Supporting Information

Metal-ion Responsive Redox Polyelectrolyte Multilayers

Experimental Section

Chemicals and Solutions. 3-Mercapto-1-propanesulfonic acid sodium salt, MPS (Aldrich); Cysteamine (Aldrich); poly(acrylic acid) sodium salt, PAA (Aldrich, 35% in water Mw 100000); poly(allylamine) chloride salt, PAH (Aldrich Mw 56000) and poly(sodium vinyl-sulfonate), PVS (25 wt. % solution in water, Aldrich) were used as supplied. Other reagents were analytical grade and were used without further purification. Polyelectrolyte solutions were prepared with 18 MΩ.cm Milli-Q (Millipore) deionized water and their pH was adjusted to pH 7 (PAH-OsCN, PVS and PAH) or pH 4 (PAA-OsCN) using either HNO₃ or NaOH 0.1 M. The polyelectrolyte concentrations were 10 mM for PVS and PAH. The redox polymers PAH-OsCN and PAA-OsCN were adsorbed from 2 mM solutions, as determined from the UV-vis spectrum of working solution and the $ε_{MLCT}$ ([Os(CN₅)py]³⁻) = 5460 M⁻¹ cm⁻¹¹.

Synthesis of PAH-OSCN. The redox polyelectrolyte PAH-OSCN was prepared as described previously² from a pyridine modified poly(allylamine) (PAH-py) (prepared according refs. 2 and 3, see NMR spectrum in Figure 1S) and the complex $K_2[Os(CN)_5NO]$.H₂O, prepared and purified according to the literature^{1, 4, 5}. The complex-substituted polymer was purified by dialysis against NaCl 0.5 M + HNO₃ 1 mM for 2 days and against MilliQ water for 5 days.

Figure 1S: ¹H NMR spectra of PAH-py. * HDO/H₂O (suppressed)

The identity of the product was analyzed by UV-VIS in solution, FTIR in KBr pellet and XPS (NMR was not performed because the freeze dried solid was insoluble in any available deuterated solvent). The FTIR spectrum (Figure 2S-A and 2S-B) shows a very intense band at 2035 cm⁻¹ that is absent in the PAH-py spectrum and can be assigned to the C=N stretching mode in the reduced -Os(CN)₅ group. Both the PAH-OsCN and PAH-py shows a small band at 3060 cm⁻¹ and several bands in the range 1600-1200 cm⁻¹ (i.e. the band at 1414 cm⁻¹) that can be assigned to pyridine aromatic C-H stretching mode and ring stretching vibrations, respectively⁶. The UV-vis spectra of PAH-OsCN (Figure 2S-C) shows the metal to ligand charge transfer (MLCT) band at 324 nm, close to the literature value for the complex $[Os(CN)_5pv]^{3-}$, $\lambda_{MICT} = 318 \text{ nm}^{1}$. The XPS spectra (recorded for a (PAH-OsCN/PVS)₈PAH-OsCN multilayer, see Figure 3S) shows well defined peaks in the Os 4f and N 1s regions. The N 1s peak can be deconvoluted into three peaks. The highest BE peak (402.3 eV) is assigned to protonated amino groups and pyridine groups⁷. Deprotonation of these groups decreases the BE, giving rise to the peak at 400.4 eV, which can be assigned to the convolution of unprotonated amino and pyridine moieties⁷. Finally the lowest BE peak (398.3 eV) can be assigned to the CN ligand in the osmium complex^{8, 9}. The atomic N(CN)/Os ratio determined from these spectra is 4.4, close to the expected value of 5.

Figure 2S. Transmittance FTIR spectra in KBR pellet for PAH-py and PAH-OsCN in the 3800-2600 cm⁻¹ (A) and 2200-700 cm⁻¹ (B) regions. C. UV-vis spectra for a PAH-OsCN in solution.

Figure 3S: XPS spectra for a (PAH-OsCN/PVS)₈PAHOsCN in the Os 4f (A) and N 1s (B) regions.

Synthesis of PAA-OsCN.

The osmium pentacyano modified poly(acrylic acid) was prepared from pyridine modified poly(acrylic acid) (PAA-py) and the complex $K_2[Os(CN)_5NO].H_2O.$

PAA-py was synthesized by mixing 200 mg of PAA sodium salt (2.1 mmol) dissolved in 10 ml of anhydrous N-Methyl-2-pyrrolidone (NMP) with 500 mg of N,N'-dicyclohexylcarbodiimide (DCC) and 300 mg of N-Hydroxysuccinimide (NHS) dissolved in 5 ml of anhidrous NMP. The mixture was heated at 60°C for 1 hour. After that period, the N,N'-dicyclohexylurea precipitate was filtered and 360 µl of picolylamine (3.3 mmol) were added to the solution. The reaction was left to proceed overnight at 60°C, the final solution was diluted with water and purified by dialysis against MilliQ water for a week. The final product was analyzed by ¹H NMR (Figure 4S) and FTIR in KBr pellet (Figure 5S). The FTIR spectrum shows a small band at 3060cm⁻¹ and several bands in the region 1600-1200 cm⁻¹ that correspond to the pyridine groups⁶.

