SUPPLEMENTARY MATERIALS

One-step synthesis of metallic and metal oxide nanoaprticles using amino-PEG oligomers as multi-purposes ligands: size and shape control, and quasi-universal solvent dispersability.

Javier Rubio-Garcia,^{a,b,c} Yannick Coppel,^{a,b} Pierre Lecante,^d Christophe Mingotaud,^c Bruno Chaudret^{a,b}, Fabienne Gauffre,^c* and Myrtil L. Kahn,^{a,b}*

Figure captions:

S1 : WAXS (left) and Fourier Transform (right) of (a): ZnO NPs synthesized in presence of bis-propylamine-PEG1500 oligomer (ρ_{lig} = 0.5 and 1.0); (b): Ru NPs synthesized in presence of bis-propylamine-PEG1500 oligomer; (c) and (d): Pd and Pt NPs respectively synthesized in presence of a mixture of ethylamine-PEG750 and carboxymethyl-PEG3000. Reference diffractograms from bulk phases are displayed below the ones of NPs.

S2: NMR spectra of (I-a): mixture of ethylamine-PEG750 and carboxymethyl-PEG3000 oligomers in absence of NPs; (I-b): in presence of Pd NPs; (I-c): in presence of Pt NPs. (II-a): ethylamine-PEG750 oligomer in absence of NPs; (III-b): in presence of Ru NPs; (III-a): ethylamine-PEG750 oligomer in absence of NPs; (III-b): in presence of ZnO NPs ($\rho_{lig} = 2$); (III-c): in presence of ZnO NPs ($\rho_{lig} = 1$).

S3: (a) Emission and (b) excitation spectra for ZnO nanoparticles ($\rho_{lig} = 1$ bis-propylamine-PEG1500) dispersed into THF; (c) Pictures of the same ZnO nanoparticles, dispersed in water under illumination with (left) $\lambda = 320$ nm or (right) $\lambda = 380$ nm.

S4: Amount of ligand (bis-propylamine-PEG1500 oligomer) used in the synthesis and the corresponding size of the ZnO NPs. ^(a) mean diameter and standard deviation.

S5: Organometallic synthesis of metallic NPs using bis-propylamine-PEG1500 molecule (n~30) or ethylamine-PEG750 molecule (n~15).

S1 : WAXS (left) and Fourier Transform (right) of (a): ZnO NPs synthesized in presence of bis-propylamine-PEG1500 oligomer (ρ_{lig} = 0.5 and 1.0); (b): Ru NPs synthesized in presence of bis-propylamine-PEG1500 oligomer; (c) and (d): Pd and Pt NPs respectively synthesized in presence of a mixture of ethylamine-PEG750 and carboxymethyl-PEG3000. Reference diffractograms from bulk phases are displayed below the ones of NPs.

S2: NMR spectra of (I-a): mixture of ethylamine-PEG750 and carboxymethyl-PEG3000 oligomers in absence of NPs; (I-b): in presence of Pd NPs; (I-c): in presence of Pt NPs. (II-a): ethylamine-PEG750 oligomer in absence of NPs; (II-b): in presence of Ru NPs; (III-a): ethylamine-PEG750 oligomer in absence of NPs; (III-b): in presence of ZnO NPs ($\rho_{lig} = 2$); (III-c): in presence of ZnO NPs ($\rho_{lig} = 1$).

S3: (a) Emission and (b) excitation spectra for ZnO nanoparticles ($\rho_{lig} = 1$ bis-propylamine-PEG1500) dispersed into THF; (c) Pictures of the same ZnO nanoparticles, dispersed in water under illumination with (left) $\lambda = 320$ nm or (right) $\lambda = 380$ nm.

Amount of ligand	diameter ^a (nm)
$\rho_{lig} = 0.05$	7.2 ± 2.3
$\rho_{lig} = 0.1$	5.2 ± 1.6
$\rho_{lig} = 0.5$	4.9 ± 0.9
$\rho_{\text{lig}} = 1$	4.0 ± 1.0
$\rho_{lig} = 2$	3.9 ± 0.8

S4: Amount of ligand (bis-propylamine-PEG1500 oligomer) used in the synthesis and the corresponding size of the ZnO NPs. ^(a) mean diameter and standard deviation.

S5: Organometallic synthesis of metallic NPs using bis-propylamine-PEG1500 molecule (n~30) or ethylamine-PEG750 molecule (n~15).