺: 304.1907, Found 304.1904, Error: 1.0 ppm.

Compound 10. To a CH_2Cl_2 (10 mL) solution of alcohol **9** (278.5 mg, 0.92 mmol) under argon at 0 °C was added Dess-Martin periodinane (549.4 mg, 1.30 mmol) followed by slow warming of the reaction mixture to room temperature. After stirring for 1.5 h, the reaction was quenched via addition of saturated aqueous NaHCO₃ (10 mL) and Na₂S₂O₃ (10 mL), and diluted with CH₂Cl₂ (20 mL). The biphasic mixture was vigorously stirred at room temperature for 30 min and then the aqueous phase was extracted with CH₂Cl₂ (3 x 15 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated to yield the crude product as a yellow oil.

The above yellow oil was dissolved in *i*PrOH (10 mL) at room temperature, followed by addition of CeCl³•7H₂O (34.2 mg, 0.09 mmol). The flask was then evacuated to 300 mbar, flushed with O₂, and the reaction mixture was stirred at room temperature for 20 h, while a slow stream of oxygen (ca., 50 cm³h⁻¹) was passed through. After removal of the solvent, the residue was purified by column chromatography (25% EtOAc/petroleum ether to 50% EtOAc/petroleum ether) to give **10** (214.7 mg, 74% yield, two steps) and epimer **10** (27.1 mg, 9.3% yield, ca. 8:1 diastereoselectivity) as white amorphous solids. **Compound 10**: ¹H NMR (400MHz, CDCl₃) δ 0.89-0.92 (t, *J* = 7.2 Hz, 3H), 1.72-1.77 (dd, *J* = 5.6, 12.4 Hz, 1H), 1.82 (s, 3H), 1.89-1.98 (m, 3H), 1.99-2.06 (m, 2H), 2.32-2.51 (m, 2H), 2.52-2.63 (m, 1H), 2.64-2.84 (m, 3H), 4.42 (brs, 1H), 4.53-4.57 (t, *J* = 8.0 Hz, 1H), 5.09-5.20 (m, 2H), 5.73-5.82 (ddd, *J* = 7.2, 10.4, 17.6 Hz, 1H); ¹³C NMR (100M, CDCl₃) δ 7.3, 8.2, 22.5, 23.5, 29.1, 31.5, 32.9, 34.9, 61.3, 76.6, 89.8, 115.5, 135.7, 138.3, 170.6, 172.7, 203.4, 212.4; IR (neat) 984, 1625, 1700, 1723, 3284 cm⁻¹; MS (EI) *m/z* 317, 260, 232, 204, 178, 132, 105; HRMS (ESI) Calcd. for C₁₈H₂₄NO₄ (M+H)⁺: 318.1700, Found 318.1708, Error: 2.5 ppm.

Compound 11. A solution of **10** (285.2 mg, 0.9 mmol) in anhydrous CH₂Cl₂ (10 mL) under argon was treated with Et₃N (1.5 mL, 10.8 mmol), DMAP (439.1 mg, 3.6 mmol), and ethyl chloroformate (0.86 mL, 9.0 mmol) at room temperature. The reaction mixture was stirred for 24 h

and then concentrated. The residue was purified via silica gel chromatography (15% EtOAc/petroleum ether to 35% EtOAc/petroleum ether) to give carbonate **11** (350mg, 99% yield) as a white amorphous solid; ¹H NMR (400MHz, CDCl₃) δ 1.01-1.05 (t, J = 7.2 Hz, 3H), 1.33-1.37 (t, J = 6.8 Hz, 3H), 1.82-1.86 (m, 1H), 1.88 (s. 3H), 1.92-2.01 (m, 1H), 2.02-2.13 (m, 4H), 2.31-2.40 (m, 2H), 2.51-2.67 (m, 3H), 2.80-2.86 (dd, J = 8.8, 12.4 Hz, 1H), 4.22-4.33 (m, 2H), 4.56-4.60 (t, J = 8.0 Hz, 1H), 5.16-5.26 (m, 2H), 5.76-5.84 (ddd, J = 7.2, 10.4, 17.6 Hz, 1H); ¹³C NMR (100M, CDCl₃) δ 7.5, 8.4, 14.0, 22.1, 23.3, 29.2, 32.2, 33.0, 35.1, 61.4, 65.3, 75.8, 93.4, 115.8, 137.0, 138.1, 153.5, 166.1, 172.7, 196.7, 206.5; IR (neat) 954, 1655, 1710, 1729, 1760 cm⁻¹; MS (EI) *m/z* 389, 332, 299, 260, 214, 175, 120; HRMS (ESI) Calcd. for C₂₁H₂₈NO₆ (M+H)⁺: 390.1911, Found 390.1918, Error: 1.8 ppm.