PAA-OsCN was prepared by dissolving 40 mg of $K_2[Os(CN)_5NO]$. H_2O and 20 µl of N_2H_4 in 5 ml of methanol:water 1:1. Attack of the NO group by hydrazine after 24 hours at room temperature was confirmed by the disappearance of its characteristic visible

absorption band at 420 nm ⁴. The solution was mixed with 70 mg of PAA-py dissolved in water and the final pH was set to 6 with acetic acid. The reaction was left to proceed for 3 days at 65°C under Ar atmosphere and the final product was purified by dialysis against NaCl 0.5 M for 2 days, followed by dialysis against MilliQ water for a week.

The identity and purity of the final product was confirmed by ¹H NMR (Figure 4S). The H_a y H_b peaks in PAA-py spectra split after $Os(CN)_5^{3-}$ coordination to some of the pyridine groups. These observation is consistent with the chemical displacements of aromatic protons in pyridine and $[Fe(CN)_5py]^{3-10, 11}$. Additional spectroscopic evidence for the proposed structure is given by the presence of the CN stretching band around 2035 cm⁻¹ in the FTIR absorption spectra in KBr pellet (Figure 5S) and the MLCT band of the osmium complex at 318 nm (λ_{MLCT} = 318 nm for $[Os(CN)_5py]^{3-1}$) in the UV-VIS absorption spectra in water solution.

Figure 4S: ¹H NMR spectra for PAA-py and PAA-OsCN. * HDO/H₂O (suppressed), ** unidentified impurity.

Figure 5S. Transmittance FTIR spectra in KBR pellet for PAA-py and PAA-OsCN in the 3800-2600 cm⁻¹ (A) and 2200-700 cm⁻¹ (B) regions. * NO_3^- band from HNO₃ used to bring the solution to the final pH (1380 cm⁻¹).C. UV-vis spectra for a PAA-OsCN in solution.

Surface Modification. Silicon (100) substrates coated with 200 nm gold layer on a 20 nm titanium and 20 nm palladium adhesion layer by thermal evaporation (Edwards Auto 306 vacuum coating system) were employed as electrodes and substrates for ATR-FTIR and XPS spectroscopies.

Electrodes were electrochemically cleaned by potential cycling in 2 M sulfuric acid between 0.2 and 1.6 V at 10 V.s⁻¹, followed by one scan at 0.1 V.s⁻¹ to check for surface contamination and determine the electrochemically active area from the reduction peak of gold oxide¹². Clean gold film substrates were primed either with sulfonate or amino groups by immersion in a 50 mM MPS solution in H_2SO_4 10 mM for 30 min or in 0.1 mg/ml cysteamine in ethanol for 2 hours, respectively.

After thiol adsorption and rising with water, the first polyelectrolyte layer was deposited on the thiol-modified Au surface by 15 min dipping in PAH-OsCN or PAA-OsCN solution for Au/MPS and Au/cysteamine, respectively, followed by rinsing with Milli-Q water. The next and subsequent layers were deposited onto the modified

surface by alternate immersion in polyelectrolyte solutions for 15 min and rinsing with Milli-Q water until the desired number of layers was achieved. In the case where HOPG was used as a substrate, multilayer built up was performed on the freshly cleaved surface as described above, employing PAH-OsCN in the first adsorption step.

Electrochemical Experiments. Cyclic voltammetry measurements were carried out at room temperature with an Autolab PGSTAT 30 potentiostat (Autolab, Ecochemie, Holland) in a purpose built three electrode Teflon cell, with an electrode exposed area of approximately 0.25 cm² delimited by an inert O-ring. A Ag/AgCl; 3 M KCl (0.210 V vs. NHE) was employed as reference electrode and all electrode potentials herein are quoted with respect to it; a platinum gauze auxiliary electrode of large area was used.

Attenuated Total Reflection Infrared Spectroscopy: ATR measurements were performed with a Nicolet Magna 560 FTIR spectrometer equipped with a Spectra-Tech Foundation Thunderdome single reflection ATR Germanium crystal and a MCT-A cryogenic detector. Spectra were acquired with a 2 cm⁻¹ spectral resolution integrating 1000 interferogram scans.

