Comparing dendritic with linear esterase peptides by screening SPOT arrays for catalysis

Rasomoy Biswas¹, Noélie Maillard¹, Jacob Kofoed² and Jean-Louis Reymond¹*

¹Department of Chemistry & Biochemistry, University of Berne, Freiestrasse 3, 3012 Bern Switzerland

²Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark

*jean-louis.reymond@ioc.unibe.ch

Supporting Information

SPOT LIBRARY SYNTHESIS AND SCREENING	2
SYNTHESIS	6
KINETIC STUDIES	45

SPOT Library synthesis and screening

SPOT-Library synthesis: The peptides were synthesized on standard amino-modified acid stable cellulose membrane with PEG-Spacer from AIMS Scientific Products GmbH (Germany) in 96-well format using a fully automated MultiPep robot from Intavis Bioanalytical Instruments (Germany) equipped with the AutoSpot module. In the first step, The loading is 400 nmol/cm² from the supplier and was reduced by coupling a 1:4 mixture of Fmoc-Gly-OH and Ac-Gly-OH giving a final loading of approx. 100 nmol/cm². Couplings were performed in triple using HOAt/DIPCDI/collidine preactivation (0.4 µl 1 M DIC in NMP, 0.2 µl 1 M collidine in NMP, 1.2 µ1 0.3 M Fmoc amino acid in 0.3 M HOAt in NMP per SPOT for 30 min). Fmoc deprotection was performed by treating each membrane with 20% piperdine in NMP (2 x 6 ml) for 10 min. Membrane washing was with NMP (6 x 6 ml) and EtOH (6 x 6 ml) via the robot manifold followed by drying. The membrane was derivatized with the first C-terminal amino acid followed by capping with NMP/AcO₂/DIPEA (94:5:1) (SPOT definition) followed by washing. After Fmoc removal, the peptides were synthesized using the repetitive cycle of deprotection, coupling and washing. After synthesis the cellulose membrane was washed with DCM (5 x 20 ml), dried, and the sidechain protection groups were removed by a 2 hour treatment with TFA/TIPS/water (92.5/5.0/2.5 v/v, 50 ml) followed by washings with DCM (5 x 20 ml), NMP (5 x 20 ml), and EtOH (5 x 20 ml). The dried membrane was placed on a transilluminator irradiating at 365 nm to identify the SPOTs. The SPOTs were punched out using a multi punch device available from Intavis Bioanalytical Instruments (Germany) and placed in a 96-well miroplate.

Туре	no. of sequences	no. of residues	no. of histidines
Linear peptides	10	11	3-11
G1 dendrimers	2	13	5
G2 dendrimers	6	20-29	9-12
G3 dendrimers with His:			
- at the core (like RG3)	7	37	1-6
- in intermediate branches	3	37	8-10
- in the outer branches	18	37	8-12
- throughout (like A3C)	50	26-54	12-26

Table S1. Composition of the SPOT esterase library.^{a)}

a) The library was assembled by 11 consecutive coupling of amino acids or diamino acid branching points on a 96well format cellulose support using Fmoc synthesis. All sequences were acetylated at the N-terminus. See Supporting information Table S2 for a complete listing of sequences.

Table S2. List of all SPOT library members ordered by decrease activity in the fluorescence assay with substrate **1** (relative reading at 6 h reaction). Branching of the chain occurs at Dap (= bis-Fmoc-2,3-diaminopropanoic acid) and Lyb (= bis-Fmoc-lysine). Bla = beta-alanine,The N-termini are acetylated.

															Act per
order	X11	X10	X9	X8	X7	X6	X5	X4	Х3	X2	X1	no of AA	NHis	Activity	his
P1	His	11	11	44.64	22.73										
P2	His	Thr	His	Thr	His	Dap	Thr	Dap	His	Dap	Thr	54	26	34.34	7.40
P3	His	Thr	His	Dap	Thr	Dap	His	Thr	Dap	His	Thr	41	19	32.81	9.67
P4	His	Bla	His	Bla	His	Dap	Bla	Dap	His	Dap	Bla	54	26	30.82	6.64
P5	His	Dap	Thr	His	Thr	Dap	His	Thr	Dap	His	Thr	33	15	29.59	11.05
P6	His	Bla	His	Dap	Bla	Dap	His	Bla	Dap	His	Bla	41	19	28.99	8.55
P7	his	Bla	Dap	his	Bla	Dap	his	Bla	Dap	his	Bla	37	15	28.13	10.50
P8	Нур	His	Dap	Нур	His	Dap	Нур	His	Dap	Нур	His	37	15	27.58	10.30
P9	His	Thr	Ala	His	Thr	Dap	His	Thr	Dap	His	Thr	29	11	27.52	14.01
P10	His	Bla	Dap	his	Bla	Dap	his	Bla	Dap	his	Bla	37	15	27.20	10.15
P11	Ser	His	Dap	Ser	His	Dap	Ser	His	Dap	Ser	His	37	15	27.20	10.15
P12	Lys	His	Dap	Lys	His	Dap	Lys	His	Dap	Lys	His	37	15	27.18	10.15
P13	His	Thr	Dap	His	Thr	Ala	His	Thr	Dap	His	Thr	23	9	26.57	16.53
P14	Thr	His	Dap	Thr	His	Dap	Thr	His	Dap	Thr	His	37	15	26.29	9.82
P15	His	Lys	Dap	His	Lys	Dap	His	Lys	Dap	Lys	Lys	37	14	25.40	10.16
P16	Aib	His	Dap	Aib	His	Dap	Aib	His	Dap	Aib	His	37	15	25.14	9.38
P17	Aib	His	Dap	Aib	His	Dap	Aib	His	Dap	Aib	His	37	15	24.91	9.30
P18	His	Thr	His	11	6	24.54	22.91								
P19	Thr	His	Dap	Thr	His	Dap	Thr	His	Dap	Thr	His	37	15	24.15	9.02
P20	His	Thr	Dap	His	Thr	Dap	His	Thr	Ala	His	Thr	20	12	24.13	11.26
P21	His	Dap	Bla	His	Bla	Dap	His	Bla	Dap	His	Bla	33	15	23.75	8.87
P22	His	Thr	Lyb	His	Thr	Lyb	His	Thr	Lyb	His	Thr	37	15	23.60	8.81
P23	Bla	His	Dap	Bla	His	Dap	Bla	His	Dap	Bla	His	37	15	23.37	8.72
P24	Gly	His	Dap	Gly	His	Dap	Gly	His	Dap	Gly	His	37	15	22.50	8.40
P25	His	Lys	His	11	6	22.46	20.97								
P26	His	Arg	His	11	6	21.96	20.50								
P27	Pro	His	Dap	Pro	His	Dap	Pro	His	Dap	Pro	His	37	15	21.52	8.03
P28	Tyr	His	Dap	Tyr	His	Dap	Tyr	His	Dap	Tyr	His	37	15	21.40	7.99
P29	His	Dap	Bla	Dap	His	Dap	Bla	His	Bla	His	Bla	26	12	20.73	9.68
P30	His	Bla	Dap	His	Bla	Dap	His	Bla	Ala	His	Bla	20	12	20.53	9.58
P31	Leu	His	Dap	Leu	His	Dap	Leu	His	Dap	Leu	His	37	15	20.30	7.58
P32	pro	His	Dap	pro	His	Dap	pro	His	Dap	pro	His	37	15	20.27	7.57
P33	His	Bla	Dap	His	Bla	Ala	His	Bla	Dap	His	Bla	23	9	19.70	12.26
P34	His	Aib	Dap	His	Aib	Dap	His	Aib	Dap	His	Aib	37	15	19.63	7.33
P35	His	Bla	Lyb	His	Bla	Lyb	His	Bla	Lyb	His	Bla	37	15	19.29	7.20
P36	Arg	His	Dap	Arg	His	Dap	Arg	His	Dap	Arg	His	37	15	19.25	7.19
P37	His	Gly	Dap	His	Gly	Dap	His	Gly	Dap	His	Gly	37	15	19.00	7.09
P38	His	Val	Dap	His	Bla	Dap	His	Bla	Dap	His	Bla	37	15	18.76	7.01
P39	His	Tyr	Dap	His	Tyr	Dap	His	Tyr	Dap	His	Tyr	37	15	18.76	7.01
P40	Ala	His	Dap	Ala	His	Dap	Ala	His	Dap	Ala	His	37	15	18.76	7.01
P41	leu	His	Dap	leu	His	Dap	leu	His	Dap	leu	His	37	15	17.03	6.36
P42	His	Bla	Ala	His	Bla	Dap	His	Bla	Dap	His	Bla	29	11	16.57	8.44
P43	Tyr	Gly	Dap	Tyr	Ser	Dap	His	His	Dap	His	His	37	6	15.76	14.71