Compound 2. To a solution of the carbonate **11** (77 mg, 0.20 mmol) in THF (14.2 mL) at -78 °C under argon was added KHMDS (0.91 M, 436 μ L, 0.40 mmol). The reaction mixture was warmed slowly to 10 °C over 5 h, and then it was quenched with 3 mL water at 0 °C. The resulting mixture was diluted with CH₂Cl₂ (10 mL) and treated with 2N HCl to PH = 2. The aqueous phase was extracted with CH₂Cl₂ (3 x 10 mL), then the combined organic extracts were dried over MgSO₄, filtered and concentrated to give a yellow amorphous solid.

The above crude product was dissolved in CH₂Cl₂ (15.7 mL) under argon, followed by addition of CH₂N₂ (1 M, 1 mL, 1 mmol). After stirring at 0 °C for 1 h, the solution was quenched with acetic acid (1 mL). Removal of solvent in *vacuo* resulted in a yellow solid which was purified by chromatography (50% EtOAc/petroleum ether to 70% EtOAc/petroleum ether) to give tetracyclic product **2** (53.9 mg, 76% yield, two steps) as a white crystalline solid: mp 178-180 °C; ¹H NMR (400MHz, CDCl₃) δ 1.74-1.77 (m, 1H), 1.87 (s, 3H), 1.90-1.97 (m, 1H), 2.03 (s, 3H), 2.07-2.16 (m, 4H), 2.25-2.30 (ddd, *J* = 2.8, 4.4, 14.4 Hz, 1H), 2.49-2.57 (m, 1H), 2.77-2.86 (dt, *J* = 6.4, 14.4 Hz, 1H), 2.92-2.98 (m, 1H), 3.98 (s, 3H), 4.40-4.44 (t, *J* = 7.6, 1H), 5.12-5.20 (m, 2H), 5.71-5.80 (ddd, *J* = 7.2, 10.0, 17.2 Hz, 1H); ¹³C NMR (100M, CDCl₃) δ 8.8, 8.9, 21.8, 22.5, 29.2, 33.8, 35.6, 59.1, 60.9, 75.9, 88.1, 98.6, 115.3, 137.4, 138.6, 169.7, 170.7, 173.1, 173.6, 195.7; IR(neat) 1000, 1647, 1719, 1761 cm⁻¹; MS (EI) *m/z* 357, 302, 242, 202, 175, 149, 83; HRMS (ESI) Calcd. for C₂₀H₂₄NO₅ (M+H)⁺: 358.1649, Found 358.1646, Error: 0.8 ppm.

Compound 15. Potassium osmate dehydrate (1 mg) was added to a stirred solution of **2** (22 mg, 0.062 mmol) and *N*-methylmorpholine *N*-oxide (41.7 mg, 0.31 mmol) in acetone (1 mL), *t*BuOH (0.5 mL) and water (0.5 mL). After stirring for 5.5 h at room temperature, the reaction mixture was diluted with CH₂Cl₂ (10 mL). The resulting mixture was dried over MgSO₄, filtered and evaporated under reduced pressure to give the crude product as a sticky oil.