X-Ray Photoelectron Spectroscopy. X-ray Photoelectron Spectroscopy measurements (XPS) were performed under UHV conditions (base pressure $< 5.10^{-10}$ mbar) in a SPECS UHV spectrometer system equipped with a 150 mm mean radius hemispherical electron energy analyzer and a nine channeltron detector. XPS spectra were acquired at a constant pass energy of 20 eV using an un-monochromated MgKa (1253.6 eV) source operated at 12.5 kV and 20 mA and a detection angle of 30 degrees with respect to the sample normal. Quoted binding energies are referred to the Au $4f_{7/2}$ emission at 84 eV. Atomic ratios were calculated from the integrated intensities of core levels after instrumental and photoionization cross-section corrections.

Effect of different cations on the electrochemical response of PAH-OsCN/PVS multilayers

Figure 6S. Effect of different metal ions on the redox response of $(PAH-OsCN/PVS)_3PAHOs-CN$ multilayers. Films were immersed for 5 minutes in a 10 mM solution of the metal ion, rinsed with water and tested with CV (black lines). The electrodes were then dipped in EDTA 10 mM for 5 minutes, rinsed and the CV was measured again (red dashed lines). Scan rate: 50 mV.s⁻¹.

Cyclic Voltammetry experiments for HOPG modified electrodes in a broad electrochemical window.

Figure 7S: Cyclic voltammograms for a $(PAH-OsCN/PVS)_4PAHOs-CN$ multilayer on HOPG in KNO₃ 0.2 M (black line) and KNO₃ 0.2 M + Zn²⁺ 1mM (red dashed line). Scan rate: 50 mV.s⁻¹.

References

- **1.** Slep LD, Baraldo LM, Olabe JA. Synthesis and Electronic Structure of Pentacyanoosmate(II) Complexes with N-Heterocyclic Ligands. *Inorg. Chem.* . 1996;35:6327-6333.
- 2. Tagliazucchi M, Méndez De Leo L, Cadranel A, Baraldo LM, Völker E, Bonazzola C, Calvo E, Zamlynny V. PM IRRAS spectroelectrochemistry of layer-by-layer self-assembled polyelectrolyte multilayers. *J. Electroanal. Chem.* 2010;In press.
- **3.** Calvo EJ, Etchenique R, Danilowicz C, Diaz L. Electrical Communication between Electrodes and Enzymes Mediated by Redox Hydrogels. *Analytical Chemistry*. 1996;68(23):4186-4193.
- **4.** Baraldo LM, Bessega MS, Rigotti GE, Olabe JA. Crystal and Molecular Structure, Spectroscopic Properties, and Electrophilic Reactivity of Sodium Pentacyanonitrosylosmate(I1) Dihydrate. *Inorg. Chem.* 1994;33:5890-5896.
- Slep LD, Alborés P, Baraldo LM, Olabe JA. Kinetics and Mechanism of Ligand Interchange in Pentacyano-L-osmate(II) Complexes (L = H₂O, NH₃, N-Heterocyclic Ligands). *Inorg. Chem.* 2002;41:114-120.
- **6.** Bonazzola C, Calvo EJ, Nart FC. A Fourier Transform Infrared Reflection-Absorption Spectroscopy Study of Redox Polyelectrolyte Films. *Langmuir.* 2003;19:5279-5286.
- Tagliazucchi M, Williams FJ, Calvo EJ. Effect of acid-base equilibria on the Donnan Potential of Layer-by-Layer Redox Polyelectrolyte Multilayers. *Journal of Physical Chemistry B*. 2007;111:8105-8113.
- **8.** De Benedetto GE, Guascito MR, Ciriello R, Cataldi TRI. Analysis by X-ray photoelectron spectroscopy of ruthenium stabilised polynuclear hexacyanometallate film electrodes. *Analytica Chimica Acta*. 2000;410(1-2):143-152.
- **9.** Fluck VE, Inoue H, Yanagisawa S. Mössbauer and X-ray Photoelectron Spectroscopic Studies of Prussian Blue and its Related Compounds *Zeitschrift für anorganische und allgemeine Chemie.* 1977;430:241-249.
- **10.** Morando PJ, Bruyère VIE, Blesa MA. Preparation and Spectral Properties of the Sodium Salts of Pentacyano(Ligand)Ferrate(II) Complexes. *Transition Met. Chem.* 1983; 8:99-102.
- **11.** Shepherd RE, Chen Y, Johnson CR. The effect of net charge and backbonding contrbution of ML₅ fragments containing Fe(II), Ru(II), Os(II), Co(III) and Rh(III) on the NMR shifts of coordinated N-heterocycles. *Inorganica Chimica Acta*. 1998;267:11-18.

12. Finklea HO, Snider DA, Fedyk J. Passivation of pinholes in octadecanethiol monolayers on gold electrodes by electrochemical polymerization of phenol. *Langmuir.* 1990;6:371.