order X11 X10 X9 X8 X7 K5 X5 X4 X3 X2 X1 no A1 I5.49 21.68 P45 His Leu Dap His Leu Dap His Leu Dap His Leu Dap His Lu 37 15 15.34 5.73 P46 His Leu Dap His Thr A3 16 14.29 2.167 P47 His Leu Dap His HIP Dap His HIP Dap His HIP A37 15 14.09 5.26 P52 His Bla Dap His Ang Dap His Ang Dap His Ang Dap His Dap A15 13.26 4.94 P51 His San Dap His Dap His Dap His Dap His Dap Tis																Act per
P44 Tyr Gly Dap His Luo Dap His Hu Dap Hu Hu Dap Hu Hu Hu Hu Dap Hu Hu Hu Hu Hu	order	X11	X10	X9	X8	X7	X6	X5	X4	Х3	X2	X1	no of AA	NHis	Activity	his
P45 His Leu Dap His Thr Ala His Thr Ala His Thr Thr <td>P44</td> <td>Tyr</td> <td>Gly</td> <td>Dap</td> <td>Tyr</td> <td>Ser</td> <td>Dap</td> <td>His</td> <td>His</td> <td>Dap</td> <td>Lvs</td> <td>Lvs</td> <td>37</td> <td>4</td> <td>15.49</td> <td>21.68</td>	P44	Tyr	Gly	Dap	Tyr	Ser	Dap	His	His	Dap	Lvs	Lvs	37	4	15.49	21.68
P46 His Thr Ala His Thr Ala His Thr 13 5 14.87 6.77 P47 His Ieu Dap His Ieu Dap His Thr Dap Als 5.75 P48 His Thr Dap Ais Thr Dap His Alg Thr Dap His Alg Dap His Pro Pro Dap His Alg Dap His Alg Dap His Alg Dap His Alg Dap His Dap Dap His Dap Dap His Dap Dap His His Dap His His Dap His Dap His Dap Dap Dap Dap	P45	His	Leu	Dap	His	Leu	Dap	His	Leu	Dap	His	Leu	37	15	15.34	5.73
P47 His Ieu Dap His Ieu Dap Arg Thr Dap Arg Dap Arg Dap His Hyp Dap His Hyp Dap His Hyp Dap His Arg Dap His Dap Dap His Dap Dap Dap Dap <thdap< th=""> <thdap< th=""> <thdap< th=""></thdap<></thdap<></thdap<>	P46	His	Thr	Dap	His	Thr	Ala	His	Thr	Ala	His	Thr	13	5	14.97	16.77
P48 His Thr Dap His Hyp Dap His Arg Arg <td>P47</td> <td>His</td> <td>leu</td> <td>Dap</td> <td>His</td> <td>leu</td> <td>Dap</td> <td>His</td> <td>leu</td> <td>Dap</td> <td>His</td> <td>leu</td> <td>37</td> <td>15</td> <td>14.88</td> <td>5.56</td>	P47	His	leu	Dap	His	leu	Dap	His	leu	Dap	His	leu	37	15	14.88	5.56
P49 His Hyp Dap His Arg Arg Tis Tis <td>P48</td> <td>His</td> <td>Thr</td> <td>Dap</td> <td>Arg</td> <td>Thr</td> <td>Dap</td> <td>His</td> <td>Thr</td> <td>Dap</td> <td>Arg</td> <td>Thr</td> <td>37</td> <td>10</td> <td>14.79</td> <td>8.28</td>	P48	His	Thr	Dap	Arg	Thr	Dap	His	Thr	Dap	Arg	Thr	37	10	14.79	8.28
P50 His His Dap Pro Pro Dap Pro Dap Gly Gly 37 16 14.12 4.94 P51 His Arg Dap His Arg	P49	His	dvН	Dap	His	dvН	Dap	His	dvН	Dap	His	dvН	37	15	14.65	5.47
P51 His Arg Dap His Arg Dap His Arg Dap His Bila Dap His Bila Dap His Bila Dap His Arg Arg Dap His Arg Arg Arg Dap Dap His Dap Arg Arg Dap Dap His Dap Dap Dap Dap His Dap Dap His Dap Dap <thdap< th=""> Dap Dap <th< td=""><td>P50</td><td>His</td><td>His</td><td>Dap</td><td>Pro</td><td>Pro</td><td>Dap</td><td>Pro</td><td>Pro</td><td>Dap</td><td>Glv</td><td>Glv</td><td>37</td><td>16</td><td>14.12</td><td>4.94</td></th<></thdap<>	P50	His	His	Dap	Pro	Pro	Dap	Pro	Pro	Dap	Glv	Glv	37	16	14.12	4.94
P52 His Bla Dap His Bla Dap His Bla Dap His Sol Sol <td>P51</td> <td>His</td> <td>Ara</td> <td>Dap</td> <td>His</td> <td>Ara</td> <td>Dap</td> <td>His</td> <td>Ara</td> <td>Dap</td> <td>His</td> <td>Ara</td> <td>37</td> <td>15</td> <td>14.09</td> <td>5.26</td>	P51	His	Ara	Dap	His	Ara	Dap	His	Ara	Dap	His	Ara	37	15	14.09	5.26
PS3 His Sam Dap His Dap <td>P52</td> <td>His</td> <td>Bla</td> <td>Dap</td> <td>His</td> <td>Bla</td> <td>Dan</td> <td>His</td> <td>Bla</td> <td>Dan</td> <td>His</td> <td>Bla</td> <td>37</td> <td>15</td> <td>13.83</td> <td>5 16</td>	P52	His	Bla	Dap	His	Bla	Dan	His	Bla	Dan	His	Bla	37	15	13.83	5 16
Test His Dap His Dap His Dap His Dap Arg Dap His Dap Arg Dap Th Thr Dap Thr Thr Thr Thr Thr Thr Thr Dap Thr Thr Dap Thr Thr <thtr> Thr Dap</thtr>	P53	His	Asn	Dap	His	Asn	Dap	His	Asn	Dap	His	Asn	37	15	13 77	5 14
195 His Dap Arg Arg Dap Thr Dap Thr Dap Dap Val His Dap Val Dap His Dap Dap <thdap< th=""> <thdap< th=""> <thdap< th=""></thdap<></thdap<></thdap<>	P54	His	nro	Dap	His	nro	Dap	His	nro	Dap	Hie	nro	37	15	13 70	5.14
125 His Dap Ng Dap Ng Dap Ng Dap His Bla Dap His Bla Dap His Bla Dap His Dap His Dap His La La His Fro Dap La La His Fro Dap La La<	P55	Hie	Hie	Dap	Ara	Ara	Dap	Thr	Thr	Dap	Thr	Thr	37	16	13.70	<u> </u>
130 Vai His Bia Ala His Thr Ala Ala His Thr Ala Ala His Thr Ala Ala His Thr Ala His Ala H	P56	Val	Hie	Dap	Val	Hie	Dap	Val	Hie	Dap	Val	Hie	37	15	13.24	1 0/
157 His Bla Dap His Thr Ala His Thr Thr Ala His Thr Thr Thr Dap His Thr Thr Thr Thr Dap His Thr Thr Thr Thr Dap His Thr Thr Thr Thr Thr Thr Thr Thr T	P57	Hic	Rla	Dap	Hic	Rla	Ala	Hic	Rla	Ala	Hic	Rla	12	5	13.24	1/ 7/
P39 His Dia Day Tits Dia Dia <td>D59</td> <td>hic</td> <td>Bla</td> <td>Dap</td> <td></td> <td>Bla</td> <td>Don</td> <td></td> <td>Bla</td> <td>Dan</td> <td></td> <td>Bla</td> <td>27</td> <td>15</td> <td>10.10</td> <td>14.74</td>	D59	hic	Bla	Dap		Bla	Don		Bla	Dan		Bla	27	15	10.10	14.74
P80 His Thr Ala His Thr Ala His Thr Ala His Thr 11 4 12.27 17.18 P61 His Dap Thr Ala His Thr Ala His Thr 11 4 12.27 17.18 P61 His Dap His Pro Dap Phis Pro 37 12 9.69 4.52 P63 His Pro Dap Phis Pro 37 1 9.21 5.50 P63 His Pro Dap His Pro Dap Thr Ala Na 37 1 9.21 5.50 P63 His Pro Dap Tyr Ser Dap Lyr Lyr Dap Tyr Asp 37 1 9.21 5.50 P64 Hyr Arg Leu His Arg Dap His Arg Dap Arg Asp 37 1 7.31 3.41 P64 Hi	P50			Lyb			Lyb			Dap Lyb			27	15	12.00	4.70
P60 His Thi Ata His Thi Ata His Thi Ata His Thi Thi <td>P60</td> <td></td> <td>Thr</td> <td></td> <td></td> <td>Thr</td> <td></td> <td></td> <td>Thr</td> <td></td> <td></td> <td>Thr</td> <td>11</td> <td>15</td> <td>12.47</td> <td>4.00</td>	P60		Thr			Thr			Thr			Thr	11	15	12.47	4.00
P62 His Ser Dap His Pro Dap His Tr His Dap Arg Arg Arg Arg His Tr T	P60		Den	Ala			Ala			Ala			00	4	11.27	<u> </u>
P63 His Pfo Dap His Tyr Ser Dap Lys Dys Dap Tyr Ser Dap His Tyr Arg Lav His His Arg Lav Arg Arg Arg Arg Arg Arg Arg Arg Arg <td>P61</td> <td>HIS</td> <td>Dap</td> <td>Der</td> <td>Dap</td> <td>HIS</td> <td>Dap</td> <td></td> <td>HIS</td> <td>Der</td> <td>HIS</td> <td>1 nr</td> <td>20</td> <td>12</td> <td>11.78</td> <td>5.50</td>	P61	HIS	Dap	Der	Dap	HIS	Dap		HIS	Der	HIS	1 nr	20	12	11.78	5.50
P64 Tyr Gly Dap Tyr Ser Dap His His Dap Arg Arg Arg Arg Arg Arg Arg His Tyr Ser Dap His Tyr Arg Dap Tyr Ser Dap His Arg Dap Arg Arg Dap Tyr Ser Dap Arg Las Arg Dap Arg Las Arg Dap Arg Las Arg Arg <td>P62</td> <td>HIS</td> <td>Ser</td> <td>Dap</td> <td>HIS</td> <td>Pro</td> <td>Dap</td> <td>Lys</td> <td>Vai</td> <td>Dap</td> <td>Phe</td> <td>Vai</td> <td>3/</td> <td>12</td> <td>9.69</td> <td>4.52</td>	P62	HIS	Ser	Dap	HIS	Pro	Dap	Lys	Vai	Dap	Phe	Vai	3/	12	9.69	4.52
P64 Tyr Gly Dap Tyr Ser Dap Lys Lys Dap Tyr Arg Arg Arg Arg Arg Arg Tyr Arg His Tyr Arg His Tyr Arg His Tyr Tr 4 9.60 113.44 P66 His Tyr Arg His Arg His Arg	P63	HIS	Pro	Dap	HIS	Pro	Dap	HIS	Pro	Dap	HIS	Pro	37	15	9.66	3.61
P66 His Tyr Arg His Tyr Arg His Tyr Arg His Tyr Arg His Tyr 11 4 8.96 12.55 P67 Tyr Gly Dap Tyr Ser Dap His Arg Dap Arg Leu His	P64	Tyr	Gly	Dap	Tyr	Ser	Dap	HIS	HIS	Dap	Arg	Arg	37	4	9.60	13.44