The above crude product was dissolved in THF (4 mL) and water (2 mL) under argon, followed by addition of NaIO₄ (26.2 mg, 0.122 mmol). After stirring at room temperature for 2 h, the solution was diluted with CH₂Cl₂ (10 mL). The aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL), and then the combined organic extracts were dried over MgSO₄, filtered and concentrated. Chromatography (50% EtOAc/petroleum ether to 75% EtOAc/petroleum ether)) afforded the aldehyde **15** (21.2 mg, 96% yield, two steps) as a white amorphous solid; ¹H NMR (400MHz, CDCl₃) δ 1.86-1.87 (d, *J* = 6.4 Hz, 1H), 1.89 (s, 3H), 1.94-2.01 (m, 1H), 2.04 (s, 3H), 2.07-2.23 (m, 4H), 2.29-2.34 (m, 1H), 2.84-2.94 (m, 3H), 3.99 (s, 3H), 4.53-4.56 (d, *J* = 9.2 Hz, 1H), 9.64-9.65 (d, *J* = 0.8 Hz, 1H); ¹³C NMR (100M, CDCl₃) δ 8.7, 8.9, 22.2, 22.4, 23.0, 32.2, 35.6, 59.2, 65.0, 75.3, 88.2, 98.8, 137.8, 169.6, 170.0, 173.4, 195.4, 197.5; MS (EI) *m*/z 359, 330, 290, 256, 202, 149, 83; HRMS (ESI) Calcd. for C₁₉H₂₂NO₆ (M+H)⁺: 360.1442, Found 360.1440, Error: 0.6 ppm.

Compound 12. Methyl trifluoromethanesulfonate (0.748 mL, 6.82 mmol) was added in one portion to a solution of **2** (64 mg, 0.18 mmol) in CH₂Cl₂ (10.3 mL) under argon. The reaction mixture was stirred at room temperature for 12 h, and concentrated. The residue was dissolved in EtOH (2.8 mL), and treated with NaCNBH₃ (53.5 mg, 0.85 mmol). The reaction mixture was stirred at room temperature for 10 min, treated with the mixture of acetic acid and water (2.8 mL, ca. 1:1), and sequentially stirred at room temperature for 30 min. The resulting mixture was diluted with CH₂Cl₂ (10 mL) and treated with saturated aqueous NaHCO₃ (5 mL). The aqueous phase was extracted with

CH₂Cl₂ (3 x 5 mL), and then the combined organic extracts were dried over MgSO₄, filtered and concentrated. Chromatography (15% EtOAc/petroleum ether to 65% EtOAc/petroleum ether) afforded the desired tertiary amine **12** (30.9 mg , 95% yield based on recovery material, two steps) as a white amorphous solid and recovered starting material (30 mg); ¹H NMR (400MHz, CDCl₃) δ 1.20-1.29 (m, 1H), 1.34-1.39 (dd, *J* = 3.6, 14.0 Hz, 1H), 1.53-1.68 (m, 2H), 1.74-1.82 (m, 4H), 1.90-2.01 (m, 2H), 2.03 (s, 3H), 2.09-2.18 (m, 2H), 2.81-2.92 (m, 2H), 3.05-3.09 (d, *J* = 15.6 Hz, 1H), 3.61-3.66 (dd, *J* = 8.8, 15.2 Hz, 1H), 3.96 (s, 3H), 5.01-5.11 (m, 2H), 5.28-5.37 (ddd, *J* = 8.0, 10.0, 18.0 Hz, 1H); ¹³C NMR (100M, CDCl₃) δ 8.3, 8.8, 24.8, 26.6, 28.3, 31.8, 36.3, 45.7, 58.5, 63.9, 77.7, 91.3, 97.0, 115.9, 135.7, 141.5, 172.4, 174.2, 175.0, 198.7; IR(neat) 992, 1663, 1710, 1758 cm⁻¹; MS (EI) *m/z* 343, 300, 284, 256, 216, 174, 132; HRMS (ESI) Calcd. for C₂₀H₂₆NO₄ (M+H)⁺: 344.1856, Found 344.1859, Error: 0.9 ppm.

Compound 13. Potassium osmate dehydrate (1 mg) was added to a stirred solution of **12** (15.7 mg, 0.046 mmol) and *N*-methylmorpholine *N*-oxide (31 mg, 0.26 mmol) in acetone (0.8 mL), *t*BuOH (0.4 mL) and water (0.4 mL). After stirring for 3.5 h at room temperature, the reaction mixture was diluted with CH₂Cl₂ (10 mL). The resulting mixture was dried over MgSO₄, filtered and evaporated under reduced pressure to give the crude product as a sticky oil.

The above crude product was dissolved in THF (3 mL) and water (1.5 mL) under argon, followed by addition of NaIO₄ (13.8 mg, 0.065 mmol). After stirring at 0 °C for 3 h, the solution was diluted with CH₂Cl₂ (10 mL). The aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL), and then the combined organic extracts were dried over MgSO₄, filtered and concentrated. Chromatography (20% EtOAc/petroleum ether) afforded the aldehyde **13** (10 mg, 64% yield, two steps) as a white amorphous solid; ¹H NMR (600MHz, CDCl₃) δ 1.24-1.33 (m, 1H), 1.46-1.49 (m, 1H), 1.64-1.71 (m, 1H), 1.81 (s, 3H), 1.84-1.93 (m, 2H), 2.01-2.03 (m, 5H), 2.14-2.18 (m, 1H), 2.25-2.27 (dd, *J* = 5.4, 12 Hz, 1H), 2.93-2.95 (d, *J* = 13.2 Hz, 2H), 3.04-3.08 (m, 1H), 3.65-3.68 (m, 1H), 4.02 (s, 3H), 8.98-8.99 (d, *J* = 4.2 Hz, 1H); ¹³C NMR (150M, CDCl₃) δ 8.5, 8.8, 25.4, 25.5, 26.5, 28.2, 36.6, 47.9, 58.8, 68.3, 78.1, 90.8, 97.4, 137.0, 172.0, 172.2, 174.5, 198.0, 201.9; IR (neat) 1662, 1713, 1759, 2779 cm⁻¹; MS (EI) *m*/*z* 345, 316, 283, 266, 188, 162, 83; HRMS (ESI) Calcd. for C₂₀H₂₄NO₅ (M+H)⁺: 346.1649, Found 346.1643, Error: 1.7 ppm.

Compound 1e. Zn (16.5 mg, 0.25 mmol) was added to a solution of aldehyde **13** (17.9 mg, 0.052 mmol) in dry THF (6 mL) under argon. The solution was heated up and, when reflux started, a solution of ethyl 2-(bromomethyl)acrylate (16.9 mg, 0.088 mmol) in dry THF (5 mL) was added. After stirring for 10 min, the resulting mixture was cooled to room temperature, quenched with water (10 μ L), and concentrated. The residue was dissolved in EtOH (7 mL), and treated with 10% Pd/C (8 mg). The reaction mixture was stirred in an atmosphere of H₂ for 15 h, filtered and concentrated. Chromatography (75% chloroform/petroleum ether) afforded **1e** (14.2 mg, 66% yield, two steps) as a white crystalline solid: mp 189-190 °C; ¹H NMR (600MHz, CDCl₃) δ 1.25-1.26 (d, *J* = 7.2 Hz, 3H), 1.33-1.39 (m, 1H), 1.46-1.54 (m, 3H), 1.75-1.82 (m, 4H), 1.85-1.89 (m, 2H), 1.97-1.98 (m, 1H), 2.02 (s, 3H), 2.10-2.13 (m, 1H), 2.24-2.28 (m, 1H), 2.32-2.36 (ddd, *J* = 5.4, 8.8, 14.2 Hz, 1H), 2.55-2.60 (m, 1H), 2.88-2.95 (m, 2H), 3.36-3.40 (m, 1H), 3.58-3.60 (d, *J* = 15.6 Hz, 1H), 3.83-3.87 (ddd, *J* = 6, 7.8, 11.4 Hz, 1H), 4.00 (s, 3H); ¹³C NMR (150M, CDCl₃) δ 8.4, 8.9, 14.9, 24.9, 25.5, 26.6, 28.4, 34.5, 34.8, 35.8, 47.2, 58.8, 63.6, 79.3, 85.1, 91.6, 96.9, 136.4, 172.5, 173.2, 175.0, 179.7, 197.9; IR (neat) 1662, 1709, 1760 cm⁻¹; MS (EI) *m/z* 415, 372, 316, 272, 188, 162, 83; HRMS (ESI) Calcd. for C₂₃H₃₀NO₆ (M+H)⁺: 416.2068, Found 416.2058, Error: 2.4 ppm.

Compound 1c. Potassium osmate dehydrate (1 mg) was added to a stirred solution of **12** (8.7 mg, 0.025 mmol) and *N*-methylmorpholine *N*-oxide (17.4 mg, 0.13 mmol) in acetone (0.48 mL), *t*BuOH (0.24 mL) and water (0.24 mL). After stirring for 3.5 h at room temperature, the reaction mixture was diluted with CH₂Cl₂ (10 mL). The resulting mixture was dried over MgSO₄, filtered and evaporated under reduced pressure to give the crude product as a sticky oil.

The above crude product was dissolved in THF (2 mL) and water (1 mL) under argon, followed by addition of $NaIO_4$ (54.3 mg, 0.25 mmol). After stirring at 40 °C for 10 h, the solution was diluted

with CH₂Cl₂ (10 mL). The aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL), and then the combined organic extracts were dried over MgSO₄, filtered and concentrated. Chromatography (70% EtOAc/petroleum ether) afforded the **1c** (7 mg, 83% yield, two steps) as a white amorphous solid; ¹H NMR (400MHz, CDCl₃) δ 1.30-1.47 (m, 2H), 1.81-1.84 (d, *J* = 11.2 Hz, 1H), 1.87 (s, 3H), 1.91-2.00 (m, 1H), 2.02 (s, 3H), 2.11-2.18 (m, 2H), 2.27-2.41 (m, 2H), 2.56-2.66 (m, 1H), 2.82-2.88 (t, *J* = 12.8 Hz, 1H), 2.97-3.02 (dd, *J* = 5.6, 10 Hz, 1H), 4.00 (s, 3H), 4.17-4.21 (d, *J* = 14.8 Hz, 1H); ¹³C NMR (100M, CDCl₃) δ 8.4, 9.1, 27.4, 27.5, 29.9, 30.2, 31.9, 41.3, 59.2, 74.5, 90.0, 99.7, 137.0, 168.7, 170.9, 172.9, 175.8, 196.6; IR (neat) 1662, 1699, 1766, 2925 cm⁻¹; MS (EI) *m*/z 331, 286, 221, 181, 164, 131, 83; HRMS (ESI) Calcd. for C₁₈H₂₁NO₅ (M+H)⁺: 332.1492, Found 332.1495, Error: 0.9 ppm.

The structure of our synthetic tetracyclic compound 2 was corroborated by single-crystal. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number: 782619.

The structure of our synthetic Maistemonine (1e) was corroborated by single-crystal. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number: 782618.

S15

mdd

08.341 -----

S19

42·21		
19·22 —		
40.52 40.52		
το.οε		
L0:0L L0:0L L4:20 L4:20 L1:02 85:02 99:28		
65' 0 II ——		
146.20	///	
90'TLT		

£6.112.

mdd

S25

mdd

S28

S29

	This journal is (c) The Royal Socie	ety of Chemistry 2011	1	ΕE
				dd
se.1 —				-0
94.01				10
22.37				50
₽₽.62 ₽₽.62				30
40.04				- 64
				- 0
00.00				°
09 09				- 99
89·9L				1 0
25. <i>TT</i>				80
				06
				100
				110
20.2II ——				50
				50
137.31				0 13
12 881-				4
				150
	0=			160
69°0/I	σ			170
	P C			180
	Ŭ Đ			061
				00
205.28				0 2(
				21
			4	F

S31

S37

mdd

mdd

mdd

Supplementary Material (ESI) for Chemical Communications

mdd