P66 His Lyr Arg His Arg Arg Dap His Arg Dap Arg Asp Bar State	P65	<u>I yr</u>	Gly	Dap	<u>I yr</u>	Ser	Dap	Lys	Lys	Dap	Inr	HIS	37	1	9.21	51.59
P67 Tyr Gly Dap Iyr Ser Dap His Arg Asp Dap Arg Asp 37 3 8.00 14.93 P68 Thr Thr Dap His Arg Leu His Arg Lau His Arg Lau His Arg Dap Pro His Arg Dap Leu His Arg Dap Lau His Arg Dap Lau Arg Dap Lau Arg Dap Lau Arg Lau Arg L	P66	His	lyr	Arg	His	lyr	Arg	His	lyr	Arg	His	l yr	11	4	8.96	12.55
P68ThrThrDapHisHisDapArgAspDapArgAsp3787.855.49P69LeuHisArgLeuHisArgLeuHisArgLeuHisArg1147.4610.45P70HisArgLeuHisArgLeuHisArgLeuHisArg1147.4410.42P71HisSerDapHisLeuDapPheAlaDapPheAsp37157.302.73P73HisThrDapHisThrDapHisThrDapHisThr37166.512.28P74HisSerDapGlyGlyDapGlyGlyDapTit45.838.16P75HisBlaAlaHisBlaAlaHisBlaAlaHisSa86.234.36P75HisSerDapGlyArgDapLyrVal3786.234.36P76TyrGlyDapTyrSerDapArgDapThrHis3715.3129.74P77HisSerDapGlyArgDapHisArgDapHisArg5.013.50P78HisLeuDapHisArgDapTrLaDap <td< td=""><td>P67</td><td>Tyr</td><td>Gly</td><td>Dap</td><td>Tyr</td><td>Ser</td><td>Dap</td><td>His</td><td>Arg</td><td>Dap</td><td>His</td><td>Arg</td><td>37</td><td>3</td><td>8.00</td><td>14.93</td></td<>	P67	Tyr	Gly	Dap	Tyr	Ser	Dap	His	Arg	Dap	His	Arg	37	3	8.00	14.93
P69LeuHisArgLeuArgLeuArgLeuArgLaArgLaArgLaArgLaIII	P68	Thr	Thr	Dap	His	His	Dap	Arg	Asp	Dap	Arg	Asp	37	8	7.85	5.49
P70HisArgLeuHisArgLeuHisArgLeuHisArgLuHisArgLuHisArgLuHisArgLuLuDapPheAlaDapPheArg1147.4410.42P71HisThrDapHisThrDapHisThrDapHisThrDapHisThrDapHisThrDapHisThrDapHisThrDapHisThrDapHisThrDapHisThrDapHisThrDapHisDapHisDapHisDapHisDapDapQu <td< td=""><td>P69</td><td>Leu</td><td>His</td><td>Arg</td><td>Leu</td><td>His</td><td>Arg</td><td>Leu</td><td>His</td><td>Arg</td><td>Leu</td><td>His</td><td>11</td><td>4</td><td>7.46</td><td>10.45</td></td<>	P69	Leu	His	Arg	Leu	His	Arg	Leu	His	Arg	Leu	His	11	4	7.46	10.45
P71 His Ser Dap His Leu Dap He Ala Dap Phe Asp 37 12 7.31 3.41 P72 His Thr Dap His Thr Dap His Thr Dap His Thr Dap Gly Arg Gly Gly Gly Arg Gly Gly Gly Arg Gly Gly Gly Arg Gly Gly Arg Gly Gly Gly Arg Gly G	P70	His	Arg	Leu	His	Arg	Leu	His	Arg	Leu	His	Arg	11	4	7.44	10.42
P72HisThrDapHisThrDapHisThrDapHisThrDapGlyGlyDapGlyGlyDapGlyGlyDapGlyGlyDapGlyGlyDapGlyGlyDapGlyGlyDapGlyGlyDapGlyGlyDapGlyGlyDapGlyAlaHisBlaAlaLevDapClub <td>P71</td> <td>His</td> <td>Ser</td> <td>Dap</td> <td>His</td> <td>Leu</td> <td>Dap</td> <td>Phe</td> <td>Ala</td> <td>Dap</td> <td>Phe</td> <td>Asp</td> <td>37</td> <td>12</td> <td>7.31</td> <td>3.41</td>	P71	His	Ser	Dap	His	Leu	Dap	Phe	Ala	Dap	Phe	Asp	37	12	7.31	3.41
P73HisHisDapGlyGlyDapGlyGlyDapGly37166.512.28P74HisSerDapGlyArgDapLysValDapIleAla3786.234.36P75HisBlaAlaHisBlaAlaHisBlaAlaHisBlaAlaHisBla1145.838.16P76TyrGlyDapTyrSerDapArgArgDapThrBla3715.3129.74P77HisSerDapGlyArgDapThrAlaDapIleVala3785.013.50P78HisLeuDapHisSerDapTyrAlaDapIleAlaDapIleVala3784.716.59P80HisArgDapGlySerDapIleValDapIleVal3784.563.19P81HisProDapGlySerDapHisBlaDapAlgDapAlg2.631.62P80HisArgDapAspHisBlaDapAlgAlg37152.620.98P84HisDapAspHisDapAspHisDapGlyDapGly3782.601.82<	P72	His	Thr	Dap	His	Thr	Dap	His	Thr	Dap	His	Thr	37	15	7.30	2.73
P74HisSerDapGlyArgDapLysValDapIleAla3786.234.36P75HisBlaAlaHisBlaAlaHisBlaAlaHisBla1145.838.16P76TyrGlyDapTyrSerDapArgDapArgDapThrHisSla3715.3129.74P77HisSerDapGlyArgDapIleAlaDapIleVal3785.013.50P78HisLeuDapHisSerDapTyrAlaDapIleVal3785.013.50P78HisLeuDapHisSerDapThrLeuDapFileAlaDapIleVal3784.716.59P80HisArgDapGlySerDapIleValDapFileAla3783.762.63P81HisProDapGlySerDapHisDapAlgAlf6.291.62P83AspHisDapAspHisDapAlgAlg3782.601.82P84HisSerDapGlyDapGlyGlyDapGly3782.601.82P84HisSerDapGly	P73	His	His	Dap	Gly	Gly	Dap	Gly	Gly	Dap	Gly	Gly	37	16	6.51	2.28
P75HisBlaAlaHisBlaAlaHisBlaAlaHisBlaAlaHisBla1145.838.16P76TyrGlyDapTyrSerDapArgDapThrHis3715.3129.74P77HisSerDapGlyArgDapIleAlaDapIleVal3785.013.50P78HisLeuDapHisSerDapTyrAlaDapIleVal3785.013.50P78HisLeuDapHisSerDapTyrAlaDapIleVal3785.013.50P78HisLeuDapHisArgDapThrLeuDapSerGly3744.716.59P80HisArgDapGlySerDapIleValDapIleVal3784.563.19P81HisProDapGlySerDapIleValDapAla37102.891.62P83AspHisDapArgBlaDapAlaArgBla37102.891.62P84HisSerDapGlyDapGlyDapGlyGlyJapGly3782.601.82P85HisGlyDap	P74	His	Ser	Dap	Gly	Arg	Dap	Lys	Val	Dap	lle	Ala	37	8	6.23	4.36
P76TyrGlyDapTyrSerDapArgArgDapThrHis3715.3129.74P77HisSerDapGlyArgDapIleAlaDapIleVal3785.013.50P78HisLeuDapHisSerDapTyrAlaDapIleAsp37125.002.33P79GlyTyrDapHisArgDapThrLeuDapSerGly3744.716.59P80HisArgDapGlySerDapIleValDapSerGly3744.716.59P80HisArgDapGlySerDapIleValDapIleVal3784.563.19P81HisProDapGlySerDapIleValDapIleVal3784.563.19P81HisProDapGlyProDapLysThrDapIleAla3783.762.63P82HisBlaDapArgBlaDapArgBlaDapArgBla37152.620.98P84HisSerDapGlyGlyDapGlyGlyGlyGly3782.601.82P85HisGlyDap	P75	His	Bla	Ala	His	Bla	Ala	His	Bla	Ala	His	Bla	11	4	5.83	8.16
P77HisSerDapGlyArgDapIleAlaDapIleVal3785.013.50P78HisLeuDapHisSerDapTyrAlaDapIleAsp37125.002.33P79GlyTyrDapHisArgDapThrLeuDapSerGly3744.716.59P80HisArgDapGlySerDapIleValDapIleVal3784.563.19P81HisProDapGlySerDapIleValDapIleVal3784.563.19P81HisProDapGlySerDapIleValDapIleVal3784.563.19P81HisProDapGlySerDapIleValDapIleVal3783.762.63P82HisBlaDapArgBlaDapHisBlaDapArgBla37102.891.62P83AspHisDapAspHisDapAspHisDapAspHis3782.601.82P84HisSerDapGlyGlyDapGlyGlyDapGlyGly3782.601.82P85HisGly<	P76	Tyr	Gly	Dap	Tyr	Ser	Dap	Arg	Arg	Dap	Thr	His	37	1	5.31	29.74
P78HisLeuDapHisSerDapTyrAlaDapIleAsp37125.002.33P79GlyTyrDapHisArgDapThrLeuDapSerGly3744.716.59P80HisArgDapGlySerDapIleValDapIleVal3784.563.19P81HisProDapGlyProDapLysThrDapIleVal3784.563.19P81HisProDapGlyProDapLysThrDapIleAla3783.762.63P82HisBlaDapArgBlaDapHisBlaDapArgBla37102.891.62P83AspHisDapAspHisBapAspHisDapAspHis37152.620.98P84HisSerDapGlyDapGlyDapGlyDapGly3782.601.82P85HisGlyDapGlyGlyDapGlyDapGly3782.661.80P86HisTyrDapGlyGlyDapGlyGlyDapGly3781.981.39P88HisThrDapGlyGlyDap	P77	His	Ser	Dap	Gly	Arg	Dap	lle	Ala	Dap	lle	Val	37	8	5.01	3.50
P79GlyTyrDapHisArgDapThrLeuDapSerGly3744.716.59P80HisArgDapGlySerDapIleValDapIleVal3784.563.19P81HisProDapGlyProDapLysThrDapIleVal3784.563.19P81HisProDapGlyProDapLysThrDapIleVal3783.762.63P82HisBlaDapArgBlaDapHisBlaDapArgBla37102.891.62P83AspHisDapAspHisDapAspHisDapAspHis37152.620.98P84HisSerDapGlyDapGlyDapGlyDapGly3782.601.82P85HisGlyDapGlyGlyDapGlyDapGly3782.661.80P86HisTyrDapGlyGlyDapGlyDapGly3782.441.71P87HisAlaDapGlyGlyDapGlyGly3781.821.27P88HisThrDapGlyDapGlyGlyDapAspAsp<	P78	His	Leu	Dap	His	Ser	Dap	Tyr	Ala	Dap	lle	Asp	37	12	5.00	2.33
P80HisArgDapGlySerDapIleValDapIleVal3784.563.19P81HisProDapGlyProDapLysThrDapIleAla3783.762.63P82HisBlaDapArgBlaDapHisBlaDapArgBla37102.891.62P83AspHisDapAspHisDapAspHisDapAspHis3782.620.98P84HisSerDapGlyGlyDapGlyGlyDapGly3782.601.82P85HisGlyDapGlyGlyDapGlyGlyDapGlyGly3782.661.80P86HisTyrDapGlyGlyDapGlyGlyDapGlyGly3782.661.80P86HisTyrDapGlyGlyDapGlyGlyGly3781.981.39P86HisThrDapGlyGlyDapGlyGlyGly3781.821.27P87HisAlaDapGlyGlyDapGlyGlyGly3781.821.27P89HisThrDapHisAspDapHisAspDap </td <td>P79</td> <td>Gly</td> <td>Tyr</td> <td>Dap</td> <td>His</td> <td>Arg</td> <td>Dap</td> <td>Thr</td> <td>Leu</td> <td>Dap</td> <td>Ser</td> <td>Gly</td> <td>37</td> <td>4</td> <td>4.71</td> <td>6.59</td>	P79	Gly	Tyr	Dap	His	Arg	Dap	Thr	Leu	Dap	Ser	Gly	37	4	4.71	6.59
P81HisProDapGlyProDapLysThrDapIleAla3783.762.63P82HisBlaDapArgBlaDapHisBlaDapArgBla37102.891.62P83AspHisDapAspHisDapAspHisDapAspHis37152.620.98P84HisSerDapGlyGlyDapGlyDapGly3782.601.82P85HisGlyDapGlyGlyDapGlyDapGlyGly3782.661.82P85HisGlyDapGlyGlyDapGlyGlyDapGly3782.661.82P86HisTyrDapGlyGlyDapGlyDapGlyGly3782.441.71P87HisAlaDapGlyGlyDapGlyGlyDapGly3781.981.39P88HisThrDapGlyGlyDapGlyGlyDapGly3781.821.27P89HisThrDapHisAspDapAspAspDapAspAsp37151.750.65P91HisLeuDapGlyLapHisAspDapHis	P80	His	Arg	Dap	Gly	Ser	Dap	lle	Val	Dap	lle	Val	37	8	4.56	3.19
P82HisBlaDapArgBlaDapHisBlaDapArgBla37102.891.62P83AspHisDapAspHisDapAspHisDapAspHis37152.620.98P84HisSerDapGlyGlyDapGlyDapGlyDapGly3782.601.82P85HisGlyDapGlyGlyDapGlyGlyDapGly3782.561.80P86HisTyrDapGlyGlyDapGlyGlyDapGlyGly3782.441.71P87HisAlaDapGlyGlyDapGlyGlyDapGlyGly3782.441.71P87HisAlaDapGlyDapGlyGlyDapGlyGlyDapS182.441.71P87HisAlaDapGlyDapGlyGlyDapGlyGly3781.39P88HisThrDapGlyDapGlyGlyDapGlyGly3781.821.27P89HisThrDapAspAspDapAspAspDapAspAsp37151.750.65P90HisAspDapHisAspDap<	P81	His	Pro	Dap	Gly	Pro	Dap	Lys	Thr	Dap	lle	Ala	37	8	3.76	2.63
P83AspHisDapAspHisDapAspHisDapAspHisSatSa	P82	His	Bla	Dap	Arg	Bla	Dap	His	Bla	Dap	Arg	Bla	37	10	2.89	1.62
P84HisSerDapGlyGlyDapGlyGlyDapGly3782.601.82P85HisGlyDapGlyGlyDapGlyGlyDapGly3782.561.80P86HisTyrDapGlyGlyDapGlyGlyDapGly3782.441.71P87HisAlaDapGlyGlyDapGlyGlyDapGly3781.981.39P88HisThrDapGlyGlyDapGlyDapGlyGly3781.821.27P89HisThrDapGlyGlyDapGlyDapGlyGly3781.821.27P89HisThrDapHisThrDapAspAspDapAspAsp37121.800.84P90HisAspDapHisAspDapHisAspDapHisAsp0.65P91HisLeuDapGlyLeuDapTyrThrDapIleVal3781.651.16P92ThrHisDapGlyDapGlyDapGlyDapGly3781.461.03P93HisProDapGlyGlyDapGlyDapGlyGly378 <td>P83</td> <td>Asp</td> <td>His</td> <td>Dap</td> <td>Asp</td> <td>His</td> <td>Dap</td> <td>Asp</td> <td>His</td> <td>Dap</td> <td>Asp</td> <td>His</td> <td>37</td> <td>15</td> <td>2.62</td> <td>0.98</td>	P83	Asp	His	Dap	Asp	His	Dap	Asp	His	Dap	Asp	His	37	15	2.62	0.98
P85HisGlyDapGlyGlyDapGlyGlyDapGlyS782.561.80P86HisTyrDapGlyGlyDapGlyGlyDapGlyGly3782.441.71P87HisAlaDapGlyGlyDapGlyGlyDapGlyGly3782.441.71P87HisAlaDapGlyGlyDapGlyDapGlyGly3781.981.39P88HisThrDapGlyGlyDapGlyDapGlyGly3781.821.27P89HisThrDapGlyDapAspAspDapAspAspAsp37121.800.84P90HisAspDapHisAspDapHisAspDapHisAsp0.84P90HisAspDapHisAspDapHisAspDapHisAsp0.65P91HisLeuDapGlyLeuDapTyrThrDapIleVal3781.651.16P92ThrHisDapGlyDapGlyDapGlyJar121.620.75P93HisProDapGlyGlyDapGlyDapGlyJar81.481.03 <td>P84</td> <td>His</td> <td>Ser</td> <td>Dap</td> <td>Gly</td> <td>Gly</td> <td>Dap</td> <td>Gly</td> <td>Gly</td> <td>Dap</td> <td>Gly</td> <td>Gly</td> <td>37</td> <td>8</td> <td>2.60</td> <td>1.82</td>	P84	His	Ser	Dap	Gly	Gly	Dap	Gly	Gly	Dap	Gly	Gly	37	8	2.60	1.82
P86HisTyrDapGlyGlyDapGlyGlyDapGlyGly3782.441.71P87HisAlaDapGlyGlyDapGlyGlyDapGlyGly3781.981.39P88HisThrDapGlyGlyDapGlyGlyDapGlyGly3781.981.39P88HisThrDapGlyGlyDapGlyGlyDapGly3781.821.27P89HisThrDapHisThrDapAspAspDapAspAsp37121.800.84P90HisAspDapHisAspDapHisAspDapHisAsp0.84P90HisAspDapHisAspDapHisAspDapHisAsp0.84P90HisAspDapHisAspDapHisAspDapHisAsp0.84P90HisAspDapHisAspDapHisAspDapHisAsp0.65P91HisLeuDapGlyLeuDapTyrThrDapIleVal3781.651.16P92ThrHisDapGlyDapGlyDapGly3781.481.03P93H	P85	His	Gly	Dap	Gly	Gly	Dap	Gly	Gly	Dap	Gly	Gly	37	8	2.56	1.80
P87HisAlaDapGlyGlyDapGlyGlyDapGlyGly3781.981.39P88HisThrDapGlyGlyDapGlyGlyDapGlyGly3781.821.27P89HisThrDapHisThrDapAspAspDapAspAsp37121.800.84P90HisAspDapHisAspDapHisAspDapHisAsp0.65P91HisLeuDapGlyLeuDapTyrThrDapIleVal3781.651.16P92ThrHisDapHisThrDapArgLysDapLysGly37121.620.75P93HisProDapGlyGlyDapGlyGlyDapGly3781.481.03P94HisLeuDapGlyDapGlyDapGlyGly3781.451.02P95AspSerHisLeuAspSerHisLeuAspSerHis1131.172.18P96HisPheDapGlyDapGlyDapGlyDapGly3781.000.70	P86	His	Tyr	Dap	Gly	Gly	Dap	Gly	Gly	Dap	Gly	Gly	37	8	2.44	1.71
P88HisThrDapGlyGlyDapGlyGlyDapGlyGly3781.821.27P89HisThrDapHisThrDapAspAspDapAspAsp37121.800.84P90HisAspDapHisAspDapHisAspDapHisAsp37151.750.65P91HisLeuDapGlyLeuDapTyrThrDapIleVal3781.651.16P92ThrHisDapGlyLeuDapTyrThrDapIleVal3781.651.16P92ThrHisDapHisThrDapArgLysDapLysGly37121.620.75P93HisProDapGlyGlyDapGlyDapGly3781.481.03P94HisLeuDapGlyDapGlyDapGlyGly3781.451.02P95AspSerHisLeuAspSerHisLeuAspSerHis1131.172.18P96HisPheDapGlyDapGlyDapGlyDapGly3781.000.70	P87	His	Ála	Dap	Gly	Gly	Dap	Gly	Gly	Dap	Gly	Gly	37	8	1.98	1.39
P89HisThrDapHisThrDapAspAspAspDapAspAspStringP90HisAspDapHisThrDapAspAspDapAspAspAspString37121.800.84P90HisAspDapHisAspDapHisAspDapHisAspDap151.750.65P91HisLeuDapGlyLeuDapTyrThrDapIleVal3781.651.16P92ThrHisDapHisThrDapArgLysDapLysGly37121.620.75P93HisProDapGlyGlyDapGlyDapGlyGly3781.481.03P94HisLeuDapGlyDapGlyDapGlyGly3781.451.02P95AspSerHisLeuAspSerHisLeuAspSerHis1131.172.18P96HisPheDapGlyDapGlyDapGlyDapGly3781.000.70	P88	His	Thr	Dap	Glv	Glv	Dap	Glv	Glv	Dap	Glv	Glv	37	8	1.82	1.27
P90HisAspDapHisDapHisDapHisDapHisDapHisDapHisDapHisDapHisDapHisDapHisDapHisLeuAspSerHisLeuAspSerHisLinDapIntervalDapHisHisDapHisLeuAspSerHisLinDapHisLin<	P89	His	Thr	Dap	His	Thr	Dap	Asp	Asp	Dap	Asp	Asp	37	12	1.80	0.84
P91HisLeuDapGlyLeuDapTyrThrDapIleVal3781.651.16P92ThrHisDapGlyLeuDapTyrThrDapIleVal3781.651.16P92ThrHisDapHisThrDapArgLysDapLysGly37121.620.75P93HisProDapGlyDapGlyDapGlyGly3781.481.03P94HisLeuDapGlyDapGlyDapGlyGly3781.451.02P95AspSerHisLeuAspSerHisLeuAspSerHis1131.172.18P96HisPheDapGlyDapGlyDapGlyDapGly3781.000.70	P90	His	Asn	Dan	His	Asn	Dan	His	Asn	Dan	His	Asn	37	15	1.75	0.65
P92ThrHisDapHisThrDapArgLysDapLysGly37121.620.75P93HisProDapGlyGlyDapGlyGlyDapGly3781.481.03P94HisLeuDapGlyGlyDapGlyGlyJ781.451.02P95AspSerHisLeuAspSerHisLeuAspSerHis1131.172.18P96HisPheDapGlyDapGlyDapGlyGlyAsp3781.000.70	P91	His	Leu	Dan	Glv	Leu	Dan	Tvr	Thr	Dan	lle	Val	37	8	1 65	1 16
P93HisProDapGlyGlyDapGlyGlyDapGlyGl	P92	Thr	Hie	Dan	Hie	Thr	Dan	Ara	ve	Dan	\/e	Glv	37	12	1.62	0.75
P94HisLeuDapGlyDapGlyDapGlyGlyDapGlyGlyS781.451.02P95AspSerHisLeuAspSerHisLeuAspSerHis1131.172.18P96HisPheDapGlyDapGlyDapGlyDapGly3781.000.70	- <u>- 22</u>	Hie	Pro	Dan	Glv	Glv	Dan	Glv	Glv	Dan	Glv	Gly	37	8	1 48	1.03
P95 Asp Ser His Leu Asp Ser His Leu Asp Ser His 11 3 1.17 2.18 P96 His Phe Dap Gly Dap Gly Dap Gly Dap 0.17 2.18	P0/	Hie		Dan	Gly	Gly	Dan	Gly	Gly	Dan	Gly	Gly	37	<u>8</u>	1 45	1.00
P96 His Phe Dap Gly Gly Dap Gly Gly Dap Gly Gly Car 37 8 1 00 0 70	P05	Δen	Sor	Hie		Δen	Ser	Hie		Δen	Sor	Hie	11	ر د	1 17	2 1 8
	P06	Hie	Pho	Dan	Gly	Gly	Dan	Glv	Gly	Dan	Glv	Glv	37	<u>8</u>	1.00	0.70

Figure S1. Screening of the 96-member SPOT library for hydrolysis of 1-acetoxy-3,6,8-pyrene trisulfonate **1**. The catalysts are ordered by decreasing activity and labeled as PosX (SPOT-library member) or **PX** (resynthesized, purified product, see Table 1). Conditions: paper disks with each SPOT-library member were cut out of the synthesis paper, transferred to a 96-well microtiter plate, washed with water and methanol, and suspended in 100 µL each of a solution of 80 µM substrate **1** in 5 mM aqueous citrate buffer pH 5.5. The formation of product **2** was recorded by fluorescence at 3h and 6 h from the fluorescence reading ($\lambda_{exc} = 450\pm25$ nm, $\lambda_{em} = 530\pm12$ nm). The activity is given at the 6h timepoint as the relative fluorescence intensity compared to the lowest reading in the library (Pos96). The activity per histidine is expressed relative to the smallest calculated activity per histidine, which is for the peptide dendrimer sequence with 8 histidine residues Pos96: (AcHisPhe)₈(*Dap*GlyGly)₄(*Dap*GlyGly)₂*Dap*GlyGly.

Synthesis

Materials and Reagents. Peptide syntheses were performed manually in a syringe reactor. All reagents, amino acids and their derivatives were either purchased from Aldrich, Fluka (Switzerland) or Advanced Chemtach (USA); resins from Rapp Polymere GmbH, Germany. Amino acids were used as the following derivative: Fmoc-Ala-OH, Fmoc-Gly-OH, Fmoc-His(trt)-OH, Fmoc-Ser(*t*-Bu)-OH, Fmoc-Thr(*t*-Bu)-OH, Fmoc-Lys(Boc)-OH, Fmoc-Tyr(*t*-Bu)-OH. For the dendrimer, as branching unit was used Fmoc-Dap(Fmoc)-OH (where Dap is Diaminopropionic Acid). Analytical HPLC was carried out with HPLC-grade acetonitrile and miliQ deionized water on Waters 600 system with Waters 996 photodiode array detector (Column: Waters Atlantis dC18 5 μ m, 100 x 4.6 mm) for analytical HPLC or Waters PrepLC Preparative Chromatography System with Waters 2489 absorbance Detector (Column: Atlantis ® PrepT3, OBDTM C18, 5 μ m, 30 x 100 mm) for preparative HPLC. For dendrimer purification and identification solvent A is 0.1% TFA in H₂O and solvent D is 0.1% TFA in H₂O/CH₃CN 40/60.MS spectra were provided by the Service of Mass Spectrometry of the Department of Chemistry and Biochemistry, University of Berne. Kinetic measurements were carried out using a CytoFluor® Series 4000 multi-well plate reader from PerSeptive Biosystems.

General procedures for peptide synthesis.

Procedure A (manual synthesis in syringe reactors): Prior to every reaction the resin was swelled in CH2Cl2. The resins Tentagel HL RAM from Rapp Poylmere (0.39 mmol/gm), were acylated with each amino acid (3.0 eq) using PyBOP (3.0 eq) and DIEA (5.0 eq) in NMP. The Fmoc protecting groups were removed with a solution of 20% piperidine in DMF (2×20 min). At the end of the synthesis, the resin was acylated with acetic anhydride/CH2Cl2 (1:1) for 30 mins. The cleavage was carried out with TFA/TIS/H₂O (94:5:1) for 4 h. The peptide was precipitated with methyl tert-butyl ether (in case of unsuccessful precipitation, the solution was evaporated) and then dissolved in a water/acetonitrile mixture then subjected to purification. All peptides were purified by preparative HPLC and obtained as TFA salts after lyophilization.

Procedure B (using automated peptide synthesizer PSW 1100 from Chemspeed Technology, Switzerland for major part of the synthesis): Prior to every reaction the resin was swelled in CH2Cl2. The resins Tentagel S RAM (0.24 mmol/gm) from Rapp Poylmere, were acylated with each amino acid (3.0 eq) using procedure PyBOP (3.0 eq) and DIEA (5.0 eq) in NMP. The Fmoc protecting groups were removed with a solution of 20% piperidine in DMF (2×20 min). At the end of the synthesis,The resin was taken out of the synthesizer and it was acylated with acetic anhydride/CH2Cl2 (1:1) for 30 mins. The cleavage was carried out with TFA/TIS/H2O (94:5:1) for 4 h. The peptide was precipitated with methyl tert-butyl ether (in case of unsuccessful precipitation, the solution was evaporated) and then dissolved in a water/acetonitrile mixture then subjected to purification. All peptides were purified by preparative HPLC and obtained as TFA salts after lyophilization.

His1: AceHis-NH₂

Starting with 100 mg Tentagel HL RAM from Rapp Poylmere (0.39 mmol/gm), the peptide 1-His was obtained using procedure A as colorless solid after cleavage from the resin and preparative RP-HPLC purification (2.3 mg, 23.9 %).

Analytical RP-HPLC: tR = 2.2 min (A/D = 100/0 to A/D = 0/100 in 15 min)

MS (ES+) calcd for $C_8H_{12}N_4O_2$ [M+H]⁺ 197.2, found: 197.2

Representative Michaelis-Menten plots for determination of kcat and KM

His2: AcHisHis-NH₂

Starting with 100 mg Tentagel HL RAM from Rapp Poylmere (0.39 mmol/gm), the peptide 2-His was obtained using procedure A as colorless solid after cleavage from the resin and preparative RP-HPLC purification (2.9 mg, 13.2 %).

Analytical RP-HPLC: $tR = 1.49 \min (A/D = 100/0 \text{ to } A/D = 0/100 \text{ in } 10 \min)$

Representative Michaelis-Menten plots for determination of kcat and KM

His3: AcHisHisHis-NH₂

Starting with 100 mg Tentagel HL RAM from Rapp Poylmere (0.39 mmol/gm), the peptide 3-His was obtained using procedure A as colorless solid after cleavage from the resin and preparative RP-HPLC purification (2.3 mg, 7.2 %).

Analytical RP-HPLC: tR = 1.5 min (A/D = 100/0 to A/D = 0/100 in 10 min)

MS (ES+) calcd for $C_{20}H_{26}N_{10}O_4$ [M+H]⁺ 471.49, found: 471.2; [M+2H]²⁺/2: 236.2, found: 236.4; [M+3H]²⁺/3 157.3, found: 157.8.

Representative Michaelis-Menten plots for determination of *kcat* and *K*M

His4: AcHisHisHisHis-NH₂

Starting with 100 mg Tentagel HL RAM from Rapp Poylmere (0.39 mmol/gm), the peptide 4-His was obtained using procedure A as colorless solid after cleavage from the resin and preparative RPHPLC purification (2.5 mg, 6 %).

Analytical RP-HPLC: tR = 1.5 min (A/D = 100/0 to A/D = 0/100 in 10 min)

MS (ES+) calcd for $C_{26}H_{33}N_{13}O_5$ [M+H]⁺ 608.6, found: 608.2; [M+2H]²⁺/2: 304.8, found: 304.8; [M+3H]³⁺/3: 203.5, found: 203.4; [M+4H]⁴⁺/4: 152.9, found: 153.0; [M+5H]⁴⁺/5:122.5, found: 122.6.

Representative Michaelis-Menten plots for determination of kcat and KM

His5: AcHisHisHisHisHis-NH₂

Starting with 150 mg Tentagel S RAM from Rapp Poylmere (0.24 mmol/gm), the peptide 5-His was obtained using procedure B as colorless solid after cleavage from the resin and preparative RP-HPLC purification (10 mg, 21 %).

Analytical RP-HPLC: tR = 6.53 min (A/D = 100/0 to A/D = 0/100 in 15 min)

MS (ES+) calcd for $C_{32}H_{40}N_{16}O_6 [M+H]^+$ 745.7, found: 745.2; $[M+2H]^{2+}/2$: 373.3, found: 373.2; $[M+3H]^{3+}/3$: 249.1, found: 249.2.

Representative Michaelis-Menten plots for determination of kcat and KM

His6: AcHisHisHisHisHisHis-NH₂

Starting with 150 mg Tentagel S RAM from Rapp Poylmere (0.24 mmol/gm), the peptide 6-His was obtained using procedure B as colorless solid after cleavage from the resin and preparative RP-HPLC purification (12.3 mg, 22 %).

Analytical RP-HPLC: tR = 6.9 min (A/D = 100/0 to A/D = 0/100 in 15 min)

MS (ES+) calcd for $C_{38}H_{47}N_{19}O_7$ [M+H]⁺ 882.9, found: 882.4; [M+2H]²⁺/2: 441.9, found:442; [M+3H]³⁺/3: 294.9, found: 295; [M+4H]⁴⁺/4: 221.4, found: 221.4.

Representative Michaelis-Menten plots for determination of kcat and KM

His7: AcHisHisHisHisHisHisHis-NH₂

Starting with 150 mg Tentagel S RAM from Rapp Poylmere (0.24 mmol/gm), the peptide 5-His was obtained using procedure B as colorless solid after cleavage from the resin and preparative RP-HPLC purification (13 mg, 17 %).

Analytical RP-HPLC: tR = 7.2 min (A/D = 100/0 to A/D = 0/100 in 15 min)

MS (ES+) calcd for $C_{44}H_{54}N_{22}O_8$ [M+H]⁺ 1020.0, found: 1019.4; [M+2H]²⁺/2: 510.5, found:510.4; [M+3H]³⁺/3: 340.6, found: 340.4; [M+4H]⁴⁺/4: 255.8, found: 255.8.

Representative Michaelis-Menten plots for determination of kcat and KM

His8: AcHisHisHisHisHisHisHisHis-NH₂

Starting with 150 mg Tentagel S RAM from Rapp Poylmere (0.24 mmol/gm), the peptide 8-His was obtained using procedure B as colorless solid after cleavage from the resin and preparative RP-HPLC purification (10.5 mg, 14 %).

Analytical RP-HPLC: tR = 7.4 min (A/D = 100/0 to A/D = 0/100 in 15 min)

MS (ES+) calcd for $C_{50}H_{61}N_{25}O_9$ [M+H]⁺ 1157.2, found: 1156.6; [M+2H]²⁺/2: 579.1, found: 579.0; [M+3H]³⁺/3: 386.4, found: 386.2; [M+4H]⁴⁺/4: 290.0, found: 290.0.

Representative Michaelis-Menten plots for determination of kcat and KM

His9: AcHisHisHisHisHisHisHisHisHis-NH₂

Starting with 150 mg Tentagel S RAM from Rapp Poylmere (0.24 mmol/gm), the peptide 5-His was obtained using procedure B as colorless solid after cleavage from the resin and preparative RP-HPLC purification (14.3 mg, 17 %).

Analytical RP-HPLC: tR = 7.6 min (A/D = 100/0 to A/D = 0/100 in 15 min)

MS (ES+) calcd for $C_{56}H_{68}N_{28}O_{10}$ [M+H]⁺ 1294.2, found: 1293.6; [M+2H]²⁺/2: 647.6, found:647.4; [M+3H]³⁺/3: 432.0, found: 432.0; [M+4H]⁴⁺/4: 324.3, found: 324.4; [M+5H]⁵⁺/5: 259.6, found: 259.8.

Representative Michaelis-Menten plots for determination of kcat and KM

His10: AcHisHisHisHisHisHisHisHisHisHisHis-NH2

.

Starting with 150 mg Tentagel S RAM from Rapp Poylmere (0.24 mmol/gm), the peptide 10-His was obtained using procedure B as colorless solid after cleavage from the resin and preparative RP-HPLC purification (14.9 mg, 16 %)

Analytical RP-HPLC: tR = 7.8 min (A/D = 100/0 to A/D = 0/100 in 15 min)

MS (ES+) calcd for $C_{62}H_{75}N_{31}O_{11}$ M: 1430.46, $[M+2H]^{2+}/2$: 715.7, found:716; $[M+3H]^{3+}/3$: 477.8.0, found: 477.8; $[M+4H]^{4+}/4$: 324.3, found: 324.4; $[M+5H]^{5+}/5$: 259.6, found: 259.8.

Representative Michaelis-Menten plots for determination of kcat and KM

His11: AcHisHisHisHisHisHisHisHisHisHisHis-NH2

Starting with 300 mg Tentagel S RAM from Rapp Poylmere (0.24 mmol/gm), the peptide 11-His was obtained using procedure B as colorless solid after cleavage from the resin and preparative RP-HPLC purification (18 mg, 9%).

Analytical RP-HPLC: tR = 6.4 min (A/D = 100/0 to A/D = 0/100 in 10 min)

MS (ES+) calcd for $C_{68}H_{83}N_{34}O_{12}$ M: 1566.7, $[M+2H]^{2+}/2$: 784.3, found: 784.8; $[M+3H]^{3+}/3$: 523.2, found: 523.4; $[M+4H]^{4+}/4$: 392.6, found: 393.0; $[M+5H]^{5+}/5$: 314.3, found: 314.4.

Representative Michaelis-Menten plots for determination of kcat and KM

His12: AcHisHisHisHisHisHisHisHisHisHisHisHis-NH₂

Starting with 150 mg Tentagel S RAM from Rapp Poylmere (0.24 mmol/gm), the peptide 12-His was obtained using procedure B as colorless solid after cleavage from the resin and preparative RP-HPLC purification (15.3 mg, 14 %).

Analytical RP-HPLC: tR = 8.0 min (A/D = 100/0 to A/D = 0/100 in 15 min)

MS (ES+) calcd for $C_{74}H_{89}N_{37}O_{13}$ M: 1704.7, $[M+2H]^{2+}/2$: 853.3, found:853.2; $[M+3H]^{3+}/3$: 569.2, found: 569.2; $[M+4H]^{4+}/4$: 427.2, found: 427.2; $[M+5H]^{5+}/5$: 341.9, found: 342.0; $[M+6H]^{6+}/6$: 285.1, found 285.2.

Representative Michaelis-Menten plots for determination of kcat and KM

His13: AcHisHisHisHisHisHisHisHisHisHisHisHisHis-NH2

Starting with 150 mg Tentagel S RAM from Rapp Poylmere (0.24 mmol/gm), the peptide 13-His was obtained using procedure B as colorless solid after cleavage from the resin and preparative RP-HPLC purification (16mg, 13 %).

Analytical RP-HPLC: tR = 7.5 min (A/D = 100/0 to A/D = 0/100 in 15 min)

MS (ES+) calcd for $C_{80}H_{96}N_{40}O_{14}$ M: 1841.9, $[M+2H]^{2+}/2$: 921.5, found:921.8; $[M+3H]^{3+}/3$: 614.9, found: 614.8; $[M+4H]^{4+}/4$: 461.5, found: 461.4; $[M+5H]^{5+}/5$: 369.4, found: 369.4; $[M+6H]^{6+}/6$: 308.0, found 308.2.

Representative Michaelis-Menten plots for determination of kcat and KM

Starting with 150 mg Tentagel S RAM from Rapp Poylmere (0.24 mmol/gm), the peptide 14-His was obtained using procedure B as colorless solid after cleavage from the resin and preparative RP-HPLC purification (7.4mg, 6 %).

Analytical RP-HPLC: tR = 7.7 min (A/D = 100/0 to A/D = 0/100 in 15 min)

MS (ES+) calcd for $C_{86}H_{103}N_{43}O_{15}$ M:1979.0, $[M+2H]^{2+}/2$: 990.5, found:990.2; $[M+3H]^{3+}/3$: 660.6, found: 660.4; $[M+4H]^{4+}/4$: 495.7, found: 495.8; $[M+5H]^{5+}/5$: 396.8, found: 396.8; $[M+6H]^{6+}/6$: 330.8, found 330.8.

Representative Michaelis-Menten plots for determination of kcat and KM

Starting with 300 mg Tentagel S RAM from Rapp Poylmere (0.24 mmol/gm), the peptide 15-His was obtained using procedure B as colorless solid after cleavage from the resin and preparative RP-HPLC purification (34mg, 12 %).

Analytical RP-HPLC: tR = 8.2 min (A/D = 100/0 to A/D = 0/100 in 15 min)

MS (ES+) calcd for $C_{92}H_{110}N_{46}O_{16}$ M:2116.16, found 2116.0

Representative Michaelis-Menten plots for determination of kcat and KM

P25: AcHisLysHisLysHisLysHisLysHisLysHis-NH₂

Starting with 300 mg Tentagel S RAM from Rapp Poylmere (0.24 mmol/gm), the peptide (His-Lys)_n was obtained using procedure B as colorless solid after cleavage from the resin and preparative RP-HPLC purification (55.42 mg, 50 %).

Analytical RP-UPLC: tR = 1.097 min (A/D = 100/0 to A/D = 0/100 in 2.2 min)

Acq. File: Mass reconstruction of +Q1: 0.1 Electrospray Low Resolution ACN / H2O (1:1) + 1% HFo Positive Ion Mode Mass reconstruction of +Q1: 0.100 to 0.500 min from Sample 1 (RB 97 t29) of Biswas RB 97 t29.wiff (Turbo Spray) Max, 5.2e6 cps. 1523.0 5.2e6 5.0e6 4.5e6 4.0e6 3.5e6 3.006 Intensity, cps 2.5e6 2.0e6 1.5e6 1.0e6 5.0e5 0.0 1300 1320 1340 1460 Mass, amu 1360 1380 1400 1420 1440 1480 1500 1520 1580 1580 1540 1620 1600 ARS University of Bern Applied Biosystems / Sciex QTrap Acq. Date: N/A Department of Chemistry and Biochemistry Acq. Time: N/A

MS (ES+) calcd for $C_{68}H_{107}N_{29}O_{12}$ M:1522.76, found 1523.03

Representative Michaelis-Menten plots for determination of kcat and KM

P60: AcHisThrAlaHisThrAlaHisThrAlaHisThr-NH₂:

Starting with 300 mg Tentagel S RAM from Rapp Poylmere (0.24 mmol/gm), the peptide (HisThrAla)_n was obtained using procedure B as colorless solid after cleavage from the resin and preparative RP-HPLC purification (29.4 mg, 33 %).

Analytical RP-UPLC: tR = 1.082 min (A/D = 100/0 to A/D = 0/100 in 2.2 min)

MS (ES+) calcd for $C_{51}H_{76}N_{20}O_{16}$ M: 1225.27, found 1225.32

Representative Michaelis-Menten plots for determination of kcat and KM

P60A: AcHisAlaAlaHisAlaAlaHisAlaAlaHisAla-NH2

Starting with 300 mg Tentagel S RAM from Rapp Poylmere (0.24 mmol/gm), the peptide $(HisAla)_n$ was obtained using procedure B as colorless solid after cleavage from the resin and preparative RP-HPLC purification (42 mg, 52 %).

Analytical RP-UPLC: tR = 1.104 min (A/D = 100/0 to A/D = 0/100 in 2.2 min)

MS (ES+) calcd for $C_{47}H_{68}N_{20}O_{12}$ M: 1105.17, found 1105.20

Representative Michaelis-Menten plots for determination of kcat and KM

P65: (AcTyrGly)₈(DapTyrSer)₄(DapLysLys)₂(DapThrHis)-NH₂

Starting with 250 mg Tentagel S RAM from Rapp Poylmere (0.24 mmol/gm), the peptide $(AceTyrGly)_8(DapTyrSer)_4(DapLysLys)_2(DapThrHis)-NH_2$ was obtained using procedure A as colorless solid after cleavage from the resin and preparative RP-HPLC purification (13.7 mg, 5 %)

Analytical RP-UPLC: tR = 1.540 min (A/D = 100/0 to A/D = 0/100 in 2.2 min)

MS (ES+) calcd for $C_{207}H_{275}N_{51}O_{62}$ M: 4469.7, found 4469.7

Representative Michaelis-Menten plots for determination of kcat and KM

Kinetic Studies

Kinetic Measurements. Kinetic measurements were carried out using a CytoFluor Series 4000 multiwell plate reader from PerSeptive Biosystems. Peptides were used as 20 µM (1-His to 4-His), 15 μ M (5-His, 6-His), or 5 μ M (7-His to 14-His) freshly prepared solutions in milliQ water. Solutions were prepared by dissolving the dry TFA salts of peptides. Substrate solutions for the Michaelis-Menten kinetics were prepared by serial dilution by a factor 2/3 (7x) of a freshly prepared 3.0 mM solution of substrate in milliQ water (final concentration on the plate 60-1000 μ M. Eight solutions of 8-hydroxypyrene-1,3,6-trisulfonic acid sodium (HPTS) salt ranging from 0 μ M to 100 μ M in buffer were used for the calibration curve. Bis-Tris 30 mM (pH7) or citrate 15 mM (pH5.5) was used as buffer, and the pH was adjusted to the desired value with HCl 1.0 M and NaOH 1.0 M using a Metrohm 692 pH/ion meter. In a typical experiment, using a multichannel pipet, 40 μ L of dendrimer was mixed with 40 μ L of buffer and 40 μ L of substrate in a Costar flatbottom polystyrene 96-well-plate (150 μ L). The formation of **HPTS** was followed by fluorescence emission using absorbance filter 450/50 and emission filter 530/25. The gain was adjusted using the signal of the calibration curve prior to every experiment (typically a signal 45 000-55 000 for the 100 μ M HPTS well). The calibration curve (40 μ L of HPTS, 40 μ L of buffer, and 40 μ L of H₂O) and the blank (40 μ L of substrate, 40 μ L of buffer, and 40 μ L of H₂O) were recorded for every experiment in the same time. The temperature inside the instrument was adjusted to 34.0 °C. Kinetic experiments were followed for typically 180 min. The data points were measured every 90 s. Fluorescence data were converted to product concentration by means of the calibration curve. Initial reaction rates were calculated from the steepest linear part observed in the curve that gives fluorescence versus time, typically between 4000 and 2000 s.

Measurement of Apparent Rate Enhancements and Kinetic Parameters *k***cat and** *K***M.** *V***cat** is the apparent rate in the presence peptide catalyst; *V*un is the rate in buffer alone. The observed rate enhancement is defined as *V*net/*V*un with *V*net = *V*cat - *V*un. Michaelis- Menten parameters *k*cat (rate constant) and *K***M** (Michaelis constant) were determined from the linear double reciprocal plot 1/Vnet versus 1/[S] (where [S] is the substrate concentration). The rate constant *k*uncat without catalyst was calculated from the slope of the linear curve that gives *V*un (as product concentration per time) v*ersus* substrate concentration [S].

cpd	Sequence ^{a)}	mg ^{a)}	%	MS calc	MS obs	$k_{\rm cat}/k_{\rm uncat}$	$K_{ m M}$, $\mu { m M}$	$(k_{\rm cat}/K_{\rm M})/k_2^{\rm c)}$
His1	AcHNH ₂	2.3	24	197.2	197.2	286 ±36	3044±588	3±0.18
His2	AcHHNH ₂	2.9	13	334.3	334.2	840±86	1116±69	27±0.36
His3	AcHHHNH ₂	2.3	7.2	471.5	471.2	1045±78	283±26	132±4
His4	AcHHHHNH ₂	2.5	6	608.6	608.2	1108±42	181±18	219±6
His5	AcHHHHHNH ₂	10	21	745.7	745.2	1333±43	178±8	268±7
His6	AcHHHHHHNH ₂	12.2	22	882.9	882.4	1533±71	144 ± 6	379±2
His7	AcHHHHHHHNH ₂	13	17	1020.0	1019.4	2519±481	103±18	794±128
His8	AcHHHHHHHHHNH ₂	10.5	14	11.57.2	1156.6	3002±533	102±13	954±140
His9	AcHHHHHHHHHHH ₂	14.3	17	1294.3	1293.6	3031±528	90±9	1092±131
His10	AcHHHHHHHHHHHHH ₂	14.9	16	1430.5	1430.6	3808±616	99±5	1232±108
His11	АсННННННННННН ₂	18	9	1566.7	1568	3536±482	95±5	1207±132
His12	АсНННННННННННИМ ₂	14.3	14	1704.7	1704.9	5186±917	109±11	1540±175
His13	AcHHHHHHHHHHHHHHHHH	16	13	1841.9	1842.0	4863±925	101±17	1561±255
His14	АсННННННННННННН ₂	7.4	6	1979.0	1978.9	5247±1010	100±13	1689±224
Hi15	АсНННННННННННННН ₂	34	12	2116.2	2116.0	6035±186	86±6	2201±191
P25	AcHKHKHKHKHKHNH ₂	55.4	50	1522.8	1523.9	2948±58	47±4	2371±196
P60	AcHTAHTAHTAHTNH ₂	29.4	33	1525.3	1525.3	768±13	143±3	203±6
P60A	AcHAAHAAHAAHANH ₂	42	52	1105.2	1105.2	834±16	156±13	203±14
P65	(AcYG) ₈ (BYS) ₄ (BKK) ₂ BTHNH ₂	13.7	5	4469.7	4469.7	620±10	122 ± 4	192±3

Table S3. Synthesis and catalytic parameters of selected peptides.

^{a)} B = branching diaminopropionic acid *Dap*. ^{b)} All products were prepared by Fmoc-SPPS on TGR resin and purified by preparative RP-HPLC. ^{c)} Assay conditions: aqueous 5 mM citrate buffer, pH 5.5, 34°C, Catalyst concentration 20 μ M (for His1-His4),15 μ M (for His5-His6, P60, P60A), 5 μ M (for His7- His14), 3.75 μ M (for His15,P25,P65), 58.5-1000 μ M substrate **1** (8 different concentrations). 120 μ L assays in microtiterplate wells were followed by fluorescence ($\lambda_{exc} = 450\pm25$ nm, $\lambda_{em} = 530\pm12$ nm). All kinetics were run in triplicate. Parameters were obtained from Lineweaver-Burk plots. k_2 is the 2nd order rate constant for the hydrolysis of **1** under the same conditions, $k_2 = 1.00$ M⁻¹min⁻¹, and the spontaneous background reaction amounts to $k_{uncat} = 3.58$ E-05 min⁻¹.

	\mathbf{k}_{cat} (min ⁻¹)	$K_{M}\left(\mu M\right)$	$k_{cat}/K_M (min^{-1}M^{-1})$	$\mathbf{k}_{cat}/\mathbf{k}_{uncat}$	k _{uncat} (min ⁻¹)
KCl conc. (mM)					
0	0.19±5.82E-03	86±6	2207±191	6035±186	3.13E-05
5	0.19±1.07E-02	77±14	2578±383	5264±289	3.69E-05
10	0.21±2.69E-03	91±8	2277±240	5669±74	3.64E-05
50	0.19±6.58E-03	93±7	2025±218	5004±176	3.74E-05
100	0.18±9.14E-03	91±3	1945±165	4558±235	3.89E-05
200	0.16±9.60E-03	102±6	1579±142	3906±233	4.12E-05
300	0.16±8.23E-03	127±10	1282±206	3927±199	4.15E-05
500	0.13±7.49E-03	185±4	723±28	2913±163	4.58E-05
Pyrene-1,3.6,8- tetrasulfonate conc. (µM)					
0	0.16±1.34E-02	83±6	1992±164	4705±785	3.55E-05
5	0.16±1.24E-02	86±9	1921±205	4695±734	3.55E-05
10	0.17±1.09E-02	90±8	1853±178	4755±689	3.41E-05
20	0.17±1.29E-02	104±7	1620±146	4819±769	3.19E-05
40	0.17±1.35E-02	104±12	1644±200	4836±737	3.51E-05
80	0.16±1.39E-02	113±6	1427±94	4624±789	3.55E-05
160	0.16±1.26E-02	132±10	1215±95	4587±717	3.55E-05
Citrate conc.(mM)					
5	0.21±2.67E-03	107±2	1942±6	4314±114	4.81E-05
10	0.22±4.18E-03	119±10	1824±188	4447±251	4.87E-05
20	0.26±8.02E-03	210±3	1225±27	4834±265	5.34E-05
30	0.30±1.17E-02	373±63	837±119	5481±507	5.62E-05
40	0.37±1.27E-02	492±21	742±8	6452±364	5.67E-05

Table S4: Influence of ionic strength (KCl), Pyrene-1,3,6,8-tetrasulfonic acid and citric acid oncatalytic properties of His15 .

Analysis of lysine acylation. A 100 µM solution of peptide (P25, P65 or His11) in aqueous 2 mM citrate buffer pH 5.5 containing 1 mM of substrate 1 (total volume 750 µL, final pH value 5.5) was incubated at 25°C and analyzed at 10 min, 30 min, 1 h, 2h, 6 h and 18 h. Ninhydrin tests. 0.3 microliter of reaction solution were deposited with a glass capilary on a TLC plate. The plate was dried and stained with a ninhydrin solution (1.0 g ninhydrin, 3 mL AcOH, 100 mL n-butanol). In each test, a control solution of the same peptide without substrate 1 was also analyzed. The ninhydrin test with His11 was negative in all cases. Reactions of P25 and P65 with 1 gave colored spots until 6 h reaction indicative of free amino groups. At 18h (overnight) the test was negative. MALDI-TOF analysis. 5 µL aliquots were diluted in 0.1 mL 0.5% aq. HCOOH and applied to MALDI-TOF (positive mode). MS of **His11** did not show detectable acetylation even after 24 hours of reaction. For the linear peptide P25 (five Lysines), a monoacetylated product (1564.8) and a trace of diacetylated (1606.8) product are visible after 10 min. reaction, but the non-acetylated peptide (1522.7) along with its Na and NaK adducts dominate the spectra. With increasing time the triacetylated (1648.8, tetraacetylated (1690.9), and pentaacetylated (1732.9) products are formed. For P65 after 90 mins the non-acetylated dendrimer (4469.7) is the major peak, with small amounts of the monoacetylated product (4511.7). After 6 hours of reaction the diacetylated product predominates (MW4553.8).

P25 after 10 mins of reaction: MALDI-TOF MS: **P25** calc. for $C_{68}H_{107}N_{29}O_{12}$ 1522.7, obs. 1523.8 (M⁺), 1545.8 (M+Na⁺); **monoacetyl P25** calc. for $C_{70}H_{109}N_{29}O_{13}$ 1564.8, Obs, 1565.8 (M⁺); **diacetyl P25** calc. for $C_{72}H_{111}N_{29}O_{14}$ 1606.8 (M⁺), obs. 1608.8.

P25 after 70 mins of reaction: MALDI-TOF MS: **P25** calc. for $C_{68}H_{107}N_{29}O_{12}$ 1522.7, obs. 1523.5 (M⁺), 1545.5 (M+Na⁺), 1587.5 (M+Na⁺+HCOOH); **monoacetyl P25** calc. for $C_{70}H_{109}N_{29}O_{13}$ 1564.8, Obs, 1565.8 (M⁺); **diacetyl P25** calc. for $C_{72}H_{111}N_{29}O_{14}$ 1606.8 (M⁺), obs. 1608.8; **triacetyl P25** calc. for $C_{74}H_{113}N_{29}O_{15}$ 1648.8 (M⁺), Observed 1649.6; **tetraacetyl P25** calc. for $C_{76}H_{115}N_{29}O_{16}$ 1690.9 (M⁺), obs.1691.8; **pentaaacetyl P25** calc. for $C_{78}H_{117}N_{29}O_{17}$ 1732.9 (M⁺), obs. 1733.7.

P25 after 18 hours of reaction: MALDI-TOF MS: **P25** calc. for $C_{68}H_{107}N_{29}O_{12}$ 1522.7, observed 1625.9 (M+Na⁺+2HCOOH), 1714.1 (M⁺+Citric acid), 1756.2 (M⁺+Na₂Citrate); **monoacetyl P25** calc. for $C_{70}H_{109}N_{29}O_{13}$ 1564.8, Obs, 1565.6 (M⁺); **diacetyl P25** calc. for $C_{72}H_{111}N_{29}O_{14}$ 1606.8 (M⁺), obs. 1608.6; **triacetyl P25** calc. for $C_{74}H_{113}N_{29}O_{15}$ 1648.8 (M⁺), Observed 1649.6; **tetraacetyl P25** calc. for $C_{76}H_{115}N_{29}O_{16}$ 1690.9 (M⁺), obs.1691.8; **pentaaacetyl P25** calc. for $C_{78}H_{117}N_{29}O_{17}$ 1732.9 (M⁺), obs. 1734.1.

P65 after 100 mins of reaction: **MALDI-TOF MS: P65** calc. for $C_{207}H_{275}N_{51}O_{62}$ 4469.7, obs. 4470.0 (M⁺). **Monoacetyl P65** calc. for $C_{209}H_{277}N_{51}O_{63}$ 4511.4, obs. 4512.5 (M⁺).

 $\begin{array}{l} \textbf{P65} after \ 6 \ hours \ of \ reaction: MALDI-TOF \ MS: \ \textbf{Monoacetyl P65} \ calc. \ for \ C_{209}H_{277}N_{51}O_{63} \ 4511.4, \ obs. \\ 4512.5 \ (M^+); \ \textbf{diacetyl P65} \ calc. for \ C_{211}H_{279}N_{51}O_{64} \ 4553.8, \ obs. \ 4555.7 (M^+). \end{array}$

His11 after 10 mins of reaction: MALDI-TOF MS: His11 calc. for C₆₈H₈₂N₃₄O₁₂ 1567.6, obs. 1568.3(M⁺)

His11 after 24 hours of reaction: MALDI-TOF MS: His11 calc. for C₆₈H₈₂N₃₄O₁₂ 1567.6. Obs. 1569.6(M⁺